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Quantum simulation of the Kibble-Zurek mechanism using a semiconductor electron charge qubit
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The Kibble-Zurek mechanism is central to the nonequilibrium dynamics and topological structure that occur
during phase transitions, which may be manifested as the cosmological strings of the early universe or vortex
lines in a superfluid. In recent years, there has been broad interest in performing quantum simulations using
different well-controlled physical setups, whose full controllability allows access to regimes that may be difficult
to explore. Here, we demonstrate a proof-of-principle quantum simulation of the Kibble-Zurek mechanism in
the quantum Ising model as it undergoes a quenched phase transition. We used an electron charge qubit in a
double quantum dot as the simulator. We engineered the qubit under Landau-Zener dynamics and successfully
reproduced the Kibble-Zurek-like dependence of the topological defect density on the quench time. The high
level of tunability of two-level semiconductor systems and the intriguing analogy between the two phenomena
(the Kibble-Zurek mechanism and Landau-Zener transition) offer a platform on which to gain new insight into
the dynamics of various phase transitions.
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I. INTRODUCTION

The Kibble-Zurek mechanism [1,2] provides a descrip-
tion of the nonequilibrium dynamics and the generation of
topological structures, such as strings, vortices, or domain
walls during symmetry-breaking phase transitions [3–9]. It
should be noted that the study of the time evolution of systems
undergoing phase transitions is notoriously difficult because
such transitions occur very rapidly or remain intractable to
calculate in many cases [10,11]. However, this difficulty may
be efficiently overcome by using some controllable quantum
system to study another less accessible system, i.e., quantum
simulation [12–15]. The quantum simulation of the dynamics
of phase transitions has been the subject of intensive discussion
over the past few years [16–20]. To date, the focus has mainly
been theoretical, although proof-of-concept results on the
experimental side are highly desirable.

Recently, the Landau-Zener transition has been reported
to exhibit the key physics of the Kibble-Zurek mecha-
nism [21,22]. The Landau-Zener transition [23,24], occurring
when a two-level system sweeps through its anticrossing
point [25–28], plays a prominent role in quantum phenomena.
This analogy between the two physical situations is partic-
ularly intriguing and constitutes the theoretical foundation
for the implementation of quantum simulations. However, a
practical scheme to construct a realizable mapping between the
system and the simulator is still missing. More importantly, the
experimental realization of the quantum simulation approach
to mimic the quench dynamics in actual objects remains
a challenge that requires a simulator designed in a fully
controllable manner and with a manipulation rate much faster
than the rate of decoherence. Here, we demonstrate an analog
quantum simulation protocol for the Kibble-Zurek mechanism
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using the Landau-Zener dynamics of an electron charge qubit
in a double quantum dot.

II. ANALOGY BETWEEN KIBBLE-ZUREK
AND LANDAU-ZENER PROCESS

The Kibble-Zurek mechanism provides a description of
the formation of topological defects during the symmetry-
breaking phase transitions considered in various areas of
physics, from cosmology to condensed matter [1–7] . Consider
a system, shown in Fig. 1(a), traversing a second-order phase
transition over a certain quench period. Here, we denote the
distance from the critical point as λ. The quench process can be
approximated by a time-dependent λ = t/τQ, which changes
linearly with time at the quenching rate 1/τQ. When the system
approaches the critical point from the high-symmetry phase,
the relaxation time τ = τ0/λ will diverge, which implies
that the dynamics of the system becomes increasingly slow.
In particular, when the relaxation time is longer than the
quench time, also called the freeze-out time scale t̂KZ [2],
the new broken-symmetry states are in effect immobilized,
and topological defects form. Thus the density of defects ρKZ,
that is the average size of the topological defects, is given
by the correlation length at the freeze-out time, which is the
key prediction offered by the Kibble-Zurek mechanism [2].
According to the scale of the relaxation time and quench
time, the nonequilibrium phase-transition process can be
distinguished into two regions in the neighborhood of the
critical point: adiabatic evolution and nonadiabatic freezing.

A transition between two energy levels at the anticrossing
point is known as a Landau-Zener transition [23,24]. To be
more specific, in schematic Fig. 1(b), we consider a two-level
system with a sweeping rate v. We denote the level of
detuning as ε and the ground and excited states as |0〉 and |1〉,
respectively. When the system approaches the anticrossing
point, there is a characteristic boundary t̂LZ [25], where the
energy gap E� between the up and down levels is minimized
relative to the sweeping rate to allow for a sudden transition
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FIG. 1. (Color online) Analogy between Kibble-Zurek mecha-
nism and Landau-Zener transition. (a) Top: schematic diagram of
quenched phase transition resulting in the formation of topological
defects ρKZ in a quantum Ising chain. Bottom: we can define two
regions—within (outside) the time interval [−̂tKZ ,̂tKZ], where the
relaxation time τ is longer (smaller) than the quench time τQ such
that the phase configuration will be fixed (mobile). (b) Top: illustration
of the two-level system dynamics for the time-dependent sweeping.
Bottom: we can also distinguish two regions—near (far from) the
anticrossing point, where the inverse of the energy gap E� is smaller
(larger) than the sweeping rate v such that there is a nonadiabatic
transition PLZ between the two states (adiabatic evolution).

between the two levels. Thus it is also intuitive to use a
two-stage picture [25] in which the system will evolve almost
adiabatically along the ground state far from the anticrossing
point and have a significant probability PLZ of making a
nonadiabatic transition to the excited state in the vicinity of
the anticrossing point.

Compared with the two phenomena illustrated in Figs. 1(a)
and 1(b), it is clear that the system undergoes a quenched
phase transition from a defect-free phase to a defect phase,
similar to a Landau-Zener transition from a ground state to an
excited state. Here, we would like to simulate a given process
(Kibble-Zurek mechanism) using a different process (Landau-
Zener transition) containing all of the essential features of the
original problem in a fully controllable manner.

III. MAPPING EVOLUTION OF QUANTUM ISING
MODEL ONTO LANDAU-ZENER DYNAMICS

The physics underlying the nonequilibrium dynamics of
phase transitions is a potentially vast field. It is thus of utter
importance to focus on a simple yet fundamental model.
The quantum Ising model is one of the prototypical many-
body systems that exhibit a quantum phase transition [29].
The Hamiltonian describing a one-dimensional ferromagnetic
Ising chain is defined as follows:

HIsing = −J

N∑
n=1

(
gSx

n + Sz
nS

z
n+1

)
, (1)

where Sx
n and Sz

n are the spin operators at site n and g is
the applied magnetic field, N is total number of the site
considered, and we assume the periodic boundary conditions−→
S N+1 = −→

S 1. There is a quantum phase transition that occurs
at the critical point g = 1, between a paramagnetic state
when applied fields dominate and a ferromagnetic state when
interactions dominate. It is better to give the measure of the
distance from the critical point as λ = g − 1. When the system
approaches through the critical point at a finite rate 1/τQ in the
presence of a time-dependent field, the density of kinks after
quenching is estimated by Kibble-Zurek theory to be [30,31]

ρKZ = 1

2π

√
�

2JτQ

. (2)

The time evolution of the Ising model can be mapped onto
a series of Landau-Zener transitions of different quasiparticle
modes. We define a Jordan-Wigner transformation Sx

n = 1 −
2C+

n Cn, Sz
n = −(Cn + C+

n )�m<n(1 − 2C+
mCm), where C+

n , Cn

are fermionic creation and annihilation operators, respec-
tively, at site n. Then, using the Fourier transform Cn =
e−iπ/4 ∑

k Cke
ikna/

√
N , the quantum Ising model can be

decomposed into a Landau-Zener Hamiltonian for each mode
with momentum k:

HIsing = 1

2

∑
k>0

	+
k Hk	k , Hk =

(
εk �k

�k −εk

)
, (3)

where 	k ≡ (C+
k ,C−k), εk = 4J [g − cos(ka)], �k = 4J

sin(ka), and a is the lattice spacing of the chain.
After a Bogoliubov transformation Ck = αkχk + β∗

−kχ
+
−k ,

the equations of motion satisfy the standard Landau-Zener
form [31]:

i�
d

dt

(
βk

αk

)
= 1

2

(
vt 1

1 −vt

) (
βk

αk

)
. (4)

It becomes increasingly apparent that the dynamical equation
of the system can be mapped onto a series of Landau-Zener
transitions with the velocity v = 1/4JτQ sin2(ka).

When g is ramped down to the critical point, the system
is excited and the density of defects is the sum of the
excitation probability PLZ(k) of quasiparticles with different
momenta [31]:

ρKZ = 1

2π

∫ π

−π

PLZ(k)d(ka), (5)

where PLZ(k) is the solution of the Landau-Zener problem
in Eq. (4).

To be more specific, Eqs. (4) and (5) theoretically demon-
strate that such quenching process in the quantum Ising model
could be obtained by simulating the Landau-Zener probability
PLZ(k) with different velocities, v, and thus the momenta, k.

IV. QUANTUM SIMULATION USING
AN ELECTRON CHARGE QUBIT

The parameters of a quantum simulator system must be
well controlled. In our simulation, we use an electron charge
qubit trapped in a double quantum dot. Our wafer was grown
by molecular-beam epitaxy, and a thin layer of electrons,
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FIG. 2. (Color online) Experimental scheme used to realize the
Landau-Zener transition of electron charge qubit in a double quantum
dot. Left: the driving pulse control the system undergoing double-
passage Landau-Zener transition process with a designed velocity.
Right: scanning electron micrograph of the double quantum dot
device and the quantum point contact charge sensor. The color plot
of the electron represents the occupation states during the pulse
sweeping.

which is referred to two-dimensional electron gas, could be
formed at the interface between the AlGaAs layer and GaAs
layer. Using standard Hall resistance data and Shubnikov–de
Haas oscillations in the longitudinal resistance, the density and
mobility of the two-dimensional electron gas were determined
to be 3.2 × 1011 cm−2 and 1.5 × 105 cm2/V s, respectively.
Figure 2 shows a top-down scanning electron micrograph of
one of our processed double quantum dot devices. The Ti-Au
electrodes were fabricated on the top surface of the wafer. The
L2, L3, R2, R3, M , and T gates were used to confine the
electrons in the double quantum dot, and the M and T gates
could also adjust the tunnel coupling between the two dots.
The left and right quantum point contacts, which were used as
nearby charge detectors, were formed by the L1 and L2, R1
and R2 gates, respectively.

The quantum bit Hamiltonian in the basis of |L〉 and |R〉
consists of two terms [32,33]:

Hqubit = 1

2

(
ε �

� −ε

)
. (6)

The diagonal term ε denotes the energy-level difference of the
states |L〉 and R〉, and the off-diagonal term � represents the
interaction between the two states, depending on the tunnel
coupling of the two dots. Here, we denote the electrons in
the left and right dots as the states |L〉 and |R〉, respectively.
The charge occupation probabilities in the double quantum dot

states (|L〉 or |R〉) were measured via standard charge detection
techniques [32]. Due to the strong capacitive coupling between
the double quantum dot and nearby detector, the changes in
the conductance GQPC through the quantum point contact were
sensitive to the changes in the double quantum dot charge
states. We used the right quantum point contact as the sensor. In
practice, we would usually repeat the procedure outlined above
approximately 107 times to enhance the signal sensitivity. All
measurements were performed in an Oxford Triton dilution
refrigerator with a base temperature of 30 mK.

Our scheme for probing the Landau-Zener transition of the
quantum simulator for different momenta k is illustrated in
Fig. 2. An Agilent 81134A pulse generator was used to apply
a controlled electric pulse with a defined amplitude and time
width onto the L3 gate of the double quantum dot. First, we
initialize the qubit to the ground state |0〉 at a negative detuning.
Next, we drive the qubit in a superposition state of |0〉 and |1〉
via a linearly increasing pulse with velocity v through the
anticrossing region. In the simulation, Eq. (6) is reduced to
the same Landau-Zener problem indicated by Eq. (4) because
the diagonal term can be tuned with a time-dependent electric
field:

HLZ = 1

2

(
ε0 + vt �

� −(ε0 + vt)

)
. (7)

Continuously adjusting the amplitude of the applied electri-
cal pulse while keeping its time width fixed allows for the rate v

to be swept over a wide range, ensuring that the Landau-Zener
transition probability PLZ can be investigated for different
values of momentum k. Finally, we apply a linearly decreasing
pulse to make the qubit pass the anticrossing point twice.
This double-passage process will cause the final state of the
qubit to be a combination of the nonadiabatic level transition
PLZ (proportional to the sweeping velocity) and accumulated
phase φ during the adiabatic evolution (determined by the path
drawn by the driving pulse from the initial detuning) [25]:
P|1〉 = 2PLZ(1 − PLZ)(1 + cos φ) (see Appendixes for the
discussion of decoherence effects and simulation fidelity
estimation). The probability of finding the qubit in the excited
state |1〉 is measured at far detuning where the basis is |L〉
using a nearby quantum point contact charge sensor.

Figure 3 shows the recorded charge state occupation P|L〉
as a function of both the energy-level detuning ε0 and the
sweeping rate v. For our experiments, the tunnel coupling � is
adjusted to 5 μeV. Oscillations known collectively as Landau-
Zener-Stükelberg interference [25,27] indicate that PLZ for
different momentum k can be determined by monitoring
information about P|L〉.

In Fig. 4(a), we plot the measured PLZ(k) as a function of
momentum k over the range 0 < ka < π . In the experiment,
we set the velocity v to a value corresponding to a simulated
quench time of JτQ = 1 μeV/ns. The data for different
momenta can be used to obtain the defect density ρKZ based
on Eq. (5), where the modes with small momenta contribute
the most. The simulation discussed above can be performed
for various quench times. Figure 4(b) shows the simulated ρKZ

as a function of quench time, τQ. The experimental data are
in reasonable agreement with the results of the Kibble-Zurek
theory prediction Eq. (2), which are shown as a solid line. The
kink density created by quenching the quantum Ising system
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FIG. 3. (Color online) Simulation of the quenched quantum Ising
model with tunable Landau-Zener dynamics. The occupation of the
qubit in the excited state |1〉 (detected at far detuning where the basis
is |L〉) as a function of the energy position ε0 and the sweeping
rate v, revealing a double-passage Landau-Zener transition process.
The inset shows a line cut in Fig. 3 at a fixed ε0 = −400 μeV. In
the experiment, applying Landau-Zener dynamics for varying sweep
rates v allowed for the simulation of the dynamics of the quenched
quantum Ising model for each quasiparticle mode with momentum k.

scales as τ
−1/2
Q , precisely the same universal exponent expected

by the Kibble-Zurek mechanism [30].
The quantum simulation scheme provides a useful platform

with which to study not only the well-known features of the
Kibble-Zurek mechanism, but also as yet unknown physics.
Evolution in the mapped Landau-Zener equation (4) starts
from ti = −∞ and stops at tf = 2JτQ sin(2ka). When the
quench is slow (large τQ), the corresponding final time tf
can be safely extended to +∞ implying the solution of Eq. (4)
equivalent to the complete Landau-Zener transition probability
PLZ(k) ≈ exp(−π/2�v) [31]. This usually leads to the power
law τ

−1/2
Q of the topological excitations as Kibble-Zurek theory

predicted, while for a fast quench situation (small τQ), the
Landau-Zener process is incomplete or terminates at finite
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FIG. 4. (Color online) Quantum simulation of the Kibble-Zurek-
like behavior of defect density as a function of quench time. (a) A
typical simulation of Landau-Zener probability, PLZ, for different
momentum, k, extracted from Fig. 3. The solid line is a numerical
fit. (b) The simulated density of defects ρKZ as a function of quench
time, τQ. The curve represents the Kibble-Zurek theoretical prediction
based on Eq. (2). The inset shows the simulation results for very fast
quench regime.

ending time tf . The simulation results for fast quench rate are
displayed in the inset of Fig. 4(b), where we find a new regime
characterized by a different behavior as 1/2[1 − (JτQ/�)1/2].
We remark that for a quenched Lipkin-Meshjov-Glich model,
there is also a scaling τ

−3/2
Q crossover to a steeper power law

τ−2
Q as explained by incomplete Landau-Zener transitions [34].

V. CONCLUSION

In summary, we implemented a proof-of-principle quantum
simulation to explore various properties of Ising model for
a range of quench time using a designed Landau-Zener
simulator. Our experiment serves as a first step toward more
complex quantum simulations. It is expected that, in the near
future, research will move toward the quantum simulation of
dynamics that are difficult to observe in real systems (see the
Appendixes for quantum simualtion of correlation functions of
quantum Ising model), such as nonlinear quenching [35], or to
address a broad range of quantum phase transitions that occur
in more complex condensed-matter systems, for example, the
XY , Kitaev, or Creutz model [36,37]. Our scheme does not
use a sequence of quantum gates as in a digital quantum
simulation [12–15], and the desired outcome does not appear
to be affected drastically by decoherence; thus scaling to a
large number of quantum dot qubits might be simpler.
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APPENDIX A: QUANTUM SIMULATION OF ENTROPY,
CORRELATIONS, AND MAGNETIZATION

Here we demonstrate a series of quantum simulation
examples for quenched quantum Ising model, notably the
quantities such as entropy, magnetization, and correlation
functions. These are the basic building blocks from which
one can construct other physical quantities. Our strategy for
the study is as follows.

First, in our simulation, the implemented algorithm estab-
lishes a mapping of a quantum Ising model onto a Landau-
Zener type equation of Bogoliubov excitations with velocity
v = 1/4JτQ sin2(ka), i.e., Eq. (4) in the main text. In fact, the
associated density matrix contains all of the information,

ρLZ(k) =
(|βk|2 βkα

∗
k

αkβ
∗
k |αk|2

)
, (A1)

in which the elements of the density matrix are constructed
by the solution of the Landau-Zener equation. Therefore,
the density matrix ρLZ(k) can be directly obtained from the
Landau-Zener transition probability and phase by measuring
Landau-Zener-Stükelberg interference pattern of the qubit for
different velocities v. The raw experimental results are shown
in Figs. 3 and 4(a) in the main text.

Secondly, the quenching dynamics of the spin model can be
viewed as a superposition of different configurations. In other
words, the final state for the block of N -spin quantum Ising
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chain is described by a density matrix of the product form

ρIsing = ⊗ρLZ(k) =
(

A B+

B 1 − A

)
. (A2)

Here A and B are N -dimensional matrices, and their ele-
ments are defined as quadratic correlators of the fermionic
creation and annihilation operators C+

n , Cn at site n: Am,n ≡
〈CmC+

n 〉 = 1
2π

∫ π

−π
|βk|2 exp[ika(m − n)]d(ka) and Bm,n ≡

〈CmCn〉 = 1
2πi

∫ π

−π
βkα

∗
k exp[ika(m − n)]d(ka). By measur-

ing the set of Landau-Zener processes for a range of simulated
momentums k, the full state density matrix ρIsing can be
reconstructed from the signal of the probe qubit.

With complete knowledge of the density matrix ρIsing,
we can determine all of the macroscopic observables. For
example, an expression for the entropy follows as S =
−TrρIsing log2 ρIsing, which can be used as a tool to probe
quantum phase transitions in many-body systems. Apart from
the entropy, correlation functions after a quench are of fun-
damental interest because they provide a direct manifestation
of the universal properties of a phase transition. In this study,
we are particularly interested in investigating the transverse
magnetization for slow quench:

M = 〈
Sx

n

〉 = 〈1 − 2C+
n Cn〉 ≈ 1

π

∫ π

−π

PLZ(k)d(ka). (A3)

Thus the magnetization can be simulated for a range of the
probed quench time τQ. It is clear that the magnetization decays
to zero when the quench time is varied to a large value, a
characteristic of the ferromagnetic ground state after a quench.

To summarize, we employed a designed Landau-Zener
processor using semiconductor qubits to explore various
quantities of Ising system for a range of quench time. We
would like to emphasize that in order to detect experimentally
the density of excitations generated by passing through a
critical point in a realistic system, it is a challenge that one
should distinguish between situations where such excitations
are long-lived quasiparticles or decay after being created.
However, these quantities are generally directly accessible
experimentally in our quantum simulations presented here.

APPENDIX B: DECOHERENCE EFFECT
AND FIDELITY ESTIMATION

The simulator dynamics in the main text can be seen as a
sequence of Landau-Zener transition and adiabatic evolution.

In the so-called adiabatic-impulse model [25], Landau-Zener
transition at anticrossings is treated as PLZ and the dynamics
phase φ is determined by the path drawn by the system in
energy-level space. Putting things together, we can calculate
the excitation probability after the driving pulse starting from
the ground state, as given by

P|1〉 = 2PLZ(1 − PLZ)(1 + cos φ). (B1)

This probability oscillates known collectively as Landau-
Zener-Stükelberg interference [25,27]. The dynamics dis-
cussed above is a unitary and coherent process. However,
in any experimental implementation the undesired and un-
avoidable coupling to external degrees of freedom leads
to decoherence and thus it affects the observed simulator
behavior. To model the experimental results in Fig. 3, we
include the decoherence time T2 and fit the oscillations to
a phenomenological damped cosine form [32].

The dissipative dynamics of the simulator is also numeri-
cally obtained by solving the time-dependent master equations
of the density matrix as follows:

dρ

dt
= − i

�
[ρ,H ] + L, (B2)

in which H is the Hamiltonian introduced in Eq. (6) in the
main text. The standard Lindblad form L describes the inco-
herent process proportional to the relaxation and dephasing
time [38,39]. The calculated solutions are in reasonable agree-
ment with the experimental results (Fig. 3 in the main text).

Furthermore, we can estimate the simulation fidelity of each
pulse induced simulator dynamics [40]. The fidelity is defined
as F = Tr[

√
ρiρr

√
ρi], in which ρi is the density matrix of the

desired ideal state and ρr is that of the real final state [40–43].
During the simulation, the interactions of the simulator with its
environment lead to a loss of fidelity. Thus the fidelity depends
on the specific properties of the working parameters. For the
sake of simplicity let us consider an example: a simulation
experiment for the designed velocity v = 2400 μeV/ns, initial
detuning ε0 = −400 μeV, and decoherence time T2 = 1 ns.
From a comparison of the ideal predicted signal and the
measured signal after a simulation, we can estimate a fidelity
of 83% in the present work. In addition, using more advanced
optimization methods to extend the decoherence time, the
fidelity higher than 95% can be expected.
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