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The boson sampler proposed by Aaronson and Arkhipov is a nonuniversal quantum computer, which can serve
as evidence against the extended Church-Turing thesis. It samples the probability distribution at the output of
a linear unitary optical network with indistinguishable single photons at the input. Four experimental groups
have already tested their small-scale prototypes with up to four photons. A boson sampler with a few dozens
of single photons is believed to be hard to simulate on a classical computer. For scalability of a realistic boson
sampler with current technology it is necessary to know the effect of the photon mode mismatch on its operation.
Here a nondeterministic model of the boson sampler is analyzed, which employs partially indistinguishable
single photons emitted by identical sources. A sufficient condition on the average mutual fidelity 〈F〉 of the
single photons is found, which guarantees that the realistic boson sampler outperforms the classical computer.
Moreover, the boson-sampler computer with partially indistinguishable single photons is scalable and has more
power than classical computers when the single-photon mode mismatch 1 − 〈F〉 scales as O(N−3/2) with the
total number of photons N .
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I. INTRODUCTION

The boson-sampler (BS) computer proposed recently by
Aaronson and Arkhipov [1] can serve as evidence against the
extended Church-Turing (ECT) thesis which says that any
physical device can be efficiently simulated on the probabilistic
Turing machine. No interaction between bosons is required,
and thus the BS computer can be built using only passive
linear optical devices and emitters of indistinguishable single
photons [2], i.e., the single photons that show the Hong-Ou-
Mandel type of interference [3] (see also Refs. [4,5]). Whereas
the universal quantum computer targets NP decision problems,
widely believed to be classically hard, such as factoring
large integers [6,7], the BS computer just samples the output
probability distribution of an M-mode unitary network U with
N identical bosons at its input. It is shown that simulation
of the BS on a classical computer requires exponential
resources in the number of bosons N (when M � N ) [1],
since bosonic amplitudes are given as the permanents (see
Ref. [8] for the definition and properties) of complex N × N

submatrices of U [9,10], whose computation is exponentially
hard [11,12] [Ryser’s algorithm [13], the fastest known,
requires O(N22N ) flops]. On the conceptual side, a classical
algorithm for the matrix permanent would provide also for
solution of all problems in the complexity class #P, of a higher
complexity than the NP class, which, in its turn, would imply
dramatic theoretical consequences: collapse of the whole
polynomial hierarchy of the computational complexity [1].
While a universal quantum computer can simulate the BS, the
scalability of the BS beyond classical computational power
is easier to achieve: already with 20 � N � 30 photons it
would outperform classical computers [1]. Four independent
groups have already tested their prototypes of the BS on small
networks with up to four input photons [14–17].

It is crucial that even an approximate simulation of the BS
computer must be classically hard (at least when M � N2) [1];
hence, the stringent fault tolerances required for the universal
quantum computer [18–21] may be significantly relaxed for the

BS computer. The necessary, though not sufficient, conditions
for BS operation beyond the power of classical computers
were analyzed in Refs. [22,23], supporting this view. It was
even suggested [23] that scaling up helps to combat photon
mode mismatch and losses. Recently, the effect of noise
in the experimental realization of a unitary network on BS
complexity was studied [24]. It was shown that even with
fidelity of the optical elements of at least 1 − O(N−2) a
noisy-network realization of the BS is still hard to simulate
classically. These results suggest the experimental feasibility
of the BS computer in the near future.

In practice, limitations on the indistinguishability of single
photons from realistic sources will always be present. All
four groups of Refs. [14–17] have tested their BS prototypes
using so-called heralded single photons from parametric
down-conversion, not free from multiphoton components and
noise. It is clear that some amount of indistinguishability of
single photons is essential for the BS computer (a large mode
mismatch allows for an efficient simulation on a classical
computer [1] by a probabilistic algorithm [25]; see also below).
Recently a spatial multiplexing of heralded single-photon
sources was proposed to enhance the relative yield of the
single-photon component [26], but scalability is still out of
reach. On the other hand, scalable single-photon sources with
high photon antibunching can be based on individual emitters
such as quantum dots [27–29], but they are inherently nonde-
terministic, since they are based on spontaneous emission or
on spontaneous decay from a cavity. Could nondeterministic
sources of single photons be employed to scale up the BS?
Generally, what specific features of bosonic particles are
necessary for the BS computer to outperform the classical
computer? A related fundamental problem is that, to date,
no sufficient bound is known on the mode mismatch of single
photons for an experimentally realistic BS to serve as evidence
against the ECT thesis.

Thus, it is of paramount importance for building a scalable
BS device to establish the degree of distinguishability of
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single photons for which the BS is still hard to simulate on
a classical computer. This is the main focus of the present
work. The analysis is concentrated on the effect of the photon
mode mismatch and neglects two other sources of error, i.e.,
noise in experimental realization of an unitary network and
photon losses. A sufficient bound on the mode mismatch is
derived for the BS computer with partially indistinguishable
single photons to outperform the classical computer. For
instance, the BS computer with partially indistinguishable
single photons is scalable beyond the power of the classical
computer if the mode mismatch 1 − 〈F〉, where 〈F〉 is the
average single-photon fidelity, scales as O(N−3/2) with the
total number of photons N . In derivation of the fidelity bound,
the indistinguishability of N single photons in distinct modes
is quantified by an N -vector parameter—an approach which
might be useful in other problems.

The rest of the text is organized as follows. In Sec. II a
nondeterministic boson-sampler (NDBS) model is formulated
which captures the essential features of any nonideal BS
computer with the single photons only partially indistinguish-
able. Section III is devoted to analyzing the conditions under
which the NDBS performs a classically hard computational
task. In Sec. IV a short summary of the results is given.
Some inessential mathematical details of the derivations and
other computational details are relegated to Appendixes A, B,
and C.

II. THE NONDETERMINISTIC BOSON-SAMPLER MODEL

Consider N single photons emitted by identical sources
and launched into distinct input modes k1, . . . ,kN of an
M-mode linear optical network given by a unitary matrix
U : a

†
k(ω) = ∑M

l=1 Uklb
†
l (ω), where ak(ω) and bk(ω) are

the input and output modes of frequency ω, respectively
(see Fig. 1). The input state is given by a density matrix.
Setting x to be a fluctuating vector parameter in the
spectral function φ(x,ω) of a single photon (for instance,
the arrival time or phase) with the distribution p(x),
identical for each source, the density matrix reads ρ(in) =∫

dx1 · · · ∫ dxN [
∏N

α=1 p(xα)]|�(x1, . . . ,xN )〉〈�(x1, . . . ,xN )|,

FIG. 1. Schematic (black-box) depiction of the NDBS setup
with the network matrix U , where on the left are the input modes
corresponding to the operators ak(ω), linked to the identical photon
sources, and on the right are the output modes corresponding to the
operators bk(ω) linked to the detectors.

where

|�(x1, . . . ,xN )〉 =
N∏

α=1

∫ ∞

0
dωαφ(xα,ωα)a†

kα
(ωα)|0〉 (1)

is a Fock state of N photons at the input. This is a more general
setup than in Ref. [1], which allows consideration of the effect
of photon mode mismatch. The output probability of detecting
m1, . . . ,mM photons in modes 1, . . . ,M can be derived using
quantum photon counting theory [30–32]. The result is that
the probability is given by the following positive Hermitian
operator (see Appendix A):

�(m1, . . . ,mM ) = 1∏M
l=1 ml!

∫ ∞

0
dω1 · · ·

∫ ∞

0
dωN

N∏
α=1

�(ωα)

×
[

N∏
α=1

b
†
lα

(ωα)

]
|0〉〈0|

[
N∏

α=1

blα (ωα)

]
,

(2)

where (l1, . . . ,lN ) ≡ {1, . . . ,1,2, . . . ,2, . . . ,M, . . . ,M}, with
index j appearing mj times, and �(ω) � 0 is the spectral
function of the detector. The set of all such operators as in
Eq. (2), after a suitable normalization (see below), constitutes
the positive operator-valued measure (POVM) describing
photon detection at the output modes. From Eqs. (1) and
(2), the detection probability P (m1, . . . ,mM |k1, . . . ,kN ) =
tr{�(m1, . . . ,mM )ρ(in)} becomes

P (m1, . . . ,mM |k1, . . . ,kN )

= 1∏M
l=1 ml!

∑
σ1

∑
σ2

J
(
σ2σ

−1
1

) N∏
α=1

U ∗
kσ1(α),lα

Ukσ2(α),lα (3)

with each sum running over all permutations of N indices
k1, . . . ,kN in an N × N submatrix of the network matrix U .
In fact, Eq. (3) applies more generally, not necessarily with
identical sources, when the network input consists of states
with up to one photon per mode. In this general case, J depends
only on the relative permutation σ21 ≡ σ2σ

−1
1 .1 Evidently J =

δσ1,σ2 is the classical limit, whereas the ideal BS of Aaronson
and Arkhipov has J = 1 (independently of its argument). In
our case, due to the sources are identical, J factorizes into
a product of functions of cycles of the relative permutation,
where cycles of the same length contribute the same factor.2

Thus J is a function of the cyclic structure C1, . . . ,CN of σ21

(Ck is the number of cycles of length k;
∑

kCk = N [33]). In
particular, we obtain (see Appendix A)

J (σ ) =
N∏

k=2

g
Ck(σ )
k , (4)

1Since J is independent of U , the substitution α = σ−1
1 (β) gives

U ∗
kβ ,l′β

Ukσ21(β),l
′
β
, i.e., the transformed matrix U with the σ1-permuted

output indices l′β ≡ lσ−1
1 (β). Hence J depends on σ21 only.

2Since the sources are identical, two cycles involving k sources can
be mapped into each other by relabeling the sources.

022333-2



SUFFICIENT CONDITION FOR THE MODE MISMATCH OF . . . PHYSICAL REVIEW A 89, 022333 (2014)

where we have introduced

gk =
k∏

α=1

∫
dxαp(xα)

∫ ∞

0
dωα�(xα,ωα−1)�∗(xα,ωα) (5)

with �(x,ω) ≡ √
�(ω)φ(x,ω) (the product is a shortcut nota-

tion for the multiple integrals over xα and ωα , where α = 0 is
the same as α = k). For efficient broadband detectors a small
percentage of losses can be dealt with by using postselection.
In this case, normalizing the modified spectral function as∫

dω|�(x,ω)|2 = 1, we get for the probabilities of Eq. (3)∑
{mj } P (m1, . . . ,mM |k1, . . . ,kN ) = 1, where the summation

is constrained by m1 + · · · + mM = N [indeed, the described
renormalization is equivalent to setting �(ω) = 1, i.e., to the
case of bandwidth-unlimited ideal detectors and single photons
with the modified spectral function, where all photons are
detected].

gk has the physical meaning of the k-photon indistinguisha-
bility parameter defined for identical single-photon sources (in
general, indistinguishability of single photons is described by
Young diagrams [34]; for the general multiphoton case see
Refs. [35,36]). In the ideal BS case all gk = 1, whereas in
the classical case gk = 0, k � 2. The physical meaning of gk

requires that it is positive. This and other properties of gk can
be easily seen from the following representation. Introduce the
following one-particle density matrix:

ρ ≡
∫

dx p(x)|�(x)〉〈�(x)| (6)

with the vector |�(x)〉 ∈ H defined as 〈ω|�(x)〉 ≡ �(x,ω),
where the Hilbert space H has a resolution of unity given
by

∫ ∞
0 dω|ω〉〈ω| = 1̂. Note that the above normalization of

�(x,ω) guarantees that tr(ρ) = 1. Under these definitions,
Eq. (5) can be cast in the form of a trace of a positive operator
(by recognizing in the integrals the resolution of unity in H)

gn =
∫ ∞

0
dω1 · · ·

∫ ∞

0
dωn

n∏
j=1

〈ωj |ρ|ωj+1〉

=
∫ ∞

0
dω1〈ω1|ρn|ω1〉 = trρn. (7)

Hence, 0 � gn � 1. Moreover, passing to the diagonal basis,
we also obtain an important bound for higher indistinguisha-
bility parameters (setting also g1 = 1, for convenience)

gn = tr(ρkρn−k) � tr(ρk)tr(ρn−k) = gkgn−k. (8)

For instance, gn+1 � gn.
One general observation follows: Since the computational

complexity of the NDBS decreases as J (σ ) deviates from
its maximum3 J = 1 (except for the identity permutation)
and the indistinguishability parameters satisfy gn+1 � gn, it is
doubtful that scaling up to a higher number of single photons

3As follows from Eq. (3), such a deviation inserts small coefficients
at the products of quantum amplitudes

∏N

α=1 U ∗
kα,lα

Unα,lα of the ideal
BS, thus reducing the number of effectively contributing terms (for
fixed k1, . . . ,kN ), which varies from 1 (nα = kα , the classical case) to
N ! (the ideal BS case).

can help to combat the photon mode mismatch (as suggested
in Ref. [23]). Below we derive a sufficient condition on the
mode mismatch which has an inverse 3/2-power law scaling
in the total number of photons.

Equations (3)–(5) are the basis of our consideration. Below
we focus on the region of small mode mismatch. In this case
the average mutual fidelity of the single photons (denoting the
averaging over x by 〈· · · 〉)

〈F〉 =
∫

dx1p(x1)
∫

dx2p(x2)|〈�(x1)|�(x2)〉|

=
∫

dx1p(x1)
∫

dx2p(x2)

∣∣∣∣
∫

dω�∗(x1,ω)�(x2,ω)

∣∣∣∣
(9)

can be expanded in powers of the vector variable x (we set, for
simplicity, 〈x〉 = 0). Indeed, from Eq. (9), using that x1,2 have
identical distributions, we get

〈F〉 =
〈[∫

dω�∗(x1,ω)�(x2,ω)

×
∫

dω′�(x1,ω
′)�∗(x2,ω

′)
]1/2〉

= 1 −
∑
i,j

Aij 〈xixj 〉 + O(〈x3〉), (10)

where we have used that x is real and defined a symmetric
(necessarily positive) matrix given by the photon sources:

Aij = −Re

{∫
dω�∗(0,ω)

∂2�(0,ω)

∂xi∂xj

+
∫

dω�(0,ω)
∂�∗(0,ω)

∂xi

∫
dω′�∗(0,ω′)

∂�(0,ω′)
∂xj

}
.

(11)

One important relation can be also established between gk

and 〈F〉 for small mode mismatch. Indeed, the single-particle
density matrix (6) has the following expansion in power series
of x:

ρ = |�(0)〉〈�(0)| −
∑
ij

Aij 〈xixj 〉 + O(〈x3〉), (12)

where the operator Aij reads

Aij = −1

2

[
|�(0)〉

〈
∂2�(0)

∂xi∂xj

∣∣∣∣ +
∣∣∣∣∂2�(0)

∂xi∂xj

〉
〈�(0)

]

−
∣∣∣∣∂�(0)

∂xi

〉 〈
∂�(0)

∂xj

∣∣∣∣ . (13)

Then, utilizing Eq. (7), noticing that Re[〈�(0)|Aij |�(0)〉] =
Aij defined in Eq. (11), and comparing with Eq. (10) the
following important relation is established: gk = 1 − k(1 −
〈F〉) + O(〈x3〉), i.e., for a small mode mismatch, the k-photon
distinguishability parameter 1 − gk is k times the mode
mismatch [defined here as the deviation of the average fidelity
〈F〉 of Eq. (9) from 1].

One important model, considering nondeterministic
sources, is of photons with random arrival times τ

(equivalently, random phases), where �(τ,ω) = φ(ω)eiωτ (we
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set 〈τ 〉 = 0). Let us denote the standard deviation (i.e.,
dispersion) of the arrival times by �τ , that of the frequency
by �ω [under the spectral density |φ(ω)|2], and introduce the
classicality parameter η = �ω�τ (for η = 0 we recover the
BS of Aaronson and Arkhipov, and for η = ∞ the classical
case). Then we obtain 〈F〉 = 1 − η2 + O(η4). Similarly, we
also have gk(η) = 1 − kη2 + O(k2η4), giving J (σ ) = 1 −
[N − C1(σ )]η2 + O(N2η4). These expressions for a small
mismatch follow also from the general case, where one can
identify η2 = ∑

i,j Aij 〈xixj 〉 and Aij defined in Eq. (11)
[however, generally, the order of the next term is O(〈x3〉),
whereas the absence of the third-order term for the random-
arrival-times model is due to a single fluctuating parameter
τ and the fact that 〈F〉 and gk are symmetric with respect
to permutations of the integration variables τi and only their
differences τi − τj enter the definitions]. Thus one can think of
[
∑

i,j Aij 〈xixj 〉]1/2 as an analog of the classicality parameter
in the general case (at least for a small mode mismatch).

III. THE NONDETERMINISTIC BOSON SAMPLER AND A
CLASSICALLY HARD COMPUTATIONAL TASK

The hardness result of Aaronson and Arkhipov [1] is
formulated for the Haar random network matrix U in the
dilute limit (defined here as M � N2), assuring that the
submatrices of such a random matrix are approximated by
matrices with the elements being independent and identically
distributed (i.i.d.) Gaussians with 〈Ukl〉 = 0 and 〈|Ukl|2〉 = 1

M

(since
∑M

l=1 |Ukl|2 = 1). The distribution density of elements
of U factorizes in this approximation and is given by4

p(Ukl) = M

π
exp{−M|Ukl|2}. (14)

The dilute limit is also essential for practical implementation,
since one can use the simplest on-off (bucket) photon detectors,
because of the vanishing probability of multiphoton detection
at the output modes, due to the “boson birthday paradox”
[1,37], now experimentally verified [38], which is similar
to the classical birthday paradox. Therefore, we can restrict
ourselves to the output occupation numbers ml ∈ {0,1}, intro-
ducing l1, . . . ,lN as the distinct output modes [denoting �l ≡
(l1, . . . ,lN ), etc.] and setting Pη(�l|�k) to be the corresponding
output probability. Note that the sum of probabilities of the
bunched outputs is small on average over the Haar measure,
being on the order of O(N2/M) [1].

The main result of Aaronson and Arkhipov [1] states that
approximation of the ideal BS cannot be performed on a
classical computer with only polynomial resources in the total
number of photons N and the inverse of the approximation
error. The approximation error ε is the variational distance of

4It is proven that for M � (N5/ε)log2(N/ε) the Haar probability
density pH satisfies pH (X) � [1 + O(ε)]p(X), where p is the
probability density of Eq. (14), but a similar relation is expected
to be valid for M � N2 [1].

the output distributions between the ideal BS case, D0, and the
proposed approximation,D1. In our case, the above means that
the NDBS is classically hard to simulate in polynomial time
in (N,1/ε) if, for a Haar random network matrix U , its output
distribution Dη on the single-photon outputs is variationally
close to that of the ideal BS, i.e.,

||D0 − Dη||′ ≡ 1

2

∑
�l

|P0(�l|�k) − Pη(�l|�k)| � cε, (15)

for some fixed constant c. Indeed, the (average in the Haar
measure) probability of having a bunched output is vanishing
as O(N2/M); thus the correction to the variational distance,
i.e., the difference between the complete and the nonbunched
outputs, satisfies (on average) ||D0 − Dη|| − ||D0 − Dη||′ =
O(N2/M) � 1.

The main point of the arguments in Ref. [1] is that an
approximation of the BS computer as that described above
also solves some computational task impossible to solve on
a classical computer. Specifically, it was shown that such a
classical simulation would imply also approximation of the
permanents of matrices of Gaussian i.i.d. complex random
variables with only polynomial resources, which is conjectured
to be impossible (some numerical and other evidence is pro-
vided). Below, we will use one of the equivalent formulations
of the latter computational task, namely, the problem of
approximating the probability of the ideal BS to within an
additive error ±ε〈P0(�l|�k)〉 = ±ε N!

MN , where the average with
respect to the Haar measure is computed using the Gaussian
approximation (14) (under the Gaussian approximation, this
problem is equivalent to |GPE|2± of Ref. [1]). Let us formulate
it in precise terms.

|BS|2± problem. For the ideal BS computer with a Haar
random (M × M)-dimensional unitary network matrix U and
N single photons at the input, given small parameters ε and δ,
simulate the output probability P0(�l|�k) to within the additive
error ±ε N!

MN , with success probability (in the Haar measure) at
least 1 − δ, in a polynomial in (N,1/ε,1/δ) time.

Using the Gaussian approximation and the boson birthday
paradox we show below that, under a condition on the mode
mismatch, the NDBS does exactly what is asked in the
|BS|2±-problem, i.e., what the classical computer cannot do.
We employ Chebyshev’s probability inequality [39], stating
that for a random variable X with 〈X〉 = 0, the probability
P(|X|/

√
〈X2〉 � 1/s) � s2, for any s > 0. Using the facts

that the Ukl are i.i.d. random variables with the probability
density (14), that J (I ) = 1 (I is the identity permutation), and
〈Ukl〉 = 0 we obtain from Eqs. (3) and (4)

〈P0 − Pη〉 =
∑
σ1,σ2

[1 − J (σ21)]

〈
N∏

α=1

U ∗
kσ1(α),lα

Ukσ2(α),lα

〉

=
∑
σ1,σ2

[1 − J (σ21)]δσ1,σ2

N∏
α=1

〈∣∣Ukσ1(α),lα

∣∣2〉 = 0.

(16)
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Similarly, after more involved calculations (see Appendix B),
we get

〈(P0 − Pη)2〉 =
∑
σ1,σ2

∑
σ ′

1,σ
′
2

[1 − J (σ21)][1 − J (σ ′
21)]

×
〈

N∏
α=1

U ∗
kσ1(α),lα

Ukσ2(α),lαU
∗
kσ ′

1(α),lα
Ukσ ′

2(α),lα

〉

=
(

N !

MN

)2 1

N !

∑
σ

χ (C1(σ )) [1 − J (σ )]2 ,

(17)

where we have defined χ (n) = n!
∑n

k=0
1
k! = ∫ ∞

1 dz zne1−z.
Let us introduce a rescaled variance

V(N,η) = 1

N !

∑
σ

χ (C1(σ )) [1 − J (σ )]2 . (18)

Now, the inequality complementary to Chebyshev’s reads (for
ε > 0)

P
(

|P0 − Pη| < ε
N !

MN

)
> 1 − V(N,η)

ε2
, (19)

where Eqs. (17) and (18) were used. Equation (19) resembles
the statement of the |BS|2± problem: If we are able to control the
cycle sum V(N,η), e.g., by varying the classicality parameter
η, such that the right-hand side in Eq. (19) stays close
to 1 then the NDBS, with success probability close to 1,
approximates the ideal BS of Aaronson and Arkhipov to within
an additive error (in the required form). Let us now formalize
this statement. Given an error ε and a success probability
1 − δ, if the rescaled varianceV(N,η) (18) observes the bound

V(N,η) � ε2δ, (20)

then the NDBS solves the |BS|2± problem, i.e., it performs a
computational task which cannot be simulated on a classical
computer with only polynomial resources. Equation (20) is
a sufficient condition which may not be necessary for the
NDBS to outperform classical computers, since Chebyshev’s
inequality can be a crude approximation. However, it usually
captures the scaling of the tail probability of a random variable
in terms of its variance. Equation (20) states that the N scaling
of the minimal approximation error with which the NDBS
satisfies the |BS|2± problem is defined by the rescaled variance
V(N,η).

Equation (20) involves the cycle sum (18), computable only
numerically for each particular density matrix ρ, depending on
the sources. Let us analyze in detail the model of single photons
with random arrival times discussed above, taking both
�(τ,ω) = φ(ω)eiωτ and p(τ ) to be Gaussian distributions,
e.g., spectrally shaped by the stimulated Raman technique of
Ref. [40] with the Gaussian distributed random arrival times
(centered at τ = 0):

�(τ,ω) = 1√
2π�ω

exp

(
iωτ − (ω − ω0)2

2�ω2

)
, (21)

p(τ ) = 1√
2π�τ

exp

(
− τ 2

2�τ 2

)
. (22)
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FIG. 2. (Color online) Behavior of the cubic root of the reduced
variance V(N,η) for several values of the two-photon indistinguisha-
bility parameter g2 (from bottom to top): g2 = 0.99 (thin solid
line), g2 = 0.975 (thin dashed line), g2 = 0.95 (thin dotted line),
g2 = 0.925 (thick solid line), g2 = 0.9 (thick dashed line), and
g2 = 0.8 (thick dotted line). We have used the Gaussian model of
single photons with random arrival times. The two dash-dotted lines
give the approximation following from Eq. (25).

In this case, all integrals in Eq. (5) are Gaussian and can be
evaluated. Such a model also is interesting from the point
of view of practical optimality, since as shown in Ref. [41],
the Gaussian-shaped form of single photons is optimal for
interference experiments. Setting γ = 2η2

1+2η2 , we obtain gk as
a positive monotonically decreasing function of γ (and, hence,
of η2):

gk = (1 − γ )k/2(1 − γ k)−1/2. (23)

Elementary algebra gives

J (σ ) = (1 − γ )
N
2

N∏
k=1

(1 − γ k)−Ck(σ )/2. (24)

In this case, one can also express gk and, hence, J as functions
of g2 only, since g2

2 and γ are Möbius transformations of
each other. We have γ = (1 − g2

2)/(1 + g2
2) [and η2 = (g−2

2 −
1)/2]. Moreover, g2 = 〈F〉/

√
2 − 〈F〉2. For this model, the

results are presented in Fig. 2, where we plot the cubic root of
V(N,η).

For a small two-photon distinguishability 1 − g2 ≈ 2η2 �
1 (i.e., for a small mode mismatch), the dependence of
V1/3(N,η) on N in Fig. 2 is approximately a linear function.
This is a general feature. Indeed, as shown above, gk(η) ≈
1 − kη2 for η � 1 and J (σ ) ≈ 1 − η2[N − C1(σ )]2. Inserting
this into the definition of V(N,η) and taking the integral
over z in the resulting expression [coming from the integral
representation of χ (C1) in Eq. (18)] we get after elementary
algebra

V(N,η) ≈ η4

(
N3

3
− N2

2
+ 7N

6
− 1

)
. (25)

Equation (25) for N � 1 reveals the scaling V(N,η) ≈
η4N3/3 ≈ (1 − 〈F〉)2N3/3. Therefore, the photon mode mis-
match (1 − 〈F〉) must scale approximately as N−3/2 in the
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total number of photons, if the NDBS is to be scaled up
while keeping the product ε2δ constant (i.e., at the same
level of hardness of the classical simulation). As seen from
Fig. 2, the approximation (25) deviates from the exact result
for sufficiently large N , where the contribution from the
higher-order terms ∼ηp, p > 2, becomes important. Such
higher-order terms are model specific and thus cannot be
obtained in a general form. The optimality of the Gaussian
model suggests that Fig. 2 shows the optimal instance of the
bound (20).

Our main result (20) provides also a sufficient condition
for approximation of the BS by the NDBS in the variational
distance, i.e., as in Eq. (15), but for a fraction 1 − V(N,η)

4ε2

of the network matrices U . Indeed, the one-norm (known
in probability theory as the variational distance) is bounded
as ||D0 − Dη||2 � 1

4 (
∑

�l 1)
∑

�l[P0(�l|�k) − Pη(�l|�k)]2. Using this
upper bound and applying Chebyshev’s inequality to ||D0 −
Dη||′ of Eq. (15) considered as a random variable on the Haar
measure, we get

P(||D0 − Dη||′ < ε) > 1 − V(N,η)

4ε2
. (26)

An experimental demonstration of NDBS operation beyond
the power of classical computers could proceed by showing
that, for a randomly chosen network matrix, the NDBS with
a fixed mode mismatch approximates the output probabilities
of the ideal BS of Aaronson and Arkhipov to within an error
±ε N!

MN , i.e., it solves the computational task specified in the
|BS|2± problem, where the product of the squared error ε2

and the failure probability δ (i.e., the Haar measure of the
excluded network matrices) is at least equal to the reduced
variance V(N,η). The probabilities for the ideal BS computer
can still be obtained for N ∼ 20 by numerical simulations.

IV. CONCLUSION

In conclusion, we have considered a nondeterministic
model of the BS computer, the NDBS, which generalizes
the ideal BS computer of Aaronson and Arkhipov [1] and
captures the essential features of a realistic BS device with
only partially indistinguishable single photons at the input.
If the average mutual fidelity of the single photons satisfies
the derived N -dependent bound, the NDBS device cannot be
efficiently simulated on a classical computer. The sufficient
condition derived in this work may not be necessary for
the NDBS to be hard to simulate classically; however, it
reveals the inverse 3/2-power-law scaling of the photon mode
mismatch on the total number of photons for scalability of the
NDBS computer at the same level of hardness of the classical
simulation (i.e., for the constant approximation error and fixed
success probability with which the NDBS approximates the
ideal BS in the variational distance). Moreover, the results are
also applicable to any other realization of the BS with identical
single-photon sources, for instance, with the Gaussian input
states, proposed recently in Ref. [42], where the imperfect
indistinguishability of heralded single photons can be treated
in a similar way.

We have studied the so-called “dilute limit” of a unitary
M-mode network with N bosons, i.e., with M � N2, for
which the classical hardness is established, and when the

average probability (over the random network matrices in the
Haar measure) of two bosons landing at the same output mode
vanishes as O(N2

M
). One might wonder why then the output

probability distribution of bosons is exponentially harder to
compute than that of fermions in a similar setup. Since this
question belongs to the field of computational complexity
theory, the answer must be formulated in its terms: Bosonic
amplitudes are given by matrix permanents, while fermonic
ones are given by matrix determinants, where the permanent
requires a computational time exponential in N , whereas the
determinant is known to be polynomial in N .

However, a physicist can be left unsatisfied by the per-
manent vs determinant explanation, although it is absolutely
correct, and try to inquire further: What specific feature of the
bosonic statistics could be held responsible for this drastic
difference, especially since the output rarely contains two
bosons at the same mode? One plausible candidate is the
very same bosonic bunching, which is unimportant at the
output, but not during the propagation in the network. Indeed,
let us compare bosonic and fermionic propagation through
a unitary network, bringing the two cases to a common
ground by decomposing the unitary map between the input
and output Fock states into a product of infinitesimal unitary
maps, i.e., using a Feynman-type sum over the paths, but now
in the Fock space. Such an expansion involves summation
over all intermediate occupation numbers and each term is a
product of permanents (bosons) or determinants (fermions).
In both cases, each factor in the product of amplitudes
becomes easily computable for an infinitesimal unitary map
(to a sufficient approximation) when the number of factors
becomes sufficiently large. But, as soon as the number of
infinitesimal maps in the product grows above the ratio
M/N2, it is necessary to sum over the multiple occupation
numbers for bosons, i.e., bosonic bunching contributes in the
intermediate Fock states, whereas in the fermionic case the
occupation numbers remain bounded by 1. In the limit when
the Feynman-type expansion becomes exact, one recovers
full bosonic bunching as allowed by their statistics, while
at the output it is still negligible. Therefore, reformulating
Wigderson’s famous joke slightly [1], we can conclude by
saying that to arrive at the same output configuration as
fermions, bosons have a much harder job indeed, since they
must go along a much larger set of paths.
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APPENDIX A: DERIVATION OF THE PROBABILITY
FORMULA

We consider the case of single photons which are emitted
by identical photon sources and launched into distinct modes
k1, . . . ,kN of an M-mode linear optical network with the
unitary matrix U relating the input ak(ω) and output bl(ω)
modes of frequency ω, a

†
k(ω) = ∑M

l=1 Uklb
†
l (ω). The input

state originating from a set of N independent identical sources
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of single photons is given by the density matrix

ρ(in) =
∫

dx1 · · ·
∫

dxN

N∏
α=1

p(xα)

× |�(x1, . . . ,xN )〉〈�(x1, . . . ,xN )|, (A1)

where the Fock state |�(x1, . . . ,xN )〉 is given in Eq. (1) of
Sec. II. The probability of detecting m1, . . . ,mM photons
in the output modes described by the annihilation operators
b1(t), . . . ,bM (t) can be derived by the standard quantum
photon counting theory [30–32,43]. It is in the form of an
average on the density matrix (A1)

pm1,...,mM
= 1∏M

l=1 ml!

〈
:

M∏
l=1

Iml

l exp

{
−

M∑
l=1

Il

}
:

〉
, (A2)

where the double dots denote the time and normal ordering
of the creation and annihilation operators, and the detection
operator reads

Il =
∫ t+�t

t

dτ

∫ t+�t

t

dτ ′G(τ − τ ′)b†l (τ )bl(τ
′) (A3)

with the detector efficiency described by the function G(t).
In our case, the initial state is a Fock state of N single
photons in distinct modes and we postselect on the cases
when all N photons are detected,

∑
ml = N . In this case

the exponent in Eq. (A2) does not contribute. Substituting the
Fourier expansions

bl(t) =
∫ ∞

0

dω√
2π

e−iωtbl(ω) (A4)

and (see, for instance, Ref. [43])

G(t) =
∫ ∞

0

dω

2π
e−iωt�(ω), �(ω) > 0, (A5)

in Eq. (A2), inserting the projector into the vacuum |0〉〈0|
between the creation and annihilation operators (since all
photons are detected this changes nothing), and integrating
over the times, we obtain that the probability is given by the
average of the following operator:

�(m1, . . . ,mM )

= 1∏M
l=1 ml!

∫ ∞

0
dω1 · · ·

∫ ∞

0
dωN

×
N∏

l=1

�(ωl)

[
N∏

α=1

b
†
lα

(ωα)

]
|0〉〈0|

[
N∏

α=1

blα (ωα)

]
, (A6)

where the combined index (l1, . . . ,lN ) (the order being
insignificant) is the set {1, . . . ,1,2, . . . ,2, . . . ,M, . . . ,M} with
index k appearing mk times. Thus, the output probability of
detecting m1, . . . ,mM photons in modes 1, . . . ,M becomes

P (m1, . . . ,mM |k1, . . . ,kN )

=
∫

dx1 · . . . ·
∫

dxN

N∏
α=1

p(xα)

×〈�(x1, . . . ,xN )|�(m1, . . . ,mM )|�(x1, . . . ,xN )〉. (A7)

The operators �(m1, . . . ,mM ) are positive Hermitian, but
they generally do not sum up to the identity operator (more
precisely, to the projector on the symmetric subspace of
N bosons) for m1 + · · · + mM = N . However, for efficient
detectors, when all output photons are detected, after a
suitable normalization (see below) �(m1, . . . ,mM ) become
the POVM elements realizing the detection described above.
In this case the probabilities in Eq. (A7) sum to 1 under the
constraint m1 + · · · + mM = N . Using the evolution in the
unitary network

a
†
k(ω) =

M∑
l=1

Uklb
†
l (ω) (A8)

and the identity

〈0|
[

N∏
α=1

bl′α (ω′
α)

][
N∏

α=1

b
†
lα

(ωα)

]
|0〉

=
∑

σ

δl′α,lσ−1(α)
δ
(
ω′

α − ωσ−1(α)
)
, (A9)

where σ is a permutation, we obtain [transferring the permu-
tations σ1,2 from the two inner products, as in Eq. (A9), to the
k indices]

P (m1, . . . ,mM |k1, . . . ,kN )

= 1∏M
l=1 ml!

∑
σ1

∑
σ2

J
(
σ2σ

−1
1

) N∏
α=1

U ∗
kσ1(α),lα

Ukσ2(α),lα ,

(A10)

with J given as follows (the product is a shortcut notation for
multiple integration over ωα and xα):

J (σ ) =
N∏

α=1

∫
dxαp(xα)

∫ ∞

0
dωα�(ωα)

×φ∗(xα,ωα)φ
(
xα,ωσ−1(α)

)
. (A11)

Here we have used the symmetry of the multiple integral
under permutation of the integration variables, reassigning the
variables as ωα ≡ ωσ−1

1 (α) and defining σ ≡ σ2σ
−1
1 .

The structure of the integrals in Eq. (A11) makes J factorize
into a product of similar functions depending on the cycles
from the cyclic decomposition of the permutation σ (since
each of the two multiple integrals, one over ωα and one over
xα , factorizes). Moreover, because of the above-mentioned
permutational symmetry of the integration variables, cycles
with the same number of elements contribute the same factor.
Therefore we obtain

J (σ ) =
N∏

k=2

g
Ck(σ )
k , (A12)

gk ≡
k∏

α=1

∫ ∞

0
dωα

∫
dxαp(xα)�(xα,ωα−1)�∗(xα,ωα),

(A13)
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where the index α is cyclic (α = 0 is α = k), Ck is the number
of cycles of length k, with

∑
kCk = N [33], and �(x,ω) ≡√

�(ω)φ(x,ω).

APPENDIX B: DERIVATION OF THE EXPRESSION
FOR THE VARIANCE OF P0 − Pη

We have for the variance

〈(P0 − Pη)2〉 =
∑
σ,σ̃

∑
σR,σ̃R

[1 − J (σ̃R)][1 − J (σR)]

×
N∏

α=1

〈
U ∗

kσ (α),lα
UkσRσ (α),lαU

∗
kσ̃ (α),lα

Ukσ̃R σ̃ (α),lα

〉
,

(B1)

where we have introduced the relative permutations σR and
σ̃R and taken into account the mutual independence of Ukβ,lα

for the set of distinct indices l1, . . . ,lN . The nonzero terms
in the sum over all permutations in Eq. (B1) occur under the
condition that for any α ∈ {1, . . . ,N} either of the two sets of
equations below is satisfied:

σRσ (α) = σ (α), σ̃Rσ̃ (α) = σ̃ (α), (B2)

σRσ (α) = σ̃ (α), σ̃Rσ̃ (α) = σ (α). (B3)

For each choice of the permutations {σ,σ̃ ,σR,σ̃R} denote the
ordered (in some way) set of all α satisfying Eq. (B2) as
α(I ) and the ordered set of the rest of the indices as α(II ) [these
satisfy Eq. (B3)] (the two ordered sets give an ordered partition
of the set of all indices {1, . . . ,N}). Introduce also the ordered
sets β(I ) and β(II ) and their versions with the tilde, β̃(I ) and
β̃(II ), as the result of the action of σ (respectfully, σ̃ ) on the
sets α(I ) and α(II ), i.e., by βj = σ (αj ) and β̃j = σ̃ (αj ). Each β

set and its version with the tilde is a permutation of the other:
β̃

(I,II )
j = σ̃ σ−1(β(I,II )

j ). Equation (B2) states that β(I )
j and β̃

(I )
j ,

j = 1, . . . ,|α(I )|, are fixed points (i.e., one-cycles) of the per-
mutations σR and σ̃R , respectfully (thus the sets of their fixed
points coincide). Equation (B3) states that σ̃R is inverse to σR

acting on β(II ), i.e., σR(β(II )
j ) = β̃

(II )
j and σ̃R(β̃(II )

j ) = β
(II )
j ,

j = 1, . . . ,|α(II )|. From these facts the necessary conditions
for nonzero contribution in Eq. (B1) follow:

σ̃R = σ−1
R , σ̃ = (τ1 ⊗ I2)σRσ, (B4)

where τ1 is an arbitrary permutation of the set β(I ) and I2 is
the identity permutation of the set β(II ). Note also that the
number of all indices α(I ) satisfies |α(I )| = C1(σR), where C1

is the number of one-cycles (fixed points) of the permutation.
Let us now use Eqs. (B2), (B3), and (B4) in Eq. (B1).
Under the Gaussian approximation in Eq. (14) of Sec. III
〈|Ukl|2〉 = 1/M and 〈|Ukl|4〉 = 2/M2. Hence, we obtain for
α ∈ α(I ): ∏

α∈α(I )

〈∣∣Ukσ (α),lα

∣∣2∣∣Ukσ̃ (α),lα

∣∣2〉

=
(

1

M

)2[|α(I )|−C1(σ̃ σ−1)] ( 2

M2

)C1(σ̃ σ−1)

= 2C1(τ1)

(
1

M

)2C1(σR)

, (B5)

where we have taken into account that, since all fixed
point of σR are in β(I ), all fixed points of σ̃ σ−1 belong to
the set β(I ) and are also fixed points of τ1. Hence, using
that |α(II )| = N − |α(I )| = N − C1(σR), for α ∈ α(II ) we
obtain

∏
α∈α(II )

〈∣∣Ukσ (α),lα

∣∣2∣∣Ukσ̃ (α),lα

∣∣2〉 =
(

1

M

)2[N−C1(σR)]

. (B6)

Inserting the results of Eqs. (B5) and (B6) into Eq. (B1),
performing the summation over the independent (free)
permutations σ , σR , and τ1, and using that J (σ−1) = J (σ )
(since the inverse permutation has the same cycle structure)
we obtain the following expression for the variance:

〈(P0 − Pη)2〉 =
(

N !

MN

)2 1

N !

∑
σR

χ (C1(σR)) [1 − J (σR)]2 .

(B7)
Here χ (n) is the cycle sum

χ (n) ≡
∑

τ

2C1(τ ) = n!
n∑

k=0

1

k!
=

∫ ∞

1
dt tne1−t , (B8)

where τ is a permutation of n elements (see, for instance,
Ref. [33]).

APPENDIX C: THE CYCLE SUM V(N,η)

One can express the summation over the permutations in
the definition of V (note that there are, in total, N ! terms)

V(N,η) = 1

N !

∑
σ

χ (C1(σ ))

[
1 −

N∏
k=2

g
Ck(σ )
k (η)

]2

, (C1)

as a summation over all partitions of N into a sum of positive
integers. Indeed, there are N !/(

∏N
k=1 kCkCk!) permutations

with the cycle structure (C1, . . . ,CN ) (see, for instance,
Ref. [33]), the summation is over the integer partitions of
N into a sum of integers, from 1 to N , where each integer
k corresponds to a cycle length in the cyclic structure of the
permutation, while the multiplicity is Ck . We get

V =
∑

(C1,...,CN )

χ (C1)
(
1 − ∏N

k=2 g
Ck

k

)2∏N
k=1 kCkCk!

, (C2)

where the summation is under the constraint that
∑N

k=1 kCk =
N . The sum in Eq. (C2) can be efficiently calculated numeri-
cally, if N is not very large.
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