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In the task of quantum state exclusion, we consider a quantum system prepared in a state chosen from a
known set. The aim is to perform a measurement on the system which can conclusively rule that a subset of the
possible preparation procedures cannot have taken place. We ask what conditions the set of states must obey in
order for this to be possible and how well we can complete the task when it is not. The task of quantum state
discrimination forms a subclass of this set of problems. Within this paper, we formulate the general problem as
a semidefinite program (SDP), enabling us to derive sufficient and necessary conditions for a measurement to be
optimal. Furthermore, we obtain a necessary condition on the set of states for exclusion to be achievable with
certainty, and we give a construction for a lower bound on the probability of error. This task of conclusively
excluding states has gained importance in the context of the foundations of quantum mechanics due to a result
from Pusey, Barrett, and Rudolph (PBR). Motivated by this, we use our SDP to derive a bound on how well a
class of hidden variable models can perform at a particular task, proving an analog of Tsirelson’s bound for the
PBR experiment and the optimality of a measurement given by PBR in the process. We also introduce variations
of conclusive exclusion, including unambiguous state exclusion, and state exclusion with worst-case error.
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I. INTRODUCTION

Suppose we are given a single-shot device, guaranteed to
prepare a system in a quantum state chosen at random from a
finite set of k known states. In the quantum state discrimination
problem, we would attempt to identify the state that has
been prepared. It is a well-known result [1] that this can be
done with certainty if and only if all of the states in the set
of preparations are orthogonal to one another. By allowing
inconclusive measurement outcomes [2–4] or accepting some
error probability [5–7], strategies can be devised to tackle
the problem of discriminating between nonorthogonal states.
For a recent review of quantum state discrimination, see [8].
What, however, can we deduce about the prepared state with
certainty?

Through state discrimination we effectively attempt to
increase our knowledge of the system so that we progress
from knowing it is one of k possibilities to knowing it is
one particular state. We reduce the size of the set of possible
preparations that could have occurred from k to 1. A related
and less ambitious task would be to exclude m preparations
from the set, reducing the size of the set of potential states
from k to k − m. If we rule out the m states with certainty,
we say that they have been conclusively excluded. Conclusive
exclusion of a single state is not only interesting from the
point of view of the theory of measurement, but it is becoming
increasingly important in the foundations of quantum theory. It
has previously been considered with respect to quantum state
compatibility criteria between three parties [9], where Caves
et al. derive necessary and sufficient conditions for conclusive
exclusion of a single state from a set of three pure states to
be possible. More recently, it has found use in investigating
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the plausibility of ψ-epistemic theories describing quantum
mechanics [10].

As recognized in [10] for the case of single state exclusion,
the problem of conclusive exclusion can be formulated in the
framework of semidefinite programs (SDPs). As well as being
efficiently numerically solvable, SDPs also offer a structure
that can be exploited to derive statements about the underlying
problem they describe [11,12]. This has already been applied
to the problem of state discrimination [13–15]. Given that
minimum error state discrimination forms a subclass (m =
k − 1) of the general exclusion framework, it is reasonable to
expect that a similar approach will pay dividends here.

For minimum error state discrimination, SDPs provide a
route to produce necessary and sufficient conditions for a
measurement to be optimal. Similarly, the SDP formalism can
be applied to obtain such conditions for the task of minimum
error state exclusion, and we derive these in this paper. By
applying these requirements to exclusion problems, we have a
method for proving whether a given measurement is optimal
for a given ensemble of states.

From the SDP formalism, it is also possible to derive
necessary conditions for m-state conclusive exclusion to be
possible for a given set of states and lower bounds on the
probability of error when it is not. A special case of this
result is the fact that state discrimination cannot be achieved
when the set of states under consideration are nonorthogonal.
By regarding perfect state discrimination as (k − 1)-state
conclusive exclusion, we rederive this result.

As an application of our SDP and its properties, we consider
a game, motivated by the argument, due to PBR [10], against
a class of hidden variable theories. Assume that we have a
physical theory, not necessarily that of quantum mechanics,
such that, when we prepare a system, we describe it by a
state, χ . If our theory were quantum mechanics, then χ would
be identified with |ψ〉, the usual quantum state. Furthermore,

1050-2947/2014/89(2)/022336(13) 022336-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.022336


BANDYOPADHYAY, JAIN, OPPENHEIM, AND PERRY PHYSICAL REVIEW A 89, 022336 (2014)

suppose that χ does not give a complete description of the
system. We assume that such a description exists, although it
may always be unknown to us, and we denote it by λ. As χ is an
incomplete description of the system, it will be compatible with
many different complete states. We denote these states λ ∈ �χ .
PBR investigate whether for distinct quantum descriptions,
|ψ0〉 and |ψ1〉, it is possible that �|ψ0〉 ∩ �|ψ1〉 �= ∅. Models
that satisfy this criterion are called ψ-epistemic; see [16] for a
full description.

Consider now the following scenario. Alice gives Bob a
system prepared according to one of two descriptions, χ1

or χ2, and Bob’s task is to identify which preparation he
has been given. Bob observes the system and will identify
the wrong preparation with probability q. Note that 0 �
q � 1/2, as Bob will always have the option of randomly
guessing the description without performing an observation.
If �χ1 ∩ �χ2 �= ∅, then, even if Bob has access to the complete
description of the system, λ, q > 0 as there will exist λ

compatible with both χ1 and χ2.
Now suppose Bob is given n such systems prepared

independently, and we represent the preparation as a string
in {0,1}n. Bob’s task is to output such an n-bit string, and
he wins if his is not identical to the string corresponding to
Alice’s preparation, i.e., he attempts to exclude one of the
2n preparations. We refer to this as the “PBR game” and
we will consider two scenarios for playing it. Under the
first scenario, Bob can only perform measurements on each
system individually. We refer to this as the separable version
of the game. In the second scenario, we allow Bob to perform
global measurements on the n systems he receives. We refer
to this as the global version, and we are interested in how well
quantum theory performs in this case. We shall make a key
assumption of PBR, namely that the global complete state of n

independent systems, �, is given by the tensor product of the
individual systems’ complete states. This second, quantum,
task is related to the problem of “Hedging bets with correlated
quantum strategies” as introduced in [17] and expanded upon
in [18].

By calculating Bob’s probability of success in the PBR
game under each of these schemes, we gain a measure of
how the predictions of quantum mechanics compare with the
predictions of theories in which both �χ1 ∩ �χ2 �= ∅ and � =
⊗n

i=1λi hold. As such, the result can be seen as similar in spirit
to Tsirelson’s bound [19] in describing how well quantum-
mechanical strategies can perform at the CHSH game.

This paper is organized as follows. First, in Sec. II,
we formulate the quantum state exclusion problem as an
SDP, developing the structure we will need to analyze the
task. Next, in Sec. III, we derive sufficient and necessary
conditions for a measurement to be optimal in performing
conclusive exclusion. It is these conditions that will assist us
in investigating the entangled version of the PBR game. In
Sec. IV, we derive a necessary condition on the set of possible
states for single-state exclusion to be possible, and in Sec. V we
give a lower bound on the probability of error when it is not. We
apply the SDP formalism to the PBR game in Sec. VI and use it
to quantify the discrepancy between the predictions of a class
of hidden variable theories and those of quantum mechanics.
Finally, in Sec. VII, we present alternative formulations of
state exclusion and construct the relevant SDPs.

II. THE STATE EXCLUSION SDP

More formally, what does it mean to be able to perform
conclusive exclusion? We first consider the case of single-
state exclusion and then show how it generalizes to m-
state exclusion. Let the set of possible preparations on a
d-dimensional quantum system be P = {ρi}ki=1 and let each
preparation occur with probability pi . For brevity of notation,
we define ρ̃i = piρi . Call the prepared state σ . The aim is to
perform a measurement on σ so that, from the outcome, we
can state j ∈ {1, . . . ,k} such that σ �= ρj .

Such a measurement will consist of k measurement oper-
ators, one for attempting to exclude each element of P . We
want a measurement, described by M = {Mi}ki=1, that never
leads us to guess j when σ = ρj . We need

Tr [ρiMi] = 0, ∀ i, (1)

or equivalently, since ρi and Mi are positive-semidefinite
matrices and pi is a positive number,

α =
k∑

i=1

Tr[ρ̃iMi] = 0. (2)

There will be some instances of P for which an M cannot
be found to satisfy Eq. (2). In these cases, our goal is to
minimize α, which corresponds to the probability of failure
of the strategy, “if outcome j occurs, say σ �= ρj .”

Therefore, to obtain the optimal strategy for single-state
exclusion, our goal is to minimize α over all possible
M subject to M forming a valid measurement. Such an
optimization problem can be formulated as an SDP:

Minimize:
M

α =
k∑

i=1

Tr [ρ̃iMi] .

Subject to:
k∑

i=1

Mi = I, (3)

Mi � 0, ∀ i.

Here I is the d by d identity matrix and A � 0 implies that A

is a positive-semidefinite matrix. The constraint
∑k

i=1 Mi =
I corresponds to the fact that the Mi form a complete
measurement and we do not allow inconclusive results.

Part of the power of the SDP formalism lies in constructing
a “dual” problem to this “primal” problem given in Eq. (3).
Details on the formation of the dual problem to the exclusion
SDP can be found in Appendix A, and we state it here:

Maximize:
N

β = Tr [N ] ,

Subject to: N � ρ̃i , ∀ i,

N ∈ Herm.

(4)

For single-state exclusion, the problem is essentially to
maximize the trace of a Hermitian matrix N subject to ρ̃i − N

being a positive-semidefinite matrix, ∀ i.
What of m-state conclusive exclusion? Define Y(k,m) to be

the set of all subsets of the integers {1, . . . ,k} of size m. The aim
is to perform a measurement on σ such that from the outcome
we can state a set, Y ∈ Y(k,m), such that σ /∈ {ρy}y∈Y . Such a
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measurement, denoted Mm, will consist of
(

k

m

)
measurement

operators and we require that, for each set Y ,

Tr[ρ̃yMY ] = 0, ∀ y ∈ Y. (5)

If we define

ρ̂Y =
∑
y∈Y

ρ̃y, (6)

then this can be reformulated as requiring

Tr[ρ̂Y MY ] = 0, ∀ Y ∈ Y(k,m). (7)

Equation (7) is identical in form to Eq. (1). Hence we can view
m-state exclusion as single-state exclusion on the set Pm =
{ρ̂Y }Y∈Y(k,m) . Furthermore, we can generalize this approach to
an arbitrary collection of subsets that are not necessarily of
the same size. With this in mind, we restrict ourselves to
considering single-state exclusion in all that follows.

The tasks of state exclusion and state discrimination share
many similarities. Indeed, if we instead maximize α in Eq. (3)
and minimize β in Eq. (4) together with inverting the inequality
constraint to read N � ρ̃i , we obtain the SDP associated
with minimum error state discrimination. It is also possible
to recast each problem as an instance of the other. First,
state discrimination can be put in the form of an exclusion
problem by taking m = k − 1 because if we exclude k − 1 of
the possible states, then we can identify σ as the remaining
state.

Following the observation of [20] regarding minimum
Bayes cost problems, state exclusion can be converted into
a discrimination task. To see this, from P define

R =
⎧⎨
⎩ϑi = 1

k − 1

∑
j �=i

ρ̃j

⎫⎬
⎭

k

i=1

. (8)

Writing P dis
error and P exc

error to distinguish between the probability
of error in discrimination and exclusion, in state discrimination
on R we would attempt to minimize

P dis
error(R) = 1 −

k∑
i=1

Tr[ϑiMi], (9)

which can be rearranged to give (see Appendix A 3)

P dis
error (R) = k − 2

k − 1
+ 1

k − 1
P exc

error (P) . (10)

Hence, minimizing the error probability in discrimination on
R is equivalent to minimizing the probability of error in state
exclusion on P , and the optimal measurement is the same for
both. This interplay between the two tasks enables us to apply
bounds on the error probability of state discrimination (see,
for example, [21]) to the task of state exclusion.

Returning to the SDP, let us define the optimum solution
to the primal problem to be α∗ and the solution to the
corresponding dual to be β∗. It is a property of all SDPs,
known as weak duality, that β � α. Furthermore, for SDPs
satisfying certain conditions, α∗ = β∗, and this is known as
strong duality. The exclusion SDP does fulfill these criteria,
as shown in Appendix B 2. Using weak and strong duality
allows us to derive properties of the optimal measurement

for the problem, a necessary condition on P for conclusive
exclusion to be possible and a bound on the probability of
error in performing the task.

III. THE OPTIMAL EXCLUSION MEASUREMENT

Strong duality gives us a method for proving whether a fea-
sible solution, satisfying the constraints of the primal problem,
is an optimal solution. If M∗ is an optimal measurement for
the conclusive exclusion SDP, then, by strong duality, there
must exist a Hermitian matrix N∗, satisfying the constraints of
the dual problem, such that

k∑
i=1

Tr[ρ̃iM
∗
i ] = Tr[N∗]. (11)

Furthermore, the following is true:
Theorem 1. Suppose a state σ is prepared at random using

a preparation from the set P according to some probability
distribution {pi}ki=1. Applying the measurement M to σ is
optimal for attempting to exclude a single element from the
set of possible preparations if and only if

N =
k∑

i=1

[ρ̃iMi] (12)

is Hermitian and satisfies N � ρ̃i , ∀ i.
The proof of Theorem 1 is given in Appendix B 3 and

revolves around the application of strong duality together with
a property called complementary slackness. It is similar in
construction to Yuen et al.’s [7] derivation of necessary and
sufficient conditions for showing that a quantum measurement
is optimal for minimizing a given Bayesian cost function. This
result provides us with a method for proving a measurement
is optimal; we construct N according to Eq. (12) and show
that it satisfies the constraints of the dual problem. It is this
technique that will allow us to analyze the PBR game in the
quantum setting.

IV. NECESSARY CONDITION FOR SINGLE-STATE
CONCLUSIVE EXCLUSION

Through the application of weak duality, we can also
gain insight into the SDP. As the optimal solution to the
dual problem provides a lower bound on the solution of the
primal problem, any feasible solution to the dual does too,
although it may not necessarily be tight. This relation can be
summarized as

Tr[N feas] � Tr[N∗] = β∗ = α∗. (13)

In particular, if, for a given P , we can construct a feasible N

with Tr [N ] > 0, then we have α∗ > 0 and hence conclusive
exclusion is not possible.

Constructing such an N gives rise to the following nec-
essary condition on the set P for conclusive exclusion to be
possible:

Theorem 2. Suppose a system is prepared in the state σ

using a preparation chosen at random from the setP = {ρi}ki=1.
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Single-state conclusive exclusion is possible only if

k∑
j �=l=1

F (ρj ,ρl) � k(k − 2), (14)

where F (ρj ,ρl) is the fidelity between states ρj and ρl .
The full proof of this theorem is given in Appendix C 1, but

we sketch it here. Define N as follows:

N = −p

k∑
r=1

ρr + 1 − ε

k − 2
p

×
∑

1�j<l�k

(
√

ρjUjl

√
ρl + √

ρlU
∗
j l

√
ρj ), (15)

where the Ujl are unitary matrices chosen such that

Tr [N ] = −kp + 1 − ε

k − 2
p

k∑
j �=l=1

F (ρj ,ρl). (16)

N is Hermitian, and for suitable p and ε it can be shown that
ρi − N � 0, ∀ i. Equation (14) follows by determining when
Tr[N ] > 0 and letting ε → 0. Note that the probability with
which states are prepared, {pi}ki=1, has no impact on whether
conclusive exclusion is possible or not.

This is only a necessary condition for single-state con-
clusive exclusion, and there exist sets of states that satisfy
Eq. (14) for which it is not possible to perform conclusive
exclusion. Nevertheless, there exist sets of states on the cusp of
satisfying Eq. (14) for which conclusive exclusion is possible.
For example, the set of states of the form

|ψi〉 =
k∑

j �=i

1√
k − 1

|j 〉 (17)

for i = 1 to k can be conclusively excluded by the measure-
ment in the orthonormal basis {|i〉}ki=1, and yet

k∑
j �=l=1

F (|ψj 〉〈ψj |,|ψl〉〈ψl|) =
k∑

j �=l=1

|〈ψj |ψl〉| = k(k − 2).

(18)

It can be shown that the necessary condition for conclusive
state discrimination can be obtained from Theorem 2, and the
interested reader can find this derivation in Appendix C 2.

V. LOWER BOUND ON THE PROBABILITY OF ERROR

Weak duality can also be used to obtain the following lower
bound on α∗:

Theorem 3. For two Hermitian operators, A and B, define
min (A,B) to be

min(A,B) = 1
2 [A + B − |A − B|]. (19)

Given a set of states P = {ρi}ki=1 prepared according to some
probability distribution {pi}ki=1 and a permutation ε, acting on
k objects, taken from the permutation group Sk , consider

Nε = min (ρ̃ε(k), min(ρ̃ε(k−1), min ( . . . , min(ρ̃ε(2),ρ̃ε(1))))).

(20)

Then

α∗ � max:
ε∈Sk

Tr [Nε] . (21)

The proof of this result is given in Appendix C 3 and
relies upon showing that min(A,B) � A and B, together with
the iterative nature of the construction of Nε. Note that by
considering a suitably defined max function, analogous to the
min used in Theorem 3, it is possible to derive a similar style of
bound for the task of minimum error state discrimination. We
omit it here, however, as it is beyond the scope of this paper.

VI. THE PBR GAME

We now turn our attention to the PBR game. Suppose Alice
gives Bob n systems whose preparations are encoded by the
string 
x ∈ {0,1}n. The state of system i is χxi

. Bob’s goal is to
produce a string 
y ∈ {0,1}n such that 
x �= 
y.

A. Separable version

In the first scenario, where Bob can only observe each
system individually and we consider a general theory, we can
represent his knowledge of the global system by

� = γ1 ⊗ · · · ⊗ γn, (22)

with γi ∈ {�0,�1,�?}, representing his three possible observa-
tion outcomes. If γi ∈ �0, he is certain the system preparation
is described by χ0; if γi ∈ �1, he is certain the system
preparation is described by χ1; and if γi ∈ �?, he remains
uncertain whether the system was prepared in state χ0 or χ1

and he may make an error in assigning a preparation to the
system. We denote the probability that Bob, after performing
his observation, assigns the wrong preparation description to
the system as q. Provided that �? �= ∅, then q > 0.

Bob will win the game if for at least one individual system
he assigns the correct preparation description. His strategy is
to attempt to identify each value of xi and choose yi such that
yi �= xi . Bob’s probability of outputting a winning string is
hence

P S
win = 1 − qn. (23)

B. Global version

Now consider the second scenario. When the theory is
quantum and global (i.e., entangled), measurements on the
global system are allowed. We can write the global state that
Alice gives Bob, labeled by 
x, as

|�
x〉 =
n⊗

i=1

∣∣ψxi

〉
. (24)

Bob’s task can now be regarded as attempting to perform
single-state conclusive exclusion on the set of states P =
{|�
x〉}
x∈{0,1}n ; he outputs the string associated with the state
he has excluded to have the best possible chance of winning
the game.

To calculate his probability of winning P G
win, we need

to construct and solve the associated SDP. Without loss
of generality, we can take the states |ψ0〉 and |ψ1〉 to be
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defined as

|ψ0〉 = cos

(
θ

2

)
|0〉 + sin

(
θ

2

)
|1〉,

|ψ1〉 = cos

(
θ

2

)
|0〉 − sin

(
θ

2

)
|1〉,

(25)

where 0 � θ � π/2. The global states |�
x〉 are then given by

|�
x〉 =
∑


r
(−1)
x·
r

[
cos

(
θ

2

)]n−|
r|[
sin

(
θ

2

)]|
r|
|
r〉, (26)

where 
r ∈ {0,1}n and |
r| = ∑n
i=1 ri .

From [10], we know that single-state conclusive exclusion
can be performed on this set of states provided θ and n satisfy
the condition

21/n − 1 � tan

(
θ

2

)
. (27)

When this relation holds, P G
win = 1. What, however, happens

outside of this range? While strong numerical evidence is given
in [10] that it will be the case that P G

win < 1, can it be shown
analytically?

Through analyzing numerical solutions to the SDP (per-
formed using [22,23]), there is evidence to suggest that the
optimum measurement to perform when Eq. (27) is not
satisfied is given by the projectors

|ζ
x〉 = 1√
2n

(
|
0〉 −

∑

r �=
0

(−1)
x·
r |
r〉
)

, (28)

which are independent of θ . That the set {|ζ
x〉}
x∈{0,1}n is the
optimal measurement for attempting to perform conclusive
exclusion is shown in Appendix D.

If we construct N as per Eq. (12) and consider the trace, we
can determine how successfully single-state exclusion can be
performed. This is done in Appendix D, and we find

Tr[N ] = 1

2n

[
cos

(
θ

2

)]2n{
2 −

[
1 + tan

(
θ

2

)]n}2

. (29)

This is strictly positive, and hence we have shown that Eq. (27)
is a necessary condition for conclusive exclusion to be possible
on the set P .

In summary, we have the following:

If 21/n − 1 � tan

(
θ

2

)
,

P G
win = 1.

Otherwise

P G
win = 1 − 1

2n

[
cos

(
θ

2

)]2n{
2 −

[
1 + tan

(
θ

2

)]n}2

,

(30)

which characterizes the success probability of the quantum
strategy.

C. Comparison

What is the relation between P S
win and P G

win? If, in the
separable scenario, we take the physical theory as being
quantum mechanics and Bob’s error probability as arising
from the fact that it is impossible to distinguish between
nonorthogonal quantum states, we can write [5]

q = (
1
2

)(
1 −

√
1 − |〈ψ0|ψ1〉|2

) = (
1
2

)
[1 − sin(θ )]. (31)

With this substitution, we find that P S
win � P G

win, ∀ n. This is
unsurprising as the first scenario is essentially the second but
with a restricted set of allowable measurements.

Of more interest however, is if we view q as arising from
some hidden variable completion of quantum mechanics. If
�|ψ0〉 ∩ �|ψ1〉 = ∅, then if an observation of each |ψxi

〉 were
to allow us to deduce λxi

, then q = 0 and P S
win = 1 � P G

win.
However, if �|ψ0〉 ∩ �|ψ1〉 �= ∅, then we have q > 0, and P S

win
will have the property that Bob wins with certainty only as
n → ∞. On the other hand, P G

win = 1 if and only if Eq. (27) is
satisfied and we have analytically proven the necessity of the
bound obtained by PBR. Furthermore, we have defined a game
that allows the quantification of the difference between the
predictions of general physical theories, including those that
attempt to provide a more complete description of quantum
mechanics, and those of quantum mechanics.

VII. ALTERNATIVE MEASURES OF EXCLUSION

There exist multiple strategies and figures of merit when
undertaking state discrimination. In addition to considering
minimum error discrimination or unambiguous discrimina-
tion, further variants may try to minimize the maximum error
probability [24] or allow only a certain probability of obtaining
an inconclusive measurement result [25]. Similarly, alternative
methods to that of minimum error can be defined for state
exclusion, and in this section unambiguous exclusion and
worst-case error exclusion are defined and the related SDPs
given.

A. Unambiguous state exclusion

In unambiguous state exclusion on the set of preparations
P = {ρ̃i}ki=1, we consider a measurement given by M =
{M1, . . . ,Mk,M?}. If we obtain measurement outcome i (1 �
i � k), then we can exclude with certainty the state ρi .
However, if we obtain the outcome labeled ?, we cannot infer
which state to exclude. We wish to minimize the probability
of obtaining this inconclusive measurement:

α =
k∑

i=1

Tr[ρ̃iM?], (32)

which can be rewritten as

α = Tr

⎡
⎣ k∑

j=1

ρ̃j

⎛
⎝I −

k∑
i=1

Mi

⎞
⎠
⎤
⎦. (33)
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Defining α̃ = 1 − α, the primal SDP associated with this
task is given by

Maximize:
M

α̃ = Tr

⎡
⎣ k∑

j=1

ρ̃j

k∑
i=1

Mi

⎤
⎦ .

Subject to:
k∑

i=1

Mi � I,

Tr [ρ̃iMi] = 0, 1 � i � k,

Mi � 0, 1 � i � k.

(34)

Here, the first and third constraints ensure that M is a valid
measurement, while the second, Tr [ρ̃iMi] = 0, 1 � i � k,
encapsulates the fact that when measurement outcome i

occurs, we should be able to exclude state ρi with certainty.
The dual problem can be shown to be (see Appendix E 1)

Minimize:
N,{ai }ki=1

β = Tr [N ] .

Subject to: aiρ̃i + N �
k∑

j=1

ρ̃j , 1 � i � k,

ai ∈ R, ∀i,

N � 0.

(35)

Unambiguous state exclusion has recently found use in
implementations of quantum digital signatures [26], enabling
such schemes to be put into practice without the need for
long-term quantum memory.

B. Worst-case error state exclusion

The goal of the SDP given in Eqs. (3) and (4) is to
minimize the average probability of error, over all possible
preparations, of the strategy, “if outcome j occurs, say σ �=
ρj .” An alternative goal would be to minimize the worst-case
probability of error that occurs:

α = max
i

Tr [ρ̃iMi] . (36)

The primal SDP associated with this task is

Minimize:
M

α = λ.

Subject to: λ � Tr [ρ̃iMi] , ∀i,

k∑
i=1

Mi = I,

λ � 0 ∈ R,

Mi � 0, 1 � i � k.

(37)

These constraints again encode that M forms a valid mea-
surement and ensure that α picks out the worst-case error
probability across all possible preparations.

The associated dual problem is

Maximize:
N,{ai }ki=1

β = Tr [N ] ,

Subject to: N � aiρ̃i , ∀ i,

k∑
i=1

ai � 1,

ai � 0 ∈ R, ∀ i,

N ∈ Herm.

(38)

The derivation of this is given in Appendix E 2.

VIII. CONCLUSION

In this paper, we have introduced the task of state exclusion
and shown how it can be formulated as an SDP. Using this,
we have derived conditions for measurements to be optimal
at minimum error state exclusion and a criterion for the task
to be performed conclusively on a given set of states. We also
gave a lower bound on the error probability. Furthermore, we
have applied our SDP to a game which helps to quantify the
differences between quantum mechanics and a class of hidden
variable theories.

It is an open question, posed in [9], whether a POVM ever
outperforms a projective measurement in conclusive exclusion
of a single pure state. While it can be shown from the
SDP formalism that this is not the case when the states are
linearly independent and conclusive exclusion is not possible
to the extent that Tr [Miρi] > 0, ∀ i, further work is required
to extend it and answer the above question. It would also
be interesting to see whether it is possible to find further
constraints and bounds, similar to Theorem 2 and Theorem
3, to characterize when conclusive exclusion is possible.

Finally, the main SDP, as given in Eq. (3), is just one method
for analyzing state exclusion in which we attempt to minimize
the average probability of error. Alternative formulations were
presented in Sec. VII, and it would be interesting to study the
relationships between them and that defined in Eq. (3).
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APPENDIX A: STATE EXCLUSION SDP FORMULATION

In this Appendix, we give the general definition of an SDP,
derive the dual problem for the state exclusion SDP, and show
the relation to state discrimination.

1. General SDPs

In this section, we state the general form of a semidefinite
program as given in [12]. A semidefinite program is defined
by three elements {A,B,�}. A and B are Hermitian matrices,
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A ∈ Herm(X ) and B ∈ Herm(Y), whereX andY are complex
Euclidean spaces. � is a Hermiticity preserving superoperator
that takes elements in X to elements in Y .

From these three elements, two optimization problems can
be defined. The primal problem can be defined as

Minimize:
X

α = Tr[AX].

Subject to: �(X) = B,

X � 0.

(A1)

The dual problem can be defined as

Maximize:
Y

β = Tr[BY ].

Subject to: �∗(Y ) � A,

Y ∈ Herm(Y).

(A2)

Here �∗ is the dual map to � and is defined by

Tr[Y�(X)] = Tr[X�∗(Y )]. (A3)

We define the optimal solutions to the primal and dual
problems to be α∗ = infXα and β∗ = supY β, respectively.

2. State exclusion SDP

Looking at the state exclusion primal problem, Eq. (3), we
see that for the exclusion SDP, the following holds true:

(i) A is a kd by kd block-diagonal matrix with each d by d

block, labeled by i, given by ρ̃i :

A =

⎛
⎜⎝

ρ̃1

. . .
ρ̃k

⎞
⎟⎠ .

(ii) B is the d by d identity matrix.
(iii) X, the variable matrix, is a kd by kd block-diagonal

matrix where we label each d by d block diagonal by Mi :

X =

⎛
⎜⎝

M1

. . .
Mk

⎞
⎟⎠ .

(iv) Y is the d by d matrix we call N .
(v) The map � is given by �(X) = ∑

i Mi .
Using Eq. (A3), we see that �∗ must satisfy

Tr

[
N

k∑
i=1

Mi

]
= Tr

⎡
⎢⎣
⎛
⎜⎝

M1

. . .
Mk

⎞
⎟⎠�∗(N )

⎤
⎥⎦ ,

and hence �∗(N ) produces a kd by kd block-diagonal matrix
with N in each of the block diagonals:

�∗(N ) =

⎛
⎜⎝

N

. . .
N

⎞
⎟⎠ .

Substituting these elements into Eq. (A2), we obtain the
dual SDP for state exclusion as stated in Eq. (4) .

3. The relation between state discrimination and state exclusion

Here we give the derivation of Eq. (10).
Given P , we define

R =
{
ϑi = 1

k − 1

∑
j �=i

ρ̃j

}k

i=1

.

Then, in state discrimination on R we would attempt to
minimize

P dis
error(R) =1 −

k∑
i=1

Tr[ϑiMi],

=1 −
k∑

i=1

∑
j �=i

1

k − 1
Tr[ρ̃jMi],

=1 − 1

k−1

k∑
i=1

k∑
j=1

Tr[ρ̃jMi] + 1

k−1

k∑
i=1

Tr[ρ̃iMi],

= k − 2

k − 1
+ 1

k − 1
P exc

error(P).

APPENDIX B: STRONG DUALITY

In this appendix, we show that the SDP exhibits strong
duality, and we give the proof of Theorem 1 from the main
text.

1. Slater’s theorem

Slater’s theorem provides a means to test whether an SDP
satisfies strong duality (α∗ = β∗).

Theorem 4 (Slater’s theorem). The following implications
hold for every SDP:

(i) If there exists a feasible solution to the primal problem
and a Hermitian operator Y for which �∗(Y ) < A, then α∗ =
β∗ and there exists a feasible X∗ for which Tr[AX∗] = α∗.

(ii) If there exists a feasible solution to the dual problem
and a positive semidefinite operator X for which �(X) = B

and X > 0, then α∗ = β∗ and there exists a feasible Y ∗ for
which Tr[BY ∗] = β∗.

2. Slater’s theorem applied to the exclusion SDP

To see that the exclusion SDP satisfies the conditions of
Slater’s theorem, consider X = 1

k
I and N = −I (where the

identity matrices are taken to have the correct dimension).
X is strictly positive-definite and so it strictly satisfies the
constraints of the primal problem. N < 0 and hence N < ρ̃i ,
∀ i, so N strictly satisfies the constraints of the dual problem.

3. Necessary and sufficient conditions
for a measurement to be optimal

To prove Theorem 1, we will need the following fact about
SDPs:

Proposition 1 (complementary slackness). Suppose X and
Y , which are feasible for the primal and dual problems,
respectively, satisfy Tr[AX] = Tr[BY ]. Then it holds that

�∗(Y )X = AX and �(X)Y = BY.

We now give the proof for Theorem 1.
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Proof. Suppose we are given a valid measurement, M =
{Mi}ki=1, and that N , defined by

N =
k∑

i=1

ρ̃iMi,

satisfies the constraints of the dual problem. Then

β = Tr[N ],

= Tr

[
k∑

i=1

ρ̃iMi

]
,

=
k∑

i=1

Tr [ρ̃iMi] ,

= α.

Hence, by strong duality, M is an optimal measurement.
Now suppose M is an optimal measurement. By Proposi-

tion 1, an optimal N satisfies

�∗(N )

⎛
⎜⎝

M1

. . .
Mk

⎞
⎟⎠ =

⎛
⎜⎝

ρ̃1M1

. . .
ρ̃kMk

⎞
⎟⎠ ,

⇒

⎛
⎜⎝

NM1

. . .
NMk

⎞
⎟⎠ =

⎛
⎜⎝

ρ̃1M1

. . .
ρ̃kMk

⎞
⎟⎠ ,

which implies that

NMi = ρ̃iMi, ∀ i.

Taking the sum over i on both sides and using the fact that∑
i Mi = I, we obtain

N =
k∑

i=1

ρ̃iMi,

as required. �

APPENDIX C: NECESSARY CONDITIONS AND BOUNDS

In this Appendix, we derive the necessary condition
for conclusion exclusion to be possible that was given in
Theorem 2 as well as an associated corollary regarding state
discrimination. We also present the proof of the bound on the
error probability of state exclusion, Theorem 3.

1. Necessary condition for conclusive exclusion

Here we derive the necessary condition for single-state con-
clusive exclusion to be possible that was given in Theorem 2.

Proof. Suppose that P = {ρi}ki=1. A feasible solution to the
dual SDP, N , must be Hermitian and satisfy N � ρi , ∀ i. Our
goal is to construct such an N with the property Tr[N ] > 0. If
this is possible, conclusive exclusion is not possible.

First, we define Ujl to be a unitary such that
Tr[

√
ρl

√
ρjUjl] = F (ρj ,ρl) and note that Ulj = U ∗

j l . We
construct N as follows [for p,ε ∈ (0,1)]:

N = −p

k∑
r=1

ρr + 1 − ε

k − 2
p

∑
1�j<l�k

(
√

ρjUjl

√
ρl + √

ρlU
∗
j l

√
ρj ),

and note that N is Hermitian. Now consider

ρ1 − N = (1 + p)ρ1 + p

k∑
r=2

ρr − 1 − ε

k − 2
p

∑
1�j<l�k

(
√

ρjUjl

√
ρl + √

ρlU
∗
j l

√
ρj ),

=
k∑

r=2

[
1 + p

k − 1
ρ1 + εpρr − 1 − ε

k − 2
p(

√
ρ1U1r

√
ρr + √

ρrU
∗
1r

√
ρ1)

]

+ 1 − ε

k − 2
p

∑
2�j<l�k

[ρj + ρl − √
ρjUjl

√
ρl − √

ρlU
∗
j l

√
ρj ],

=
k∑

r=2

[
1 + p

k − 1
ρ1 + εpρr − 1 − ε

k − 2
p(

√
ρ1U1r

√
ρr + √

ρrU
∗
1r

√
ρ1)

]

+ 1 − ε

k − 2
p

∑
2�j<l�k

(
√

ρj

√
Ujl − √

ρl

√
U ∗

j l )(
√

U ∗
j l

√
ρj −√

Ujl

√
ρl).

The terms in the second summation on the last line are positive semidefinite. Consider, individually, the terms in the first
summation:

1 + p

k − 1
ρ1 + εpρr − 1 − ε

k − 2
p(

√
ρ1U1r

√
ρr + √

ρrU
∗
1r

√
ρ1),

=
[

1 + p

k − 1
−
(

(1 − ε)p

k − 2

)2 1

εp

]
ρ1 +

[(
(1 − ε)p

k − 2

)2 1

εp

]
ρ1 + εpρr − 1 − ε

k − 2
p(

√
ρ1U1r

√
ρr + √

ρrU
∗
1r

√
ρ1),
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=
[

1 + p

k − 1
−
(

(1 − ε)p

k − 2

)2 1

εp

]
ρ1 +

(
(1 − ε)p

(k − 2)
√

εp

√
ρ1

√
U1r − √

εp
√

ρr

√
U ∗

1r

)

×
(

(1 − ε)p

(k − 2)
√

εp

√
U ∗

1r

√
ρ1 − √

εp
√

U1r

√
ρr

)
.

Hence, for ρ1 − N to be positive-semidefinite, we need the first term in the last line to be positive:[
1 + p

k − 1
−
(

(1 − ε)p

k − 2

)2 1

εp

]
� 0,

ε

(k−1)(1−ε)2

(k−2)2 − ε
� p. (C1)

Therefore, provided p and ε satisfy Eq. (C1), N � ρ1. Similarly, one can argue that ρi � N , ∀ i, and hence N is a feasible
solution to the dual problem.

We now wish to know under what conditions we have Tr[N ] > 0:

Tr[N ] > 0,

⇒ −kp + 1 − ε

k − 2
p

∑
1�j<l�k

Tr[
√

ρjUjl

√
ρl + √

ρlU
∗
j l

√
ρj ] > 0,

⇒
k∑

j �=l=1

F (ρj ,ρl) >
k(k − 2)

1 − ε
.

Letting ε → 0 and using weak duality, we obtain our result. Conclusive exclusion is not possible if
∑k

j �=l=1 F (ρj ,ρl) >

k(k − 2). �

2. Necessary condition for conclusive state discrimination

Here we show how the necessary condition for perfect state
discrimination to be possible can be derived from our necessary
condition on conclusive state exclusion, Theorem 2.

Corollary 1. Conclusive state discrimination on the set P =
{ρi}ki=1 is possible only if P is an orthogonal set.

Proof. For P = {ρi}ki=1, define

ρ̂j = 1

k − 1

∑
i �=j

ρi .

Let j �= l and consider

A = 1

k − 1

∑
r �=j,l

ρr .

We first show that F (ρ̂j ,ρ̂l) � F (ρ̂j ,A). Consider

F (ρ̂j ,A) = Tr
[√√

ρ̂jA
√

ρ̂j

]
,

� Tr
[√√

ρ̂j ρ̂l

√
ρ̂j

]
,

= F (ρ̂j ,ρ̂l).

The inequality follows from the following facts:
(i) It can be easily seen from the definitions that A � ρ̂l .
(ii) If B � C, then D∗BD � D∗CD, ∀ D. Hence√

ρ̂jA
√

ρ̂j �
√

ρ̂j ρ̂l

√
ρ̂j .

(iii) The square-root function is operator-monotone, so√√
ρ̂jA

√
ρ̂j �

√√
ρ̂j ρ̂l

√
ρ̂j .

(iv) The trace function is operator-monotone, and so finally

Tr
[√√

ρ̂jA
√

ρ̂j

]
� Tr

[√√
ρ̂j ρ̂l

√
ρ̂j

]
.

Using a similar argument to the above, it is possible to show
that

F (ρ̂j ,A) � F (A,A) = k − 2

k − 1
.

If ρj , ρl , and A are pairwise orthogonal, then ρ̂j and ρ̂l com-
mute and are simultaneously diagonalizable. This means that

F (ρ̂j ,ρ̂l) = ||√ρ̂j

√
ρ̂l||Tr,

= ||A||Tr,

= F (A,A),

= k − 2

k − 1
.

Now suppose that ρj and A are not orthogonal. We take
{ar} to be the eigenvalues and {|vr〉} to be the eigenvectors of√

A, so

F (ρ̂l,A) � Tr[
√

ρ̂l

√
A],

=
∑

r

ar〈vr |
√

ρ̂l|vr〉.

We know that
√

ρ̂l �
√

A and hence

〈vr |
√

ρ̂l|vr〉 � ar, ∀ r.
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As ρj and A are not orthogonal,∑
r

〈vr |
√

ρ̂l|vr〉 >
∑

r

ar ,

and there must exist some r such that

〈vr |
√

ρ̂l|vr〉 > ar.

Hence

F (ρ̂l,A) �
∑

r

ar〈vr |
√

ρ̂l|vr〉,

>
∑

r

a2
r ,

= Tr [A] ,

= k − 2

k − 1
.

So F (ρ̂j ,ρ̂l) = (k − 2)/(k − 1), ∀ l �= j , if and only if P is an
orthogonal set.

By Theorem 2, for conclusive (m − 1)-state exclusion (and
hence conclusive state discrimination) to be possible, we
require that

k∑
j �=l=1

F (ρ̂j ,ρ̂l) = k(k − 2),

which implies that P must be an orthogonal set. �

3. Bound on success probability

In this section, we give the proof of Theorem 3.
Proof. The goal is to show that Nε � ρ̃i , ∀ i, where Nε is

defined in Eq. (20). Recall that given two Hermitian operators,
A and B, min (A,B) is defined by

min(A,B) = 1
2 [A + B − |A − B|].

Note that min(A,B) � A and min(A,B) � B as

A − min(A,B) = 1

2
[A − B + |A − B|] ,

= 1

2

[
d∑

i=1

λi |ui〉〈ui | +
d∑

i=1

|λi | |ui〉〈ui |
]

,

� 0,

and similarly B − min(A,B) � 0. Here
∑d

i=1 λi |ui〉〈ui | is the
spectral decomposition of A − B.

The bound is obtained by constructing Nε iteratively as
follows:

N (2)
ε = min(ρ̃ε(2),ρ̃ε(1)),

N (3)
ε = min

(
ρ̃ε(3),N

(2)
ε

)
,

... = ...

Nε = N (k)
ε = min

(
ρ̃ε(k),N

(k−1)
ε

)
.

Using the fact that min(A,B) � A and min(A,B) � B, by
construction we have Nε � ρ̃i , ∀ i. �

APPENDIX D: PBR GAME

In this appendix, we analyze the PBR game.

1. Proof that M is a measurement

To see that M = {|ζ
x〉}
x∈{0,1}n , where

|ζ
x〉 = 1√
2n

⎛
⎝|
0〉 −

∑

r �=
0

(−1)
x·
r |
r〉
⎞
⎠ ,

forms a valid measurement, we shall show that it is a set of
orthogonal vectors. Consider

〈ζ
s |ζ
t 〉 = 1

2n

⎛
⎝〈
0| −

∑

r �=
0

(−1)
s·
r 〈
r|
⎞
⎠
⎛
⎝|
0〉 −

∑

q �=
0

(−1)
t ·
q |
q〉
⎞
⎠,

= 1

2n

⎛
⎝1 +

∑

r,
q �=
0

(−1)
s·
r (−1)
t ·
q 〈
r|
q〉
⎞
⎠ ,

= 1

2n

∑

r

(−1)(
s+
t)·
r ,

= δ
s
t .

Hence M is a set of orthogonal vectors and therefore a valid
measurement basis.

2. Derivation of conditions under which
M is an optimal measurement

To show that this measurement, M, is optimal for certain
pairs of n and θ , we need to construct an N as per Eq. (12)
and show that it satisfies the constraints of the dual problem.
Writing ρ̃
x = 1

2n |�
x〉〈�
x | and M
x = |ζ
x〉〈ζ
x |, we have

N = 1

2n

∑

x

|�
x〉〈�
x |ζ
x〉〈ζ
x |.

Note that

〈�
x |ζ
x〉 = 1√
2n

{[
cos

(
θ

2

)]n

−
n∑

i=1

(
n

i

)[
cos

(
θ

2

)]n−i

×
[

sin

(
θ

2

)]i}
,

= 1√
2n

[
cos

(
θ

2

)]n {
2 −

[
1 + tan

(
θ

2

)]n}
.

So we have

N = C (θ )

⎡
⎣|
0〉〈
0| −

∑

r �=
0

[
tan

(
θ

2

)]|
r|
|
r〉〈
r|

⎤
⎦ , (D1)

where C(θ ) is given by

C (θ ) = 1

2n

[
cos

(
θ

2

)]2n {
2 −

[
1 + tan

(
θ

2

)]n}
.

Note also that N is a real, diagonal matrix and hence is
Hermitian, so it remains to determine under what conditions
ρi − N is a positive-semidefinite matrix for all i.
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Let us define the matrices Ai by

Ai = −N + ρi.

The goal is to prove that none of the Ai have a negative
eigenvalue. Say Ai has eigenvalues {ar

i }, where a1
i � a2

i �
· · · a2n

i . The matrix −N has eigenvalues {vr} where for 1 �
r � 2n − 1,

vr = C (θ )

[
tan

(
θ

2

)]|
r|
,

and for r = 2n,

v2n = −C (θ ) .

Each ρi is a rank-1 density matrix and hence has eigenvalues
u1

i = 1 and ur
i = 0 for 2 � r � 2n.

By Weyl’s inequality,

vr + u2n

i � ar
i .

So, provided C(θ ) > 0, we have ar
i > 0 for 1 � r � 2n − 1.

Hence at most one eigenvalue of Ai is nonpositive. Investigat-
ing this nonpositive eigenvalue further, consider Ai acting on
the state |ζi〉:

Ai |ζi〉 = ρi |ζi〉 −
2n∑

j=1

ρj |ζj 〉〈ζj |ζi〉 = 0.

Hence the nonpositive eigenvalue of Ai is 0 implying that Ai �
0, ∀ i, which in turn implies that N � ρi , ∀ i, provided C(θ ) >

0. As [cos (θ/2)]2n � 0, we have shown that {|ζ
x〉}
x∈{0,1}n , as
defined in Eq. (28), is the optimal measurement for exclusion
provided {

2 −
[

1 + tan

(
θ

2

)]n}
> 0. (D2)

This region is the complement of that given in Eq. (27), so we
know the optimal measurement to perform for all values of n

and θ .

3. Derivation of how well M performs at the exclusion task

Is conclusive exclusion possible in the region defined by
Eq. (D2)? To answer this, we must consider the trace of the N

given in Eq. (D1):

Tr[N ] = 1

2n

[
cos

(
θ

2

)]2n {
2 −

[
1 + tan

(
θ

2

)]n}2

.

This is strictly positive and hence conclusive exclusion is
not possible. The value of Tr[N ] does, however, tell us how
accurately we can perform state exclusion when we cannot do
it conclusively.

APPENDIX E: ALTERNATIVE STATE EXCLUSION SDPS

In this appendix, we derive alternative state exclusion SDPs.

1. Unambiguous state exclusion SDP

In this section, the dual problem for the primal SDP for
unambiguous state exclusion as given in Eq. (34) is derived.

Comparing Eq. (34) with Eq. (A1), we see that here the
following holds true:

(i) A is a kd by kd block-diagonal matrix with each d by d

block containing
∑k

j=1 ρ̃j :

A =

⎛
⎜⎝
∑k

j=1 ρ̃j

. . . ∑k
j=1 ρ̃j

⎞
⎟⎠ .

(ii) B is a (d + k) by (d + k) matrix with the top left d by d

block being an identity matrix and all other elements being 0:

B =
(
I 0
0 0

)
.

(iii) X, the variable matrix, is a kd by kd block-diagonal
matrix where we label each d by d block diagonal by Mi :

X =

⎛
⎜⎝

M1

. . .
Mk

⎞
⎟⎠ .

(iv) Y is a (d + k) by (d + k) matrix whose top left d by
d block we call N and the remaining k diagonal elements we
label by ai .

Y =

⎛
⎜⎜⎝

N

a1

. . .
ak

⎞
⎟⎟⎠ .

(v) The map � is given by

�(X) =

⎛
⎜⎜⎜⎝
∑k

i=1 Mi

Tr [ρ̃1M1]
. . .

Tr [ρ̃kMk]

⎞
⎟⎟⎟⎠ .

Using Eq. (A3), we see that �∗ must satisfy

Tr

[
N

k∑
i=1

Mi

]
+

k∑
i=1

aiTr [ρ̃iMi]

= Tr

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝

M1

. . .
Mk

⎞
⎟⎠�∗

⎡
⎢⎢⎣
⎛
⎜⎜⎝

N

a1

. . .
ak

⎞
⎟⎟⎠
⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ ,

and hence �∗(Y ) produces a kd by kd block-diagonal matrix:

�∗(Y ) =

⎛
⎜⎝

N + a1ρ̃1

. . .
N + akρ̃k

⎞
⎟⎠ .

Substituting these elements into Eq. (A2) and taking into
account the fact that we are maximizing rather than minimizing
in the primal problem, we obtain the dual SDP as stated in
Eq. (35).
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2. Worst-case error state exclusion SDP

In this section, the dual problem for the primal SDP for
worst-case error state exclusion as given in Eq. (37) is derived.

Comparing Eq. (37) with Eq. (A1), we see that here the
following holds true:

(i) A is a (kd + 1) by (kd + 1) matrix with A11 = 1 being
the only nonzero element:

A =

⎛
⎜⎜⎝

1
0

. . .
0

⎞
⎟⎟⎠ .

(ii) B is a (d + k) by (d + k) where the bottom right d by
d block is the identity matrix. All other elements are zero:

B =
(

0 0
0 I

)
.

(iii) X, the variable matrix, is a kd + 1 by kd + 1 block-
diagonal matrix where X11 = λ and we label each subsequent

d by d block diagonal by Mi :

X =

⎛
⎜⎜⎝

λ

M1

. . .
Mk

⎞
⎟⎟⎠ .

(iv) Y is a (d + k) by (d + k) matrix whose bottom right d

by d block we call N and the remaining k diagonal elements
we label by ai ,

Y =

⎛
⎜⎜⎝

a1

. . .
ak

N

⎞
⎟⎟⎠ .

(v) The map � is given by

�(X) =

⎛
⎜⎜⎜⎝

λ − Tr [ρ̃1M1]
. . .

λ − Tr [ρ̃kMk] ∑k
i=1 Mi

⎞
⎟⎟⎟⎠ .

Using Eq. (A3), we see that �∗ must satisfy

λ

k∑
i=1

ai −
k∑

i=1

aiTr [ρ̃iMi] = Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

λ

M1

. . .
Mk

⎞
⎟⎟⎠�∗

⎡
⎢⎢⎣
⎛
⎜⎜⎝

a1

. . .
ak

N

⎞
⎟⎟⎠
⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ ,

and hence �∗(Y ) produces a kd by kd block-diagonal matrix:

�∗(Y ) =

⎛
⎜⎜⎜⎝
∑k

i=1 ai

N − a1ρ̃1

. . .
N − akρ̃k

⎞
⎟⎟⎟⎠ .

Substituting these elements into Eq. (A2), we obtain the dual SDP as stated in Eq. (38).
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