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Deterministic Hadamard gate for microwave cat-state qubits in circuit QED
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We propose the implementation of a deterministic Hadamard gate for logical photonic qubits encoded in
superpositions of coherent states of a harmonic oscillator. The proposed scheme builds on a recently introduced
set of conditional operations in the strong dispersive regime of circuit QED [Z. Leghtas et al., Phys. Rev. A 87,
042315 (2013)]. We further propose an architecture for coupling two such logical qubits and provide a universal
set of deterministic quantum gates. Based on parameter values taken from the current state of the art, we give
estimates for the achievable gate fidelities accounting for fundamental gate imperfections and finite coherence
time due to photon loss.
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I. INTRODUCTION

While digital (discrete) information encoding is classically
advantageous over analog (continuous) information encoding,
this is no longer true in the quantum case. Indeed, even when
information is encoded into eigenstates of operators with a
discrete spectrum, the principle of superposition allows for a
continuum of errors. This has been recognized early on and
it was shown that continuous variable quantum computation
is theoretically as powerful as discrete variable quantum
computation [1]. Encoding an effective two-level system into
the large Hilbert space of a continuous variable system, such as
that of a harmonic oscillator, may even be more advantageous
by allowing for more compact information processing and
error correction schemes [2].

The last decade has witnessed steady improvements in
coherence times of quantum superconducting circuits [3,4], as
well as significant advances in quantum coherent frequency
conversion between the optical and microwave frequency
ranges [5]. These developments have revived interest in the
possibility, originally proposed in the context of linear optics
[6], of encoding information in superpositions of coherent
states of light known as cat states [7–9], in reference to
Schrödinger’s famous thought experiment [10]. The linear
scaling of the decoherence rate with the size of such states,
in this case the average number of photons, is an obvious
drawback of such a scheme. However, recently a proposal for
encoding, manipulating, and protecting information in photon
number parity eigenstates of microwaves dispersively coupled
to a superconducting qubit has been put forward [11,12]. This
provides an exciting new development in the field of coherent
state quantum computing.

In this work we follow an alternative route to implement
a universal set of quantum gates for coherent state qubits. In
particular we provide a fully deterministic Hadamard gate, the
fidelity of which is characterized for realistic parameters by
solving the Lindblad master equation numerically, accounting
for the effects of photon loss in the dispersive coupling regime.
Probabilistic Hadamard gates for coherent state qubits have
been proposed in the linear optics regime in Refs. [6,13–15]
and implemented in Ref. [16].

*simon.nigg@unibas.ch

II. SYSTEM AND MODEL

The system we consider, called a 3D transmon [3], consists
of a Josephson junction antenna, dipole coupled to the electric
field of a microwave resonator as illustrated in Fig. 1. Ap-
proximating the nonlinear Josephson oscillator by a two-level
system, consisting of its two lowest eigenstates |g〉 and |e〉, we
model this system by the following Hamiltonian [17–19]

H0 = ωca†a + ωeg

2
σ z − χa†aσ z. (1)

Here a annihilates a photon in the cavity mode with frequency
ωc and σ z = |e〉 〈e| − |g〉 〈g| is a standard Pauli operator
for the two-level system with transition frequency ωeg . This
model is valid in the dispersive (i.e., off-resonant) single-mode
coupling regime χ/� � 1 and for photon numbers satisfying
n � ncrit = �/χ , with � = |ωc − ωeg|. It is convenient to
transform to a rotating frame via the transformation

U(t) = exp

[
−i

(
ωeg

2
σ z + (ωc + χ )a†a

)
t

]
. (2)

From now on we thus consider the Hamiltonian in this rotating
frame which reads

H0 = −2χa†a |e〉 〈e| . (3)

In addition we shall consider the following (classical) drive
terms for the cavity (Hc) and the qubit (Hq), which in the
rotating frame read

Hq(t) =
N0∑
j=1

�j (t)

2
(ei(�(j )

qd t+δj )σ− + H.c.) (4)

Hc(t) =
N0∑
j=1

εj (t)(ei(�(j )
cd t+μj )a + H.c.). (5)

Here �
(j )
qd = νj − ωeg and �

(j )
cd = ηj − ωc − χ , where �j

and εj are the drive strengths, νj and ηj the drive frequencies,
and δj and μj the drive phases.

Starting from this model, it was proposed in Leghtas
et al. [11] and demonstrated experimentally in Vlastakis
et al. [20], how to deterministically prepare superpositions of
coherent states of the cavity field, also known as cat states. This
is made possible because although χ is small compared with
the detuning between the cavity and the transmon, it is many
orders of magnitude larger than the linewidths of the transmon
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FIG. 1. (Color online) (a) A superconducting dipole antenna with
a Josephson junction (JJ) at its center (transmon) is coupled to
the quantized electric field E inside a three-dimensional microwave
resonator. (b) Schematics of the spectra of the cavity (upper panel)
and transmon (lower panel) in the strong dispersive regime.

and cavity resonances, respectively given by γ and κ [see
Fig. 1(b)]. This spectral resolution enables selective rotations
of the transmon conditioned on the number of photons in the
cavity and selective displacement operations of the cavity field
conditioned on the state of the transmon [11].

In this work we account for the effects of photon loss in the
Lindblad master equation formalism. We shall assume that the
transmon is T1 limited, i.e., that the intrinsic dephasing rate
γϕ = 0 and that the relaxation rate is solely due to the Purcell
effect [17,18], i.e., that γ = (χ/�)κ . The (zero-temperature)
master equation for the density matrix thus takes the form [21]

ρ̇ = −i[H,ρ] + κD[a]ρ + γD[σ−]ρ, (6)

with D[A]ρ = (2Aρ A† − A† Aρ − ρ A† A)/2 and H =
H0 + Hq + Hc. This equation is solved numerically using
the PYTHON library QUTIP [22].

We follow the notation introduced in Ref. [11] and denote
by Dj

α a displacement of the cavity field by the amplitude α,
conditioned on the transmon being in state |j 〉 ∈ {|g〉 , |e〉}.
Similarly, a rotation of the transmon by an angle θ around
the axis n̂φ = cos(φ)x̂ + sin(φ)ŷ, conditioned on there being
n photons in the cavity is denoted with Xn

θ,φ . Finally, �e

denotes the photon number parity operator conditioned on the
transmon being in the excited state |e〉. Ideally, these operations
are given by

Dj
α = exp(αa† − α∗a) ⊗ |j 〉 〈j | + 1 ⊗ |j〉 〈j | (7)

Xn
θ,φ = |n〉 〈n| ⊗ ei θ

2 n̂φ ·�σ + ∑
m	=n |m〉 〈m| ⊗ 1 (8)

�e = exp(iπa†a) ⊗ |e〉 〈e| + 1 ⊗ |g〉 〈g| , (9)

where we used the notation g = e, e = g. Operations (7) and
(8) can be realized by appropriately applying the drive terms
Hq and Hc while operation (9) is realized by letting the dis-
persive term (3) act alone for a time Tπ = π/(2χ ) [11,20,23].
Pulse imperfections and nonorthogonality of coherent states
with finite amplitudes result in small corrections as described
in more details in the Supplemental Material of Ref. [20].

III. COHERENT STATE QUBITS

In binary quantum logic, the two computational states may
be encoded in any two mutually orthogonal states. Even in

the case of discrete variable quantum computation there thus
exists a continuum of possible encodings. In the discrete
variable case, the computational states are typically chosen
to be the ground and the first excited states of the system
representing the qubit. This choice is advantageous because
these states are stationary, i.e., their time evolution is given
by a (trivial) phase factor and relaxation provides a natural
way to reset the qubit. Different types of encodings have been
considered also for continuous variables and it has been shown
theoretically that universal quantum computation is possible
also in this case [1]. Of interest here is the continuous variable
encoding of information in superpositions of coherent states
of a harmonic oscillator, first proposed in Ralph et al. [6]
and Gilchrist et al. [24] in the context of linear optics.
Importantly, coherent states (with nonzero amplitude) are not
eigenstates of the harmonic oscillator Hamiltonian Hosc =
ωa†a, but under the action of the latter their phase evolves
periodically as |α(t)〉 = exp[−iωta†a] |α(0)〉 = |e−iωtα(0)〉;
a property that is made use of in the implementation of the
photon number parity gate �e given above. Coherent states
are often described as classical states of light owing to the fact
that they are steady-state solutions of the damped, classically
driven, harmonic oscillator. The latter property lies at the heart
of recent proposals to stabilize superpositions of coherent
states—clearly nonclassical states of light—by engineering
an appropriate dissipative environment [12,25]. Finally, two
coherent states of finite amplitude are never truly orthogonal
since 〈α|β〉 = exp[−(|α|2 + |β|2 − α∗β − αβ∗)/2].

Coherent states have interesting relaxation and coherence
properties [26]. Being eigenstates of the photon annihilation
operator, the loss of a photon at a rate κ leaves a coherent
state in a coherent state with damped amplitude, i.e., |α〉 →
|αe− κ

2 t 〉. In particular this implies that the mean photon number
n̄(t) = |α(t)|2 of a coherent state decays at the single-photon
loss rate κ independently of its amplitude. In this sense a
coherent state is more robust against photon loss than a
Fock state |N〉, the occupation of which decays at a rate Nκ

[27,28]. However, a superposition of coherent states such as the
even parity cat state N (|α〉 + |−α〉), with normalization factor
N = 1/

√
2 + 2 exp(−2|α|2), decoheres at the enhanced rate

2n̄κ [at short times t � 1/(n̄κ)]. The latter property makes it
clear that quantum information processing with cat states will
only succeed if fast and reliable quantum error correction can
be done on such qubits. Recently encouraging results in this
direction in both theory and experiment have been obtained
[12,15,23,25,29].

In this work, we consider specifically the following two
logical qubit encodings [6]

|0〉L = |0〉 , |1〉L = |α〉 (10)

and [23]

|C+
α 〉 = N (|α〉 + |−α〉), |C+

iα〉 = N (|iα〉 + |−iα〉). (11)

We shall further assume that |α| is sufficiently large such
that 〈0|α〉 = exp(−|α|2/2) ≈ 0 and N ≈ 1/

√
2 (for example,

for α = 4, one has 〈0|α〉 = 3.4 × 10−4). The {|0〉L , |1〉L}
encoding, which we shall call the computational encoding,
turns out to be more convenient for logical operations utilizing
the dispersive interaction between the microwaves and the
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FIG. 2. (Color online) Fidelity of the photon number parity conditional π -pulse from the numerical solution of Eq. (6) with χ/(2π ) =
50 MHz, κ = 10−4χ . Left: Fidelity as a function of χ/�. Here Nω = 20. Dashed (black) curves show exp[−n̄κkπ/(2χ )]. Right: Fidelity as a
function of the number of drive frequency components Nω. Here χ/� = 10. Different symbols represent different amplitudes α as given in
the legend.

transmon. The {|C+
α 〉 , |C+

iα〉} encoding, which we shall call
the memory encoding, is more convenient for autonomous
quantum error correction [23]. This is due to the fact that both
|C+

α 〉 and |C+
iα〉 are eigenstates with eigenvalue +1 of the photon

number parity operator � = exp(iπa†a) and that the loss of a
single-photon changes the photon number parity and can thus
be detected by measuring � [23,29]. In Sec. V, we provide a
sequence of deterministic operations to switch between these
two encodings and for the rest of this paper we focus on the
computational encoding to discuss logical operations.

IV. SYNTHETIZING LOGICAL QUBIT OPERATIONS

We start by generalizing the conditional transmon rota-
tion (8) by allowing for simultaneous driving of multiple
photon number resolved resonances. Ideally this operation is
given by

XS
θ,φ =

∑
n∈S

|n〉 〈n| ⊗ ei θ
2 n̂φ ·�σ +

∑
m/∈S

|m〉 〈m| ⊗ 1, (12)

where S ⊂ N denotes an arbitrary set of photon numbers.
Such an operation can be approximately realized by the drive
term (4) using a pulse of duration Tp � π/(2χ ) with the fol-
lowing drive frequencies, component amplitudes, and phases

νn = ωeg − 2nχ, �j = δjn

θ

Tp

, δj = δjnφ, (13)

where n ∈ S. Imperfections will result from off-resonant
driving of undesired photon number transitions as explained
in more detail in Appendix A.

A central role in our Hadamard gate implementation is
played by the odd photon number parity conditional π pulse
given by (12) with θ = π , φ = π/2 and S = {2n + 1 : n ∈
N}. Acting on the product state |α〉 ⊗ |g〉, this gate ideally
entangles the photon number parity with the state of the
transmon as follows

X {2n+1: n∈N}
π, π

2
|α〉 ⊗ |g〉 = 1√

2
(|C+

α 〉 |g〉 + |C−
α 〉 |e〉), (14)

where |C−
α 〉 = (|α〉 − |−α〉)/√2 is the odd parity cat state.

Importantly, because the occupation probability of the Fock
states in the coherent state |α〉 obeys the Poisson distribution
with mean n̄ = |α|2 and width

√
n̄, it is sufficient to use a

pulse with a finite number Nω �
√

n̄ of frequency components
ωn = ωeg − 2nχ , distributed around ωeg − 2n̄χ . Figure 2
shows the fidelity of the simulated entangling operation (14)
as a function of the ratio χ/� (left) and as a function of Nω

(right) in the presence of photon loss. For square pulses, as
used in the simulation, a simple pulse optimization consists in
taking χ/� = k ∈ N, since the spectral weight of the pulse
with frequency component ωn then vanishes identically at all
other resonance frequencies ωm	=n (technically the zeros of the
sinc function fall on the unwanted photon number resonances,
as explained in Appendix A). As shown in the left panel of
Fig. 2, the fidelity first increases with increasing k, which
is due to the decreasing AC-Stark shift ∼�/k induced off
resonance. However, increasing k also increases the duration
of the π pulse Tp = π/� ∼ k and hence increases the effect
of photon loss, which leads to the observed decrease in
fidelity. The dashed black curves on the left panel represent
exp[−n̄κkπ/(2χ )] for the different coherent state amplitudes.
On the right panel of Fig. 2 we observe the expected saturation
of the fidelity when the number of frequency components
becomes large compared with

√
n̄. The parameters for the

simulation are given in the figure caption. In Appendix A, we
show that similar fidelities are obtained for Gaussian pulse
envelopes. It is conceivable that more sophisticated pulse
engineering could lead to further improvement.

A. A deterministic logical Hadamard gate

A deterministic Hadamard gate can be implemented by the
following sequence of operations (to be read from right to left)

HL = D α
2
Y {2n+1: n∈N}

−π D α
2
Y 0

−π�e Dg
−αY π

2
, (15)

where we have used the shorthand notation Y θ = Xθ, π
2
. The

corresponding circuit diagram is shown in Appendix C.
The initial unconditional qubit rotation Y π

2
can be realized

with a short pulse with center frequency ωeg − n̄χ and
duration Tp � 1/(2n̄χ ) such that its frequency spectrum
approximately homogeneously covers a number of photon
number resonances large compared with n̄ [11]. Similarly,
the unconditional cavity displacement D α

2
can be realized by

a pulse with center frequency ωc and duration Tp � 1/(2χ )
such that the cavity resonances corresponding to the ground
and excited states of the transmon are equally driven [11].
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� � � � � � �Yπ
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2

+|α
2
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2

+|α
2
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� � � � � � �Yπ
2
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−π Dα
2
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2
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FIG. 3. (Color online) Wigner function W (α) = (2/π )tr[�D−αρcav Dα] of the reduced density matrix of the cavity after each operation
in the Hadamard gate sequence (15). Top: for the initial state |0〉L. Bottom: for the initial state |1〉L. In this simulation we use α = 4,
χ/(2π ) = 50 MHz, and κ = 10−4χ as well as square pulses with duration Tp = 10π/χ for both transmon rotations and field displacements.
The fidelity F to the target state, which is indicated in each panel (omitting normalization) as well as the time T in ns are in shown in the title
of each subfigure. Notice the phase difference of π in the interference fringes of the two final states.

As discussed in Appendix E, in order to avoid spurious
population of higher transmon levels, it is however preferable
to use more sophisticated pulse shaping in frequency. In
the simulations we thus use longer square pulse envelopes
(Tp = 10π/χ ) with narrow frequency bands around selected
resonances for both conditional and unconditional operations.
Clearly there is a tradeoff in minimizing the adverse effects
of decoherence (increasing with pulse duration) and spurious
transmon excitations (decreasing with pulse duration) and
further optimization, beyond the scope of the present work, is
desirable for an experimental realization. The results presented
below, however, show that even with modest effort, rather high
operation fidelities can be reached.

Figure 3 shows the Wigner function W (α) =
(2/π )tr[�D−αρcav Dα] of the reduced density matrix of
the cavity ρcav = trqb[ρ], where the full density matrix ρ

is obtained by solving the master equation (6) following
the sequence of operations (15), starting with the two
computational basis states |0〉L (left) and |1〉L (right). The
parameter values used are given in the figure caption.
The fidelity of this Hadamard gate is defined as F =
|〈ψ0|H 〈g| ρ |g〉 H|ψ0〉|2, where H is the ideal Hadamard
transform. The fidelity depends on the initial state as shown
in Fig. 4 where it is plotted as a function of the two angles
θ and φ parametrizing the initial cavity state on the logical
Bloch sphere as |ψ0〉 = cos(θ/2) |0〉L + eiφ sin(θ/2) |1〉L.

B. Phase gate via a conditional Berry phase

In order to achieve arbitrary single logical qubit rotations
we next explain how to implement a phase gate or arbitrary
rotation around the logical Z axis. Together with the above
Hadamard gate, this gives the ability to perform arbitrary logi-
cal X rotations and therefore arbitrary logical single-qubit rota-
tions. The phase gate is based on the concatenation property of
displacement operations: D(α)D(β) = e(αβ∗−α∗β)/2 D(α + β),
which implies in particular the identity

Dg

β Dg

−iβ Dg

−β Dg

iβ = e2iβ2 |g〉 〈g| + 1 |e〉 〈e| , (16)

where we took β ∈ R. The phase 2β2 is in fact nothing else
but the Berry phase [30] acquired by the coherent state upon

undergoing a cyclic evolution along a closed path encircling
an area β2 in phase space. Thus by choosing β = √

θ/2, the
following sequence (to be read from right to left) implements
the desired phase gate

Y 0
π Dg

β Dg

−iβ Dg

−β Dg

iβY 0
π = ei θ

2 ei θ
2 ZL, (17)

where we have introduced ZL = |1〉L 〈1| − |0〉L 〈0|. Figure 5
shows the fidelity of this gate as a function of the angle θ for
the initial state |ψ〉0 = (|0〉L + |1〉L)/

√
2 for different values

of α. In this simulation we fix the duration of the displacement
operations. The nonmonotonic dependence of the fidelity on θ

is due to the interplay between the photon-number-dependent
decoherence rate and the θ -dependent variation of the photon
number during the sequence (17).

C. Two qubit controlled phase gate

Two logical qubits may be coupled by dispersively coupling
the fields of two adjacent cavities to a flux tunable split trans-
mon as depicted in Fig. 6. Assuming that the inline transmon
between cavities j and j + 1 remains in its ground state

FIG. 4. (Color online) Fidelity of the deterministic Hadamard
gate as a function of the initial cavity state parametrized on the
logical Bloch sphere. Parameters used in the simulation are χ/(2π ) =
50 MHz, κ = 10−4χ , α = 4, and square-pulse duration Tp = 10π/χ .
The total gate duration is Ttot = 6Tp + π/(2χ ) ≈ 605 ns.
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FIG. 5. (Color online) Fidelity of the phase gate as a function
of θ for χ/(2π ) = 50 MHz, κ = 10−4χ and fixed pulse duration
Tp = 10π/χ .

throughout, the dispersive interaction gives rise to a photon
hopping term of the form ξjj+1(a†

j aj+1 + H.c.). As shown
in Ref. [6], such a term acting for a time Tp, naturally gives
rise to a controlled phase gate Cπ = |00〉 〈00|L + |01〉 〈01|L +
|10〉 〈10|L − |11〉 〈11|L on the logical qubits (assumed to have
equal amplitudes α in the state |1〉L) provided that ξjj+1Tpn̄ =
π/2 while n̄ = |α|2 � π2/4 ≈ 2.5. In this limit and for the
dissipationless case, it can be shown that the worst case fidelity
of this gate due to coherent state nonorthogonality goes as

F ∼ exp

(
−π2

2n̄

)
. (18)

Since the linear decrease with n̄ of the gate duration com-
pensates the linear increase of the effective decoherence rate
(γ = n̄κ), it is obviously advantageous to use a large coherent
state amplitude to increase the fidelity (18) of this gate. A
suitably large amplitude can be obtained by preceding the
controlled phase gate by the following amplitude pumping
sequence on both cavities

Y 0
−π Dg

βY 0
π (19)

with β ∈ R such that β + α > α. After the controlled phase
gate the original amplitude can be restored by the following
amplitude damping sequence on both cavities

Y 0
−π Dg

−βY 0
π . (20)

FIG. 6. (Color online) Chain of coupled 3D transmons. Crosses
(red) represent the Josephson junctions at the center of each transmon.
Each cavity is connected to its neighbors by an inline split transmon
(SQUID loop). The cavities are represented by the rectangular boxes.
The U-shaped lines between two cavities represents flux bias lines
used to tune the transition frequencies of the inline transmons. A
transmission line coupling to each cavity further allows for coherent
microwave drives.

FIG. 7. (Color online) Controlled phase gate. The photon hop-
ping strength is ξ/(2π ) = 25 MHz and the single-photon loss rate is
κ = 2 × 10−4ξ . The solid bars show the results for α = 4 and the
semitransparent bars for α = 5.

Figure 7 shows the matrix representation of the fidelity
of the simulated controlled phase gate Cπ , acting on the
XL ⊗ XL basis states |ψij 〉 = (|0〉L + (−1)i |1〉L) ⊗ (|0〉L +
(−1)j |1〉L)/2, which are ideally mapped according to |ψij 〉 →
|φij 〉 onto the entangled states |φij 〉 = (|00〉 + (−1)i |10〉 +
(−1)j |01〉 − (−1)i+j |11〉)/2. The fidelity is shown for two
different values of α, demonstrating the increase in fidelity
with increasing α. Parameter values used in the simulation are
given in the figure caption.

Together with the single-qubit operations presented above,
this completes the set of universal logic gates. A similar setup,
albeit for a different two-qubit gate has been proposed in
Ref. [12].

V. SWITCHING BETWEEN COMPUTATIONAL AND
MEMORY ENCODINGS

In Mirrahimi et al. [12] a set of universal gates for logical
qubits encoded in the memory basis (11) was given. An
advantage of this proposal is that logical operations and
quantum error correction take place within the same encoding,
which allows for the logical operations to be made fault tolerant
to a large extent [12]. One drawback of that specific proposal
though, is that in order to implement an arbitrary single-qubit
rotation in the memory encoding it is necessary to make use
of the self-Kerr-interaction among the photons −Ka†a†aa
(see Appendix D). The self-Kerr-interaction strength K is
however typically orders of magnitude smaller than the
dispersive interaction [20,31], leading to inappropriately long
gate times. Increasing the strength of the self-Kerr-interaction
is not desirable, since it adversely affects the logical state
preparation, by squeezing the coherent states. As shown above,
in the computational encoding (10), it is possible to implement
deterministically an arbitrary single-qubit rotation using the
cross-Kerr term between the photons and the transmon alone.
Here we show that the cross-Kerr term also allows to switch
between the two encodings. Thus a potentially faster mode
of operation would consist in keeping the logical qubits
in the protected memory encoding when idle, continuously
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FIG. 8. (Color online) Evolution of the Wigner function of the two logical basis states |0〉L (first and third columns) and |1〉L (second
and fourth columns) during the encoding-switching sequence (21). Here we take α = 3.5, χ/(2π ) = 50 MHz, κ = 10−4χ , and varying pulse
durations Tp ∈ {10π/χ,40π/χ}. In each panel we indicate the ideal target state. The fidelity F of each step as well as the time T in ns is
indicated in the titles.

performing error correction as described in Refs. [12,23] and
map them into the computational encoding only to perform
logic operations as described in the present work. The sequence
of operations to switch from the computational to the memory
encoding is given by

D−αY 0
π Dα D−iαY 0

−π Diα�eY− π
2

De
iαY 0

π . (21)

The inverse transformation is obtained by inverting the
sequence and replacing α → −α as well as π → −π . Figure 8
shows the evolution of the Wigner function of the logical qubit
basis states after each operation in the sequence (21). In order
to shorten the duration of the sequence we have combined the
two successive displacements using Dα D−iα = eiα2

Dα−iα .
We find fidelities of 81% and 72% for the transformations
|0〉L → |C+

iα〉 and |1〉L → |C+
α 〉 respectively.

VI. SUMMARY AND CONCLUSION

In summary we have proposed a deterministic Hadamard
gate for logical coherent state qubits encoded in the two-
dimensional space spanned by the vacuum and a coherent state
of finite amplitude. Our scheme utilizes the experimentally
demonstrated strong dispersive interaction of the electromag-
netic field of a superconducting cavity with an off-resonant
effective two-level system (transmon qubit) and generalizes
a recently introduced set of conditional operations [11]. We

further describe a set of universal deterministic quantum gates
and provide numerical estimates for fidelities that should be
achievable in state of the art circuit QED systems.
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APPENDIX A: APPENDIX A: PHOTON-NUMBER SUBSET
CONDITIONAL TRANSMON ROTATION

In this Appendix we describe in more details how to
implement operation (12). In a frame rotating with the bare
transmon and cavity frequencies, a photon number subset
S-dependent transmon pulse is described by the Hamiltonian

H = −χa†aσ z +
∑
m∈S

�m(t)

2
(e−2imχtσ− + H.c.) (A1)

where �m(t) is the envelope function of the pulse component
with center frequency ωm = ωeg − 2mχ . Moving to the
interaction picture with the unitary transformation

U(t) = exp

[
−itχσ z

∑
n

n |n〉 〈n|
]

(A2)

we obtain

H̃ = U HU† − iUU̇
† =

∑
m∈S

�m

2

∑
n

(e−2iχt(m−n)σ− + H.c.) |n〉 〈n|

=
∑
m∈S

�m

2
σ x |m〉 〈m| +

∑
m∈S

�m

2

∑
n	=m

(e−2iχt(m−n)σ− + H.c.) |n〉 〈n| . (A3)
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Consider now the perturbative expansion for �m/χ � 1 of the evolution operator in this frame

Uevol(T ) = T exp

[
−i

∫ T

0
H̃(τ )dτ

]
≈ 1 − i

∫ T

0
H̃(τ )dτ

= 1 − i

2

∑
m∈S

{ ∫ T

0
dτ�m(τ )σ x |m〉 〈m| +

∑
n	=m

∫ T

0
dτ

�m(τ )

2
(e−2iχ(m−n)τσ− + H.c.) |n〉 〈n|

}
. (A4)

For �m(τ ) = θ (T − τ )�0 this becomes

Uevol(T ) ≈ 1 − i
�0T

2

∑
m∈S

[
σ x |m〉 〈m|

∑
n	=m

e−iχ(m−n)T

(
sin (χ (m − n)T )

χ (m − n)T
σ− + H.c.

)
|n〉 〈n|

]
. (A5)

Now let us choose T such that χT = π . Then the second term
above vanishes identically, as the zeros of the sine function
line up with the photon resonances of the transmon that we do
not wish to drive and we have

Uevol(π/χ ) ≈ 1 − iπ

(
�0

2χ

) ∑
m∈S

σ x |m〉 〈m| . (A6)

This generates a small x rotation of the transmon components
associated with the Fock states |m〉 with m ∈ S by an
angle π�0/χ � π . By concatenating such rotations k times,
effectively increasing the total pulse time to T = kπ/χ , we can
then generate a rotation of the transmon by an angle kπ�0/χ as

Uevol(kπ/χ ) ≈ Uevol(π/χ )k

= exp

[
−i

kπ�0

2χ
σ x

] ∑
m∈S

|m〉 〈m|

+
∑
n/∈S

|n〉 〈n| . (A7)

By changing the phase of the drive signal we may similarly im-
plement a photon parity conditional rotation around arbitrary
axes in the x-y plane. For example we may perform a π rotation
around the y axis conditioned on the parity of the photon
number being odd as in the main text by selecting a drive
phase of π , S = {2n + 1}n∈N and k�0 = χ , which implies

FIG. 9. (Color online) Comparison of the fidelities of the photon
number parity conditional π pulse between Gaussian and square
pulses. For small χ/�, the fidelity is lower for the Gaussian
pulses, which is due to the larger on-resonance driving of unwanted
transitions in this case. For larger χ/�, the obtained fidelities
are similar. We take α = 4, Nω = 20, χ/(2π ) = 50 MHz, and κ =
10−4χ .

k � 1 given that we assumed �0 � χ . Higher-order terms in
the perturbative expansion (A4), lead to correction terms of
order �2

0/χ , which correspond to the AC-stark shift [20].
In reality one cannot generate perfect square pulses and this

will lead to corrections. It is easily seen that for Gaussian pulse
envelopes, the strength of the residual on-resonance drives of
other resonances is suppressed at least by the superexponential
factor

∑∞
k=1 e−(2χT k)2

and thus becomes negligible for a pulse
duration T � 1/(2χ ). Note also that typically for a conditional
qubit rotation by an angle θ ∈ [0,2π ], T ∼ θ/�0, which
means the correction terms will be small as long as �0 � χ

consistent with our assumption. Figure 9 shows the fidelity
of the odd photon number parity conditional π pulse imple-
mented with Gaussian pulses Aπ exp{−[σ (t − T/2)]2/2} with
frequency width σ = 6/T , total pulse duration Tp = 10π/χ

and amplitude Aπ = πσ/
√

2π . The comparison with the
square pulse case, shows that similar fidelities can be reached
in both cases.

APPENDIX B: NOT GATE

Although one may in principle implement any single-
qubit gate with the operations described in the main text,
the dispersive coupling may allow for more efficient direct
implementations of certain gates. For example, a logical
quantum NOT gate XL can be implemented solely with
unconditional operations by the sequence of operations

XL = D α
2
Yπ�eYπ D− α

2
. (B1)

APPENDIX C: CIRCUIT DIAGRAM OF THE
DETERMINISTIC HADAMARD GATE

Logical qubit operations may be conveniently represented
as quantum circuits. Figure 10 shows the circuit diagram of
the deterministic logical Hadamard gate.

Y π
2

Dg
−α Πe

Y 0
−π Y O

−π

D α
2

Dα
2

FIG. 10. (Color online) Circuit diagram for the deterministic
Hadamard gate. The horizontal solid (blue) line represents the cavity
state (logical qubit), while the dashed (black) line represents the
transmon state. Here O = {2n + 1 : n ∈ N}.
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FIG. 11. (Color online) Effect of the self-Kerr-interaction on the displacement operation. The displacement amplitude is α = 4 and the
square pulse duration is Tp = 10π/χ . We further take χ/(2π ) = 50 MHz and κ = 0. The initial state is |0〉L |g〉 and the Wigner function is
calculated by solving numerically the master equation (6) with Hamiltonian H = iε(a − a†) − Ka†a†aa. The dashed (white) lines show a(Tp)
after Eq. (D6).

APPENDIX D: INFLUENCE OF THE INDUCED
PHOTON-PHOTON INTERACTION

In the above discussion we have neglected the self-Kerr-
interaction between the photons induced by the coupling to
the nonlinear transmon oscillator [31–33]. In this Appendix,
we show that the leading-order effect of the self-Kerr can be
accounted and corrected for to a large extent. The self-Kerr
effect is described by the term

HK = −Ka†a†aa. (D1)

Note that this term commutes with the photon number operator
and is independent of the state of the transmon and thus
commutes with the conditional transmon operations (8) and
(12). When acting on a coherent state |α〉 the leading-order
effect is a phase rotation [34]

e−i HK t |α〉 ≈ |αeiφK t 〉 Kt � 1 (D2)

with φK = 2n̄K . Sub-leading-order terms describe squeezing
[34]. To leading order, the effect of the self-Kerr on the photon
number parity operation (9) can thus be corrected for simply
by shortening the waiting time according to

Tπ,n̄ = π

2(χ + Kn̄)
, (D3)

for a coherent state with average photon number n̄. The
self-Kerr term (D1) does not commute with the displacement
operation (7). Let us consider the case where the transmon
is in the ground state. In the presence of an on-resonance
drive with constant strength ε ∈ R and of duration T such
that KT � 1, the Heisenberg equation of motion for the

annihilation operator, neglecting squeezing terms reads

ȧ(t) = 2iK(εt)2a + ε. (D4)

The solution of Eq. (D4) for the coherent state amplitude is

a(t) =
(

ε

∫ t

0
dτe−i 2

3 Kε2τ 3 + a(0)

)
ei 2

3 Kε2t3
. (D5)

Specifically for the case where the field is initially the vacuum
[a(0) = 0] and for (εt)2Kt � 1 we find

a(t) ≈ εt + i
Kε3t4

2
. (D6)

The self-Kerr induced phase rotation during the displacement
is thus

φK (t) ≈ tan φK = Im[a(t)]

Re[a(t)]
= Kn̄(t)t

2
, (D7)

where we have defined n̄(t) = (εt)2. Figure 11 compares
Eq. (D6) for different values of K with the result of a Wigner
function computation including higher-order terms. As we can
see, the direction of the center of the distribution is well
captured by (D6) (dashed white lines) even in the presence
of sizable squeezing. To emphasize the effect of the self-Kerr
we set κ = 0 in this simulation.

Figure 12 shows the cavity Wigner function during the
Hadamard gate sequence acting on the initial state (|0〉L +
|1〉L)/

√
2, including a self-Kerr term of strength K = 0.5 ×

10−4χ . Here we include photon loss as well. In the simulation
we have adjusted the displacement phases and amplitudes
according to Eq. (D6) and corrected the wait time according to
Eq. (D3). The results demonstrate that high fidelities of about

FIG. 12. (Color online) Effect of the self-Kerr-interaction on the Hadamard gate. We use a displacement of amplitude α = 4 and pulse
duration Tp = 10π/χ and take χ/(2π ) = 50 MHz and κ = 10−4χ . The initial state is (|0〉L + |1〉L)/

√
2 and the Wigner function is calculated

by solving numerically the master equation (6) including the self-Kerr term (D1) with K = 0.5 × 10−4χ . The fidelity F as well as the time T

in ns at each step are shown in the titles. The (black) dashed lines are calculated analytically.
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80% can be reached even in the presence of a weak self-Kerr
term.

APPENDIX E: BEYOND THE TWO LEVEL
APPROXIMATION: CONDITIONAL VS

UNCONDITIONAL OPERATIONS

Above, we have neglected the higher excited states of the
transmon. However, a transmon is best viewed as a weakly
anharmonic oscillator with negative anharmonicity [18,33].
Denoting the transmon eigenstates with |j 〉, the dispersive
Hamiltonian in the multilevel case reads∑

j=0

χj,j+1(|j + 1〉 〈j + 1| − |j 〉 〈j |)a†a. (E1)

Thus the e ↔ g and f ↔ e transitions split up into photon-
number-resolved ladders of resonances according to

ω(eg)
n = ωeg − 2nχ (E2)

and

ω(f e)
n = ωf e − 2nχ ′ (E3)

with χ = χ01 − χ12/2 and χ ′ = χ12 − (χ23 + χ01)/2.
If the magnitude δ of the anharmonicity were much larger

than 2n̄χ where n̄ is the average photon number in the logical
qubit state |1〉L, then one could implement unconditional
operations on the transmon simply by using pulses of short
duration T such that δ � 1/T � 2n̄χ . If such a wide
separation of frequency scales is not available, as is the case
in current experimental realizations, then it may be preferable
to implement the unconditional operations in a similar way to
the conditional operations, by superposing narrow frequency
band pulses to avoid spurious population of higher transmon

ωeg

ωfe

δ2χ′

2χ

ν7

ν7

n = 0

n = 1
n = 2

n = 0

n = 1
n = 2

E

Pn

FIG. 13. (Color online) Illustration of the three-level transmon
spectrum in the dispersive coupling regime with a coherent state
in the cavity. Note that χ 	= χ ′. Thus, by using sufficiently narrow
pulse envelopes in frequency, one can avoid population of the excited
state f . This is illustrated on the figure for the n = 7 transition.

levels (see Fig. 13). The penalty for this is an increase in gate
duration.
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