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We study multipartite entanglement, the generation of Einstein-Podolsky-Rosen (EPR) states, and quantum
steering in a three-mode optomechanical system composed of an atomic ensemble located inside a single-mode
cavity with a movable mirror. The cavity mode is driven by a short laser pulse, has a nonlinear parametric-type
interaction with the mirror and a linear beam-splitter-type interaction with the atomic ensemble. There is no
direct interaction of the mirror with the atomic ensemble. A threshold effect for the dynamics of the system is
found, above which the system works as an amplifier and below which as an attenuator of the output fields.
The threshold is determined by the ratio of the coupling strengths of the cavity mode to the mirror and to the
atomic ensemble. It is shown that above the threshold, the system effectively behaves as a two-mode system in
which a perfect bipartite EPR state can be generated, while it is impossible below the threshold. Furthermore,
a fully inseparable tripartite entanglement and even further a genuine tripartite entanglement can be produced
above and below the threshold. In addition, we consider quantum steering and examine the monogamy relations
that quantify the amount of bipartite steering that can be shared between different modes. It is found that the
mirror is more capable for steering of entanglement than the cavity mode. The two-way steering is found between
the mirror and the atomic ensemble despite the fact that they are not directly coupled to each other, while it is
impossible between the output of cavity mode and the ensemble which are directly coupled to each other.
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I. INTRODUCTION

The possibility of entangling macroscopic objects has
been of interest for many years. Of particular interest is
the possibility to entangle macroscopic objects using an
optomechanical cavity containing a macroscopic mechanical
oscillator such as a movable mirror or vibrating membrane
[1–4]. In an optomechanical system, the motion of the
mechanical oscillator can be affected by the radiation pressure
of the cavity field which may result in a parametric coupling
between the cavity mode and the oscillator. The parametric
couplings have long been known to produce nonclassical
effects such as multimode squeezing and entanglement.
Consequently, a number of papers have been devoted to
the study of entanglement in optomechanical systems. Most
of these studies consider two-mode optomechanical systems
and explore entanglement in the steady state [5–22]. Further
studies have considered the generation of steady-state bipartite
entanglement in three-mode systems [23–25].

In contrast to the numerous publications concerning the
steady-state entanglement, there are only a limited number of
studies in transient (pulsed) regime. In terms of the difficulties
in the creation of stationary entanglement, the pulsed regime
could be free from the decoherence and dissipation effects
such as the damping of the oscillating mirror. In addition,
it could not be limited by the stability conditions imposed
on the steady-state solutions. Pulsed excitation of a two-
mode optomechanical system has been treated by several
authors in the context of the generation of Einstein-Podolsky-
Rosen–type (EPR–type) correlations between the pulse and a
mechanical oscillator [26] and quantum steering [27]. When an
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optomechanical system is composed of more than two modes,
more complex correlations can be created. These correlations
can significantly affect the two-mode entanglement and result
in multimode entanglement.

It is the purpose of this paper to study bipartite and tripartite
entanglement in a three-mode system realized with an atomic
ensemble located inside a single-mode cavity with a movable
mirror. We work in the pulsed regime and concentrate on
the ability of the system to generate perfect bipartite EPR
states, fully inseparable and genuine tripartite entanglement,
and quantum steering. We assume that in the pulsed regime
the relaxation effects of the mirror and the atoms can be
neglected. In fact, it is not an overly restrictive limitation
regarding a slow damping rate of the mirror and the existence
of dipole transitions with relatively long relaxation times in
some atoms [28]. We find a threshold effect for the dynamics
of the system imposed by the ratio G/Ga of the coupling
strengths of the oscillating mirror and the atoms to the
cavity mode, respectively. Above the threshold (G > Ga), the
system behaves as an amplifier, whereas below the threshold
(G < Ga), the system behaves as an attenuator of the input
laser pulses. The threshold behavior leads to substantially
different results for the bipartite and tripartite entanglement
above and below the threshold.

The paper is organized as follows. In Sec. II, we develop a
general formalism for the pulsed three-mode optomechanics.
The formalism is based on solution of the Heisenberg
equations of motion, which is an extension of the work
of Hofer et al. [26] to the case of three coupled modes.
General expressions for the input-output relations between the
quadrature components of the modes are derived and some of
their properties are discussed along with a brief discussion of
the variances of the quadrature components in the limit of large
squeezing. Section III is concerned with bipartite entanglement
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between the modes. We adopt both the symmetric criterion
of Duan, Giedke, Cirac, and Zoller (DGCZ) [29] and a
less restrictive condition, based on asymmetric weightings
of the quadratures [27,30,31], to examine the bipartite en-
tanglement and the inseparability conditions as a function
of the duration of the input laser pulse. Explicit analytic
solutions are given for the parameters and the conditions
for entanglement and the possibility to generate perfect EPR
entangled states are determined. Section IV is devoted to
tripartite entanglement. In searching for fully inseparable
tripartite entanglement, we use the van Loock–Furusawa
inequalities [32], and for the detection of genuine tripartite
entanglement we use the criterion given by Shalm et al. [33]
and Reid [34]. In Sec. V, we concentrate on quantum steering
and examine the monogamy relations that quantify the amount
of bipartite steering that can be shared between different
modes. We consider the monogamy relations and inequalities
for quantum steering, recently proposed by Reid [35]. We
summarize our results in Sec. VI. Finally, in the Appendix,
we give the explicit expressions for the input-output relations
between the quadrature components of the three modes of the
system.

II. PULSED THREE-MODE OPTOMECHANICS

We consider an optomechanical system composed of an
ensemble of N identical two-level atoms located inside a
single-mode cavity formed by two mirrors, a fixed semitrans-
parent mirror and a movable fully reflective mirror, as shown in
Fig. 1. The cavity mode is driven through the semitransparent
mirror by a pulsed laser field, which is treated classically in
our calculations and is characterized by its frequency ωL and a
time-dependent amplitude E(t). We assume that the amplitude
E(t) is constant over a short-time interval 0 � t � τ and zero
outside this interval. The cavity field is treated as quantized
and is characterized by its frequency ωc and the annihilation
and creation operators ac and a

†
c . The movable mirror is

modeled as a quantized single-mode harmonic oscillator of
frequency ωm and an amplitude determined by operators am

and a
†
m. The oscillations of the movable mirror result from

the radiation pressure of the cavity field on the mirror. The
atomic ensemble of identical two-level atoms, each composed
of a ground state |gj 〉 and an excited state |ej 〉, separated by
the transition frequency ωa , interacts with the cavity mode
and is represented by the collective dipole lowering, rais-
ing, and population difference operators S− = ∑

j |gj 〉〈ej |,

FIG. 1. (Color online) Schematic diagram of the system. An
ensemble of identical two-level (TL) atoms, each of transition
frequency ωa , is located inside a single-mode cavity of frequency
ωc. The cavity mode is driven by a laser pulse of frequencyωL and
the movable mirror oscillates with frequency ωm.

S+ = ∑
j |ej 〉〈gj |, and Sz = ∑

j (|ej 〉〈ej | − |gj 〉〈gj |), respec-
tively. We assume that the coupling of the atoms to the cavity
mode is weak so that the excitation probability of the atomic
ensemble is very small, Sz ≈ 〈Sz〉 ≈ −N . In this case, we may
represent the collective dipole lowering and raising operators
in terms of bosonic annihilation and creation operators ca =
S−/

√|〈Sz〉| and c
†
a = S+/

√|〈Sz〉|, respectively. It is easily
verified that the operators ca and c

†
a satisfy the fundamental

commutation relation for boson operators [ca,c
†
a] = 1.

The total Hamiltonian H of the system, including the laser
driving field and the nonlinear radiation pressure interaction
between the cavity mode and the mirror, can be written as

H = Hc + Ha + Hm + HI , (1)

where

Hc = �ωca
†
cac (2)

is the free Hamiltonian of the cavity mode of frequency ωc,

Ha = �ωac
†
aca (3)

is the free Hamiltonian of the atomic excitation mode of
frequency ωa ,

Hm = �ωma†
mam (4)

is the free Hamiltonian of the movable mirror oscillating with
frequency ωm, and

HI = �ga(c†aac + a†
cca) + �g0a

†
cac(a†

m + am)

+ i�[E(t)a†
ce

−iωLt − E∗(t)ace
iωLt ] (5)

is the interaction Hamiltonian of the cavity mode with the
atomic mode, the external driving field, and with the movable
mirror. Here, ga is the coupling constant between the atoms and
the cavity mode, g0 is the coupling constant between the cavity
mode and the movable mirror, and E is the amplitude of the
laser field. Note that the atomic mode is not directly coupled
to the mechanical mode and the interaction between the cavity
and mechanical modes involves the nonlinear optomechanical
coupling [23,26].

To remove the terms oscillating with the laser frequency ωL

in Eq. (5), we introduce the evolution operator

U (t) = eiωL(a†
cac+c

†
aca )t , (6)

which transforms the Hamiltonian (1) into

H̃ ≡ U (t)

(
H − i�

d

dt

)
U †(t)

= ��ca
†
cac + ��ac

†
aca + �ωma†

mam + �ga(c†aac + a†
cca)

+ �g0a
†
cac(a†

m + am) + i�[E(t)a†
c − E∗(t)ac], (7)

where �c = ωc − ωL and �a = ωa − ωL are the detunings of
the atomic frequency ωc and the cavity mode frequency ωa ,
respectively, from the the driving field frequency ωL. Note
that, in practice, the frequency ωm is much smaller than the
laser, atomic, and cavity frequencies and, therefore, can be
comparable to the detunings �c and �a .

The Hamiltonian (7) involves the nonlinear optomechanical
coupling between the cavity mode and the oscillating mirror,
which results from the radiation pressure of the cavity field on
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the mirror. In the limit of a strong driving |EL| � g0,ga , the
Hamiltonian (7) can be significantly simplified and the driving
term eliminated by going into a displaced picture, in which
each operator is written as the sum of its steady-state value
and a small linear displacement

ca → αa + δca, am → αm + δam, ac → αc + δac. (8)

The displacement operators satisfy the Gaussian statistics and
are delta correlated in time such that all the first moments
vanish,

〈δca〉 = 〈δam〉 = 〈δac〉 = 0, (9)

and for the second moments we suppose that the only nonzero
are

〈δca(t)δc†a(t ′)〉 = 〈δac(t)δa†
c(t ′)〉 = δ(t − t ′),

〈δam(t)δa†
m(t ′)〉 = (n0 + 1)δ(t − t ′), (10)

〈δa†
m(t)δam(t ′)〉 = n0δ(t − t ′),

where n0 = [exp(�ωm/kBT ) − 1]−1 is the mean number of
the thermal photons at the frequency of the mechanical mode,
kB is the Boltzmann constant, and T is the temperature of
the environment surrounding the mirror. In other words, we
assume that the cavity mode and the atom are in the ordinary
zero-temperature environment, whereas the mirror is in a
thermal field of a nonzero temperature.

Taking only the quadratic terms of the displacement
operators, we arrive to an effective Hamiltonian

Heff = ��aδc
†
aδca + �ωmδa†

mδam + ��′
cδa

†
cδac

+ �ga(δc†aδac + δa†
cδca)

+ �g(δac + δa†
c)(δam + δa†

m), (11)

where �′
c = �c + g0(αm + α∗

m) and g = g0|αc|.
The Hamiltonian (11) leads to the following Heisenberg

equations of motion for the displacement operators:

δȧm = −(γm + iωm)δam − ig(δac + δa†
c) −

√
2γmξin,

δȧc = −(κ + i�′
c)δac − igaδca − ig(δa†

m + δam) −
√

2κain,

δċa = −(γa + i�a)δca − igaδac −
√

2γacin, (12)

where we have included damping rates of the modes and the
corresponding noise operators.

Our purpose of this paper is to examine entangled properties
of the three modes and quantum steering. It is well known that
these properties are strongly sensitive to losses. For this reason,
we shall work in the bad cavity limit of κ � ga,g and consider
a short evolution time of the system determined by the damping
rate of the cavity mode t ∼ 1/κ . It has an advantage that over
the short evolution time t ∼ 1/κ , the relaxations of the atom
and the mechanical mirror can be neglected (γa = γm = 0)
together with the corresponding noise terms ξin = cin = 0.

In order to solve Eq. (12), it is convenient to introduce
slowly varying variables which are free from the oscillations
at the frequency ωm and are related to to the annihilation
operators by

δar
m = δameiωmt , δar

c = δace
−iωmt ,

(13)
δcr

a = δcae
−iωmt , ar

in = aine
−iωmt .

In terms of these new variables and after dropping the damping
and noise terms of the atomic and mechanical modes, Eq. (12)
becomes

δȧr
m = −igδar

ce
2iωmt − ig

(
δar

c

)†
,

δȧr
c = −[κ + i(�′

c + ωm)]δar
c − igaδc

r
a

− ig
(
δar

m

)† − igδar
me−2iωmt −

√
2κar

in, (14)

δċr
a = −i(�a + ωm)δcr

a − igaδa
r
c ,

in which we recognize certain terms oscillating at twice
the frequency ωm. When the equations are integrated over
times ωmt � 1, these oscillatory terms make a negligible
contribution and therefore we may safely ignore them. After
discarding the fast oscillating terms, which are a form of the
rotating-wave approximation and putting �′

c = �a = −ωm,
the blue detuned laser pulse to both the cavity and atomic
resonance [Eq. (14)] simplifies to

ȧm = −iga†
c ,

ȧc = −κac − igaca − iga†
m −

√
2κain, (15)

ċa = −igaac,

where, for simplicity of the notation, we have dropped δ and
the superscripts r on the displacement operators.

It should be noted from Eq. (15) that there are both para-
metric and beam-splitter types of couplings present between
the field operators. The coupling between the cavity and
mirror field operators is of the parametric type, whereas the
coupling between the cavity and atomic field operators is of
the beam-splitter type. There is no direct coupling between the
mirror and the atomic operators.

A. Bad cavity limit κ � g,ga

The three differential equations (15) can be combined into
two if we take the bad cavity limit of κ � ga,g. We can then
make an adiabatic approximation ȧc ≈ 0, and find

ac(t) ≈ −i
ga

κ
ca(t) − i

g

κ
a†

m(t) −
√

2

κ
ain(t). (16)

When this result is inserted into the remaining two equations
ȧm and ċa in Eq. (15), we obtain

ȧm = Gam +
√

GGac
†
a + i

√
2Ga†

in,
(17)

ċ†a = −Gac
†
a −

√
GGaam − i

√
2Gaa

†
in,

where G = g2/κ and Ga = g2
a/κ . A direct integration of

Eq. (17) yields

am(t) = am(0)eGt +
√

GGae
Gt

∫ t

0
dt ′c†a(t ′)e−Gt ′

+ i
√

2GeGt

∫ t

0
dt ′a†

in(t ′)e−Gt , (18)

c†a(t) = c†a(0)e−Gat −
√

GGae
−Gat

∫ t

0
dt ′am(t ′)eGat

′

− i
√

2Gae
−Gat

∫ t

0
dt ′a†

in(t ′)eGat
′
. (19)
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Alternatively, we may write Eq. (17) in a matrix form as

�̇z(t) = M�z(t) + i
√

2G�η(t), (20)

where �z(t) = (am(t),c†a(t))T , the drift matrix M is given by

M = G

(
1

√
λ

−√
λ −λ

)
(21)

and

�η(t) = (a†
in(t), −

√
λa†

in(t))T , (22)

with λ = Ga/G.
It can be seen from Eq. (21) that the determinant of

the matrix M is zero. This means that there exists a linear
combination of the operators am(t) and c

†
a(t) which is a

constant of motion.
It is clear from Eq. (17) that a linear combination

u(t) =
√

Ga

|G − Ga|am(t) +
√

G

|G − Ga|c
†
a(t) (23)

is a constant of motion, u̇(t) = 0, that u(t) does not evolve
in time, u(t) = u(0). However, there is an another linear
combination

w(t) =
√

G

|G − Ga|am(t) +
√

Ga

|G − Ga|c
†
a(t), (24)

which in the case Ga = G evolves in time. It is easily
verified that the linear combinations (23) and (24) satisfy the
fundamental commutation relations

[u,u†] = [w,w†] = 1 and [u,w†] = 0. (25)

We may call the linear combinations u(t) and w(t) as
superposition modes of the mirror and atomic modes. Since
u(t) is a constant of motion, we see that the evolution of the
mode w(t) completely determines the time evolution of the
system.

Let us find the explicit time-dependent behavior of w(t).
It is not difficult to show from Eq. (17) that the equation of
motion for w(t) depends on whether G > Ga or Ga > G. We
will consider separately these two cases. For the case G > Ga ,
we have

ẇ = (G − Ga)w + i
√

2(G − Ga)a†
in. (26)

In its time-integrated form, Eq. (26) is

w(t) = w(0)e(G−Ga )t + i
√

2(G − Ga)e(G−Ga )t

×
∫ t

0
dt ′a†

in(t ′)e−(G−Ga )t ′ . (27)

For the case Ga > G, we have

ẇ = −(Ga − G)w − i
√

2(Ga − G)a†
in, (28)

and its time-integrated form is

w(t) = w(0)e−(Ga−G)t

− i
√

2(Ga − G)e−(Ga−G)t
∫ t

0
dt ′a†

in(t ′)e(Ga−G)t ′ .

(29)

We may use Eqs. (27) and (29) to evaluate the solutions for
am(t) and ca(t). From Eqs. (23) and (24) and for G > Ga , we
have by inversion

am(t) = −
√

Ga

G − Ga

u(0) +
√

G

G − Ga

w(t),

(30)

c†a(t) =
√

G

G − Ga

u(0) −
√

Ga

G − Ga

w(t),

which shows that the time evolution of the mirror and atomic
field modes is known once w(t) has been determined from
Eq. (27).

Similarly, for Ga > G, the solutions for am(t) and ca(t) are

am(t) =
√

Ga

Ga − G
u(0) −

√
G

Ga − G
w(t),

(31)

c†a(t) = −
√

G

Ga − G
u(0) +

√
Ga

Ga − G
w(t),

where in this case w(t) is given in Eq. (29).
We see that the solutions for am(t) and ca(t) are easily

written in terms of w(t) given in Eq. (27) or (29) depending on
whether G > Ga or Ga > G. Although the solutions for w(t)
in the two cases look very similar, we will see that they lead
to quite different results for entanglement between the modes
and quantum steering.

B. Input-output relations

Having the time-dependent solutions for the field operators
of the three modes, we may now calculate relations between
the input and output amplitudes of the fields. For the cavity
field, we use the well-known input and output relation

ac
out(t) = ain(t) +

√
2κac(t), (32)

which after applying Eq. (16) becomes

ac
out(t) = −ain(t) − i

√
2Gaca(t) − i

√
2Ga†

m(t)

= −ain(t) − i
√

2|G − Ga|w†(t). (33)

Since the temporal behavior of w(t) depends on whether
G > Ga or Ga > G, we consider the input-output relations
separately for those two cases.

1. Case G > Ga

We first consider the input-output relations in the case G >

Ga . If we insert into Eq. (33) the result for the adjoint of w(t)
from Eq. (27), we obtain

ac
out(t) = −ain(t) − i

√
2(G − Ga)w†(0)e(G−Ga )t

− 2(G − Ga)e(G−Ga )t
∫ t

0
dt ′ain(t ′)e−(G−Ga )t ′ . (34)
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It is convenient to introduce a set of normalized temporal light
modes

Ain =
√

2(G − Ga)

1 − e−2(G−Ga )τ

∫ τ

0
dt ain(t)e−(G−Ga )t ,

Aout =
√

2(G − Ga)

e2(G−Ga )τ − 1

∫ τ

0
dt ac

out(t)e
(G−Ga )t ,

(35)
Bin = am(0), Bout = am(τ ), Cin = ca(0), Cout = ca(τ ),

Win = w(0), Wout = w(τ ), Uin = u(0), Uout = u(τ ).

By inserting Eqs. (30) and (34) into (35), we then can determine
how the output field of each mode, after an interaction time
τ , is related to the input fields of the modes involved. After
straightforward calculations, we find that the output fields of
the three modes are related to the input fields as

Aout = −erαAin − iα
√

e2rα − 1B†
in − iβ

√
e2rα − 1Cin,

Bout = (α2erα − β2)Bin + αβ(erα − 1)C†
in

+ iα
√

e2rα − 1A†
in,

Cout = (α2 − β2erα )Cin − αβ(erα − 1)B†
in

+ iβ
√

e2rα − 1Ain, (36)

where

α =
√

G

G − Ga

, β =
√

Ga

G − Ga

, (37)

and rα = (G − Ga)τ = Gτ/α2 is the normalized interaction
time parameter.

By further expressing the Bi and Ci modes in terms of the
superposition mode Wi [i = (out,in) stands for the output and
input modes], we then find, with the help of Eqs. (24) and (35),
that Eq. (36) becomes

Aout = −erαAin − i
√

e2rα − 1W †
in,

(38)
Wout = erαWin + i

√
e2rα − 1A†

in.

A number of interesting features follow from this equation.
(i) Equation (36) illustrates the intrinsically two-mode

behavior of our three-mode system that the cavity mode
interacts effectively with the superposition mode w rather than
with the mirror and atomic modes separately.

(ii) The system transforms input fields into the output fields
with a real amplitude erα that for G > Ga is greater than one.
Thus, the system might reasonably be called as an amplifier
with the gain factor erα . It is particularly well seen when one
calculates the average number of photons in the output modes.
By using Eq. (10) for the correlations in the input fields, we
readily find

nc(τ ) = 〈A†
outAout〉 = α2(n0 + 1)(e2rα − 1),

(39)
nw(τ ) = 〈W †

outWout〉 = α2(n0 + 1)e2rα − 1.

We see that the average number of photons in both modes
increases with r that the output fields are amplified during
the evolution process. Note the conservation of the difference
between the average number of photons in the two modes

nw(τ ) − nc(τ ) = nw(0), characteristic for parametric amplifi-
cation.

(iii) The parameter rα depends on the difference G − Ga

rather than the sum G + Ga of the coupling strengths. This is
connected with the presence of two different types of couplings
between the modes, the parametric coupling between the
cavity and the mirror modes described by G, and the beam-
splitter-type coupling between the cavity and the atomic modes
described by Ga . The parametric coupling creates squeezing
(correlations) between the mirror and cavity modes to a degree
Gτ that then with a degree Gaτ is transferred to the atomic
mode. Thus, the effective strength of the parametric interaction
between the modes is (G − Ga)τ . It is easy to understand if
one notices that the superposition mode w is a combination
of the operator’s characteristics of a two-mode squeezed state.
Noting from Eq. (37) that

α = cosh s, β = sinh s, (40)

where s = arctanh
√

Ga/G, it then follows from Eq. (24) that

w = am cosh s + c†a sinh s = S(s)amS†(s). (41)

Clearly, w is the annihilation operator of a combination of two
field modes in which the annihilation operator mirror mode is
coupled to the Hermitian conjugate of the atomic mode. Such
a combination is generated by the squeezing transformation
of the annihilation operator am with the unitary two-mode
squeeze operator

S(s) = es(amca−a
†
mc

†
a ). (42)

Evidently, the superposition (41) results from a two-mode
squeezing transformation with the two-mode squeezing pa-
rameter s.

(iv) The appearance of the two-mode squeezed state (41) is
a surprising result since according to Eq. (15), the mirror and
the atoms are not coupled through a parametric process. This
type of coupling is created dynamically by the fast-decaying
cavity mode. The parametric coupling between the cavity and
the mirror creates a two-mode squeezed state between am

and ac modes. Due to the fast damping of the cavity mode,
the beam-splitter-type coupling between ac and ca swaps the
cavity mode with the atomic mode to form the superposition
mode w.

(v) Equation (40) shows that the ratio Ga/G determines
the degree of squeezing (correlation) between the mirror
and the atoms. When Ga → G, the squeezing parameter
s → ∞, and then the modes am and ca , which form the
combination w, become themselves maximally squeezed or,
equivalently, maximally entangled. Simultaneously, when s

increases, the squeezing parameter rα decreases, indicating
that the squeezing processes determined by the parameters
s and rα exclude each other. The simplest way to identify
the competition between these two squeezing processes is to
test the Cauchy-Schwarz inequality. Two modes are said to
be squeezed if the Cauchy-Schwarz inequality is violated.
It is well known that in the case of a Gaussian state, the
Cauchy-Schwarz inequality is violated when the anomalous
cross-correlation function

η = |〈Aout(τ )Wout(τ )〉|2
nc(τ )nw(τ )

(43)
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is larger than one. Using Eqs. (36) and (39), we find

η = (n0 + 1)e2rα cosh2s

(n0 + 1)e2rα cosh2s − 1
. (44)

Evidently, η > 1 for any rα and s except for s → ∞, at which
η approaches no squeezing limit (η = 1) irrespective of rα .
Viewed as a function of s, the cross-correlation function η is
largest for s = 0 and decreases with an increasing s. From this
it follows that the modes ac and w can be squeezed as long
as s < ∞ and the squeezing vanishes in the limit of s → ∞.
On the other hand, at s → ∞, the modes am and ca , which
form the combination w, are themselves maximally squeezed.
Hence, in our three-mode system with G > Ga , squeezing can
occur between the cavity mode and the combination w of the
modes am and ca if those modes are not themselves maximally
squeezed. We shall return to this problem in more details in
Secs. III and IV, where we examine entanglement and quantum
steering between different combinations of the modes.

2. Case Ga > G

A calculation similar to that of the case G > Ga can be
applied to find the input-output relations for the case Ga > G.
As in the previous case, we determine the time evolution of
the field operators in terms of w(t), which in the present case
is given by Eq. (29). First, we evaluate the output cavity field
from the expression (33) and by using Eq. (29), we find

ac
out(t) = −ain(t) − i

√
2(Ga − G)w†(0)e−(Ga−G)t

+ 2(Ga − G)e−(Ga−G)t
∫ t

0
dt ′ain(t ′)e(Ga−G)t ′ . (45)

In analogy to the previous case, we define a set of the
normalized modes

Ain =
√

2(Ga − G)

e2(Ga−G)τ − 1

∫ τ

0
dt ain(t)e(Ga−G)t ,

Aout =
√

2(Ga − G)

1 − e−2(Ga−G)τ

∫ τ

0
dt ac

out(t)e
−(Ga−G)t ,

(46)
Bin = am(0), Bout = am(τ ), Cin = ca(0), Cout = ca(τ ),

Win = w(0), Wout = w(τ ), Uin = u(0), Uout = u(τ ),

and find that the output fields of the individual modes can be
expressed in terms of the input fields as

Aout = −e−r ′
β Ain − iβ ′

√
1 − e−2r ′

β B†
in − iα′

√
1 − e−2r ′

β Cin,

Bout = (α′2 − β ′2e−r ′
β )Bin + α′β ′(1 − e−r ′

β )C†
in

+ iβ ′
√

1 − e−2r ′
β A†

in, (47)

Cout = (α′2e−r ′
β − β ′2)Cin − α′β ′(1 − e−r ′

β )B†
in

+ iα′
√

1 − e−2r ′
β Ain,

where

α′ =
√

Ga

Ga − G
, β ′ =

√
G

Ga − G
, (48)

and r ′
β = Gτ/β ′2 = r/β ′2.

By introducing the superposition mode Wi, the input-output
relations (47) simplify to

Aout = −e−r ′
β Ain − i

√
1 − e−2r ′

β W †
in,

(49)

Wout = e−r ′
β Win − i

√
1 − e−2r ′

β A†
in.

We see that similar to the G > Ga case, the system effectively
behaves as a two-mode system. However, there are two
important differences from the G > Ga case.

(i) The system transforms input fields into the output fields
with an amplitude which falls off exponentially with the
parameter r ′

β . Therefore, for Ga > G, the system behaves like
an attenuator. This can be seen by considering the average
number of photons in the output modes. With the help of
Eq. (10), the average numbers of photons in the modes
evaluated from Eq. (49) are

nc(τ ) = β ′2(n0 + 1)(1 − e−2r ′
β ),

(50)
nw(τ ) = β ′2(n0 + 1)e−2r ′

β + 1.

Unlike the G > Ga case, the number of photons in the
cavity mode increases with an increasing r ′

β in expense of
a decreasing number of photons in the modes w and saturates
at nc(∞) = β ′2 (n0 + 1). Note the conservation of the sum of
the number of photons nc(τ ) + nw(τ ) = nw(0). This implies
that, in the present case, the effective coupling between the
modes is of the form of beam-splitter process.

(ii) A consequence of the beam-splitter coupling between
the modes is no squeezing between the ac and w modes. It
is easy to show. When Eqs. (49) and (50) are applied into
Eq. (43), we find that

η = β ′2(n0 + 1)e−2r ′
β

β ′2(n0 + 1)e−2r ′
β + 1

. (51)

This shows that always η < 1. It then follows that the Cauchy-
Schwarz inequality can not be violated and, consequently, no
squeezing between the modes. However, it does not mean
that squeezing or, equivalently, entanglement can not occur
between combinations of other modes of the system. We shall
examine the possibility for entanglement between different
combinations of the modes in Sec. III.

C. Quadrature components

The information about entanglement between modes is
obtained by studying the variances of the quadrature com-
ponents of the fields and their linear combinations. To do that,
we introduce the standard definitions of the in-phase X and
out-of-phase P quadrature components

Xi
A = 1√

2
[Ai + (Ai)†], P i

A = 1√
2i

[Ai − (Ai)†], (52)

where A denotes the annihilation operator of a particular field
mode, A = (ac,am,ca), and “i′′ stands for the output and input
modes [i = (out,in)].

The general expressions for the relations between the
quadratures of the input and output fields are quite lengthy, and
are listed in the Appendix. We proceed here with the relations
between the quadrature components of the cavity mode and
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the superposition modes w and u, which are convenient to
study the variances of the quadrature components and their
properties.

In the case with G > Ga , we introduce quadrature com-
ponents for the input and output fields of the superposition
modes

Xi
w = αXi

m + βXi
c, P i

w = αP i
m − βP i

c,
(53)

Xi
u = βXi

m + αXi
c, P i

u = βP i
m − αP i

c,

and find that the output-input relations [Eqs. (A1) and (A2)]
simplify to

Xout
a = −erαXin

a −
√

e2rα − 1P in
w ,

Xout
w = erαXin

w +
√

e2rα − 1P in
a , (54)

Xout
u = Xin

u

and

P out
a = −erαP in

a −
√

e2rα − 1Xin
w,

P out
w = erαP in

w +
√

e2rα − 1Xin
a , (55)

P out
u = P in

u .

Similarly, in the case with Ga > G, by introducing quadra-
ture components

Xi
w′ = β ′Xi

m + α′Xi
c, P i

w′ = β ′P i
m − α′P i

c,
(56)

Xi
u′ = α′Xi

m + β ′Xi
c, P i

u′ = α′P i
m − β ′P i

c,

we find from Eqs. (A3) and (A4) that

Xout
a = −e−r ′

β Xin
a −

√
1 − e−2r ′

β P in
w′ ,

Xout
w′ = e−r ′

β Xin
w′ −

√
1 − e−2r ′

β P in
a , (57)

Xout
u′ = Xin

u′

and

P out
a = −e−r ′

β P in
a −

√
1 − e−2r ′

β Xin
w′ ,

P out
w′ = e−r ′

β P in
w′ −

√
1 − e−2r ′

β Xin
a , (58)

P out
u′ = P in

u′ .

Note that the Xout quadrature component of a given output
field depends on the P in component of the other input field, and
vice versa, P out component of a given output field depends on
the Xin component of the other field. This clearly indicates the
possibility for entanglement in the X − P combination of the
modes ac and w. Generally speaking, there are three different
types of possible combinations of the modes X − X, X −
P , and P − P , which can be considered when searching for
entanglement between the modes.

D. Large squeezing regime rα,r ′
β � 1

Before moving on to consideration of the variances of the
quadrature components, it is worthwhile to look at properties of
the quadratures in the limit of a large squeezing rα,r ′

β → ∞.
As we have already mentioned, the presence of the X − P

type coupling between the quadratures suggests a possibility
for EPR correlations between the ac and w modes. It can be
seen when one takes the limit of a large squeezing rα → ∞.
In the amplification regime G > Ga , by taking rα → ∞ in
Eqs. (54) and (55), and comparing the resulting expressions
for Xout

a and P out
w , we find

Xout
a = −P out

w . (59)

This demonstrates the possibility of a perfect EPR correlation
between the modes that independent of the state of the input
fields, the P out

w component of the mode w can be predicted
with certainty from a measurement of the Xout

a component of
the cavity field.

However, if we consider relations between quadrature
components of the three output fields of the system, we find

Xout
a = − 1

β
P out

c , P out
a = 1

β
Xout

c ,

Xout
a = − 1

α
P out

m , P out
a = − 1

α
Xout

m , (60)

Xout
c = −β

α
Xout

m , P out
c = β

α
P out

m .

This shows that as long as the three modes are involved (α >

1, β = 0), only imperfect EPR correlations can be created
between the output modes at rα → ∞. In other words, from
a measurement of one of the quadratures, for example, Xout

a ,
we can infer only a partial information about the quadratures
P out

c and P out
m . This is because the mirror and the atoms are

coupled to the cavity mode with unequal strengths G and Ga ,
respectively. In physical terms, the unequal coupling results in
a partial distinguishability of the modes. It is interesting that
even if there are imperfect EPR correlations between any pair
of the individual modes, there exists the linear combination w

of the mirror and atomic modes which exhibits a perfect EPR
correlation with the cavity mode.

The situation differs in the case of attenuation Ga > G. In
this case, by taking the limit r ′

β → ∞ in Eqs. (57) and (58),
one finds

Xout
a = −P in

w′ , Xout
w′ = P in

a ,
(61)

P out
a = −Xin

w′ , P out
w′ = −Xin

a .

We see that, in this case, a state transfer or, equivalently, state
swapping effect occurs between the input and output modes
rather than the creation of entanglement between the output
modes. The in-phase (out-of-phase) quadrature component of a
given input field is transferred into the out-of-phase (in-phase)
component of the output field of the other mode. Thus, in
the limit of r ′

β → ∞, no entanglement is created between the
modes ac and w. Nevertheless, we will demonstrate that it is
still possible to create EPR-type correlations between some
combinations of the modes.

III. BIPARTITE ENTANGLEMENT

Our interest is in the creation of entanglement, in particular,
perfect EPR-entangled states between the modes of the three-
mode optomechanical system. The entanglement is associated
with correlations between the modes which are reflected
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in the variances in linear combinations of the quadrature
components of the modes. To quantify entanglement, we use
the DGCZ criterion [29] and asymmetric criterion [27,30,31]
for the variances of symmetric and asymmetric combinations
of the quadrature components of the field modes. We consider
different combinations X − X, X − P , and P − P of the in-
phase and out-of-phase quadrature components of the modes.

A. Symmetric entanglement criteria

Let us first consider the DGCZ inseparability criterion
for the symmetric X − P combinations of the quadrature
components of the output fields. This is quantified with the
inseparability parameter

�i,j = [
�

(
Xout

i ± P out
j

)]2 + [
�

(
P out

i ± Xout
j

)]2
, (62)

where i,j = a,m,c,w, and j = i. Two modes i and j are said
to be entangled iff �i,j < 2.

For the input fields, we assume that the cavity and atomic
modes are in the ordinary vacuum state whereas the mirror
field mode is in a thermal state with occupation number n0.
Then, the variances of the input fields in the modes w and u

are (
�Xin

w

)2 = (
�P in

w

)2 = α2

(
n0 + 1

2

)
+ 1

2
β2,

(63)(
�Xin

u

)2 = (
�P in

u

)2 = β2

(
n0 + 1

2

)
+ 1

2
α2.

We focus first on the case G > Ga and calculate all the
possible two-mode variances �i,j . When Eqs. (53) and (54)
are used in Eq. (62), we readily find the general expressions
for the inseparability parameter �i,j of the symmetric X − P

combinations

�a,c = 2 + 2α2(n0 + 1)[e2rα − 1 + β2(erα − 1)2],

�m,c = 2(n0 + 1)[(α2erα − β2)2 + α2β2(erα − 1)2], (64)

�a,m = 2(n0 + 1)[α(αerα −
√

e2rα − 1) − β2]2.

Had we considered only the mirror coupled to the cavity
mode (α = 1, β = 0), the parameter �a,m would have been

�a,m = 2(n0 + 1)(er −
√

e2r − 1)2, (65)

with r = Gτ , which is the result of Hofer et al. [26], who
considered EPR entanglement in a two-mode optomechanical
system.

It is easily verified from Eq. (64) that among the three
parameters determining bipartite correlations between the
modes, only �a,m can be reduced below the separability level
2. At τ = 0 (rα = 0), the modes are separable and immediately
afterwards, �a,c and �m,c begin to increase whereas �a,m

decreases below 2. This is shown in Fig. 2, where we plot
�a,m as a function of r for several different values of α. For
α = 1, the parameter �a,m decreases with an increasing r

and at r → ∞, �a,m → 0 indicating that the state of the two
modes becomes a perfect EPR state. However, as the coupling
α increases, �a,m rapidly increases at large r and becomes
greater than 2. Thus, for α > 1 entanglement occurs in a
restricted range of r that only at small r the entanglement
survives. Hence, for α > 1 the state is not a perfect EPR state.

FIG. 2. (Color online) Variation of the inseparability parameter
�a,m with r = Gτ for n0 = 0 and several different values of α: α = 1
(solid black line), α = 2 (dashed blue line), α = 10 (dotted-dashed
green line).

Although the perfect EPR state between the modes ac and
am disappears when α > 1, it must not be thought that then
there is no possibility to create a perfect EPR state in the
system. When α > 1, the perfect EPR state is still there, but it
is between the cavity mode ac and the superposition mode w.
When we calculate the parameter �a,w, we find

�a,w = 2α2(n0 + 1)(erα −
√

e2rα − 1)2. (66)

Apart from the appearance of the factor α2, Eq. (66) is formally
identical with the result given in Eq. (65) for the two-mode
optomechanical system. The system evidently tends to behave
as a two-mode system. Therefore, �a,w too gets reduced below
2 and tends to zero when r → ∞. Thus, a perfect EPR state
can be created in the system even if α > 1. Since α � 1, it
is clear that the entanglement between ac and w occurs in a
more restricted range of r than that predicted for the two-mode
optomechanical system. In the presence of the thermal noise
(n0 = 0), the entanglement occurs in a more restricted area
and its magnitude also drops further. It is worth noting that the
effect of the thermal noise on the parameters �i,j is merely to
increase their magnitudes by a factor (n0 + 1).

To illustrate the behavior discussed above, we show in Fig. 3
the parameter �a,w as a function of r for several different
values of n0 and α. For n0 = 0 and α = 1, entanglement is
seen to occur over the entire range of r and the created state
approaches an EPR state �a,w → 0 as r → ∞. For n0 > 0,
entanglement occurs in the reduced range of r:

r > r0 = α2 ln
α2(n0 + 1) + 1

2α
√

n0 + 1
. (67)

It then follows from r = Gτ that �a,w < 2 everywhere except
during the short interaction time. Thus, we see that the
principal effect of thermal photons and the addition of the
third mode is to add the initial noise which delays the creation
of entanglement to longer interaction times. Comparing the
behavior of �a,w with �a,m, we may conclude that with an
increasing α, the entanglement between the modes ac and am

is transferred to the modes ac and w. This conclusion is entirely
consistent with the conclusions reached earlier in Sec. II D that
for α > 1, perfect EPR correlations are created only between
the cavity mode ac and the superposition mode w.
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FIG. 3. (Color online) Variation of the parameter �a,w with r =
Gτ for several different values of n0 and α. Lower solid black line for
n0 = 0, α = 1. Lower dashed black line for n0 = 5, α = 1. Upper
solid blue line for n0 = 0, α = 1.5. Upper dashed blue line for n0 =
5, α = 1.5. Dotted line indicates position of �a,w = 2, the threshold
for entanglement.

Turning now to the case Ga > G, we find with the help of
the output-input relations (56)–(58) that

�a,c = 2 + 2β ′2(n0 + 1)[1 − e−2r ′
β + α′2(1 − e−r ′

β )2],

�m,c = 2(n0 + 1)[(α′2 − β ′2e−r ′
β )2 + α′2β ′2(1 − e−r ′

β )2],

�a,m = 2(n0 + 1)[α′2 − β ′(β ′e−r ′
β +

√
1 − e−2r ′

β )]2, (68)

and

�a,w = 2 + 2β ′2(n0 + 1)(e−r ′
β +

√
1 − e−2r ′

β )2. (69)

Equations (68) and (69) are markedly different from
Eqs. (64) and (65), their counterparts for the case G > Ga .
First of all, �a,w is always greater than 2, and among the other
parameters only �a,m can be reduced below 2. Consequently,
entanglement can be created only between the cavity mode and
the mirror. This indicates that in contrast to the case G > Ga ,
the cavity mode entangles with the mirror alone rather than
with the mode w which is the superposition of the mirror and
atomic modes.

The behavior of �a,m given by Eq. (68) is illustrated in
Fig. 4 for n0 = 0 and for several different values of α′. For α′ <

FIG. 4. (Color online) Variation of the parameter �a,m with r =
Gτ for the case Ga > G, n0 = 0, and several values of α′: α′ = 1.2
(solid black line), α′ = 1.5 (dashed blue line), α′ = 5 (dotted-dashed
green line).

√
2, which corresponds to G < Ga/2, entanglement is seen to

occur over the entire range of r . For α′ >
√

2, entanglement
occurs only in the restricted range of r , but it is accompanied by
an enhancement in the degree of entanglement. It is interesting
that the smaller parametric coupling strength G produces
entanglement at larger range of r than the larger G does. It
turns out that the smallest value of �a,m, corresponding to
optimum entanglement, is achieved when α′ � 1, in which
case �a.m = 1

2 . Hence, we may speak of 75% entanglement.
It follows that the entanglement is not perfect, so that the state
corresponding to the maximum entanglement is not an EPR
state.

We have already noticed an important difference between
the two cases G > Ga and Ga > G that in the case with
Ga > G there is no entanglement between the cavity mode
and the superposition mode w. This conclusion is evident from
Eq. (69), which clearly shows that �a,w can not be reduced
below 2. This could suggest that in the case with Ga > G,
the beam-splitter-type coupling between the cavity mode and
the atoms destroys the entanglement already created between
the cavity mode and the mirror. In fact, the entanglement is not
destroyed, it is still there but occurs between the mirror and the
atoms. To see this, we evaluate the separability criterion for the
Xout

m + Xout
c and P out

m − P out
c combinations of the quadrature

components

ϒm,c = [
�

(
Xout

m + Xout
c

)]2 + [
�

(
P out

m − P out
c

)]2
. (70)

The reason we evaluate variances of the X − X and P − P

combinations rather than that for X − P combinations is in
the relation between the input-output quadrature components
of the mirror and atomic fields. According to Eqs. (A3) and
(A4), the in-phase quadrature components of the am and ac

modes are coupled to the in-phase quadrature components of
the input fields. The same property is seen for the out-of-phase
quadrature components. Thus, using Eqs. (A3) and (A4) in
Eq. (70), we readily find

ϒm,c = 2(n0 + 1)

[
1 − β ′(1 − e−r ′

β )

α′ + β ′

]2

. (71)

It is clear from Eq. (71) that ϒm,c can be reduced below 2, but
only if r ′

β and β ′ are both different from zero. Since β ′ = 0
when G = 0, it follows that the presence of the parametric
coupling between the mirror and the cavity mode is necessary
for entanglement between the mirror and the atoms. We may
find the minimum value of ϒm,c. In the limit of r → ∞, the
parameter ϒm,c reduces to

ϒm,c = 2 (n0 + 1)

[
α′

α′ + β ′

]2

. (72)

The minimum value of ϒm,c, corresponding to maximum
entanglement between the mirror and the atoms, is reached
when α′,β ′ � 1, in which case ϒm,c = (n0 + 1)/2. It follows
that the maximum 75% entanglement can be achieved when
n0 = 0.

The above considerations are illustrated in Fig. 5, which
shows ϒm,c as a function of r = Gτ for different values of
α′. When α′ = 1, corresponding to G = 0, the entanglement
is seen to occur over the entire range of r . It is apparent that
the entanglement increases with an increasing r and that when
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FIG. 5. (Color online) Variation of the parameter ϒm,c with r =
Gτ for the case Ga > G, n0 = 0, and several values of α′: α′ = 1
(solid black line), α′ = 5 (dashed blue line), α′ = 10 (dotted-dashed
green line).

α′ � 1, the optimum entanglement of ϒm,c = 1
2 is achieved at

r → ∞.

B. Asymmetric entanglement criteria

A close look at the output-input relations between the
quadrature components (A1)–(A4) in the Appendix reveals
that symmetric combinations of the output fields are accom-
panied by asymmetric rather than symmetric combinations
of the input fields. These asymmetries arise not only from a
difference between the coupling strengths G and Ga but also
from the presence of the thermal noise only at the mirror. This
suggests that symmetric combinations of the output fields may
not be able to detect the presence of an entanglement between
modes that might be present in an asymmetric combination.
For this reason, we now consider the criterion for asymmetric
combinations of the quadrature components [27], in particular,
to see if we can find an entanglement between the mirror and
the atoms which, as we have seen in Eq. (15), are not directly
coupled to each other.

The inseparability criterion for asymmetric X − P combi-
nations of the quadrature components of the output modes i

and j is confirmed when[
�
(
Xout

i + gP out
j

)]2 + [
�

(
P out

i + gXout
j

)]2
< 1 + g2, (73)

where g is a weight factor which is chosen to minimize the
variances. The value of g which minimizes �

g
a,m is easily found

using the variational method. By taking the derivative of �
g
a,m

over g and setting ∂�
g
a,m/∂g = 0, we arrive to a quadratic

equation for g whose roots can be expressed as

g = −b ± √
b2 − 4ac

2a
, (74)

where b = (�P out
m )2 − (�Xout

a )2 and c = −a = 〈Xout
a P out

m 〉.
We then choose the root which minimizes �

g
a,m.

A close look at Eqs. (A1)–(A4) in the Appendix reveals
the following properties of the cross correlations between the
modes〈
Xout

a P out
c

〉 = 〈
P out

c Xout
a

〉 = −〈
P out

a Xout
c

〉 = −〈
Xout

c P out
c

〉
,

(75)〈
Xout

m P out
c

〉 = 〈
P out

c Xout
m

〉 = 〈
P out

m Xout
c

〉 = 〈
Xout

c P out
m

〉 = 0.

Then, it is easily verified that the left side of the inequality (73)
for the combinations of the modes a − c and m − c becomes(

�Xout
a,m

)2 + (
�P out

a,m

)2 + g2
[(

�Xout
c

)2 + (
�P out

c

)2]
, (76)

which is always greater than the right side 1 + g2.
Entanglement is possibly the asymmetric X − P combi-

nation of the quadrature components of the modes a and m.
Further, using the argument that the output quadrature Xout

m is
related to the input quadrature Xin

c and vice versa, the output
quadrature Xout

c is related to the input quadrature Xin
m , we will

also consider the criterion involving the X − X asymmetric
combination

ϒg
m,c =

[
�

(
Xout

m + gXout
c

)]2 + [
�

(
P out

m − gP out
c

)]2

1 + g2
. (77)

The expressions for the inseparability parameters of the
asymmetric combinations of the quadratures (73) are con-
siderably more complex than that for the symmetric case
and therefore we present them only graphically. Some results
for the cases G > Ga and Ga > G, and for certain combina-
tions of the parameters α and α′, are represented in Figs. 6(a)
and 6(b).

Figure 6(a) shows the separability parameters �
g
a,m and

ϒ
g
m,c for the amplification case G > Ga and different numbers

a, m
g

m, c
g

�b�

0 2 4 6 8
0.0

0.2
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0.6
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r GΤ

a, m
g

m, c
g

�a�

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

r GΤ

FIG. 6. (Color online) The separability parameters for the asym-
metric combinations of the quadrature components are shown as a
function of r = Gτ for the case G > Ga with α = 2 (a) and for the
case Ga > G with α′ = 2 (b). Black solid and black dotted-dashed
lines represent �g

a,m respectively for n0 = 100 and n0 = 0; while red
dashed and red dotted lines represent ϒg

m,c respectively for n0 = 100
and n0 = 0.
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of the thermal photons n0. Entanglement between the mirror
and the atoms as well as between the mirror and the cavity
mode is seen to occur over the entire range of r . At small r ,
both �

g
a,m and ϒ

g
m,c rapidly decrease with an increasing r , but

at larger r the reduction of ϒ
g
m,c is accompanied by a steady

increase of �
g
a,m. This clearly demonstrates the transfer of

bipartite entanglement from the pair of modes (ac,am) to the
pair (am,ca). Note that in the limit of r → ∞ and α → ∞,
corresponding to Ga ≈ G, the parameter ϒ

g
m,c tends to zero.

This indicates that in this limit, the entangled state between
the mirror and the atoms becomes a perfect EPR state. These
results are in contrast to the symmetric case in which there is
no entanglement between the mirror and the atoms, and the
entanglement between the mirror and the cavity mode was
restricted to small r .

In addition to the features mentioned above, one may note
that the separability parameters are almost insensitive to n0

and the sensitivity becomes increasingly unimportant as r

increases. This feature is also distinctly different from that
seen for the symmetric criteria, in which the magnitudes of
�

g
a,m, ϒ

g
m,c are enhanced by n0 independent of r . Moreover,

the minimum value r0 required for entanglement detection via
the asymmetric criteria is not limited by n0, but in practice will
depend on the accuracy achieved for selecting the gain factors,
which become large, for the smaller r values in the high-n0

limit.
Figure 6(b) shows the corresponding situation for the case

Ga > G. We see that similar to the case G > Ga , entanglement
between the mirror and the atoms as well as between the mirror
and the cavity mode is seen to occur over the entire range
of r . In the limits of r → ∞ and α′ → ∞, the entangled
state between the mirror and the atoms becomes a perfect
EPR state. We should mention that the results presented in
Fig. 6(b) are essentially the same as that presented in Fig. 6(a)
for the case G > Ga . We therefore conclude that in both cases,
the asymmetric criteria predict essentially the same features
for entanglement. It then follows that the symmetric criteria
can not properly distinguish the bipartite entanglement in the
system. Despite this, the criteria clearly demonstrate the role
of the parametric coupling between the cavity mode and the
mirror in the creation of bipartite entanglement between any
other pair of the modes.

IV. TRIPARTITE ENTANGLEMENT

In the previous section, we have considered bipartite
entanglement between the modes. However, the simultane-
ous coupling of all three modes can result in a tripartite
entanglement. In this section, we discuss how such tripartite
entanglement may be generated in our three-mode system. To
see if a tripartite entanglement exists in the system, we shall
consider criteria involving variances of the sums of suitably
chosen combinations of the quadrature operators of the three
modes. We shall make use of the relations between the input
and output fields given in Eqs. (A1)–(A4), and again we discuss
the cases G > Ga and Ga > G separately.

In order to distinguish tripartite entanglement, we adopt
the full inseparability criterion of three modes. Within this
criterion, there is to be found two forms which involve either
sums or products of the variances of linear combinations of the

quadrature operators. We shall also consider a generalization
of the full inseparability criterion to a criterion for genuine
tripartite entanglement.

It may readily be shown using Eqs. (A1)–(A4) that the
criterion for full inseparability of our three modes requires
that any two of the following three inequalities are violated
[32,36,37]:

[�(Xa + Pm)]2 + [�(Pa + Xm + gcXc)]2 � 2,

[�(Xa + Pc)]2 + [�(Pa + Xc + gmXm)]2 � 2, (78)

[�(Xm + Xc)]2 + [�(Pm − Pc + gaXa)]2 � 2,

in order for the three modes to exhibit fully inseparable
tripartite entanglement. In Eq. (78), gk (k = a,m,c) are weight
factors which can be chosen to ensure minimal values of the
variances. It should be noted that a violation of only one of the
inequalities (78) signals the existence of some entanglement,
but is not sufficient for full inseparability.

Alternatively, one could set up a criterion involving prod-
ucts of the variances instead of the sums as the set of the
inequalities (78) can be written in a form of uncertainty
principle [33]

�am = �(Xa + Pm)�(Pa + Xm + gcXc) � 1,

�ac = �(Xa + Pc)�(Pa + Xc + gmXm) � 1, (79)

�mc = �(Xm + Xc)�(Pm − Pc + gaXa) � 1.

Each of the parameters �ij is evaluated with the help of the
output-input relations given by Eqs. (A1)–(A4). The criterion
(79) is stronger than (78) since, if it holds, the criterion (78) will
also hold. Similar as for the criterion (78), violation of only one
of the inequalities signals the existence of some entanglement.
Violation of any two of the inequalities demonstrates that the
state is fully inseparable.

The criterion for full inseparability can be generalized
to that for the existence of genuine tripartite entanglement
[33,34,38] by the requirement that

�sum =
∑

�ij < 2, (80)

where the sum is over all the parameters �ij . Other witnesses
of genuine tripartite entanglement have also been generalized
by testing only one inequality but with fixed gains [32,34,37].
Here, we focus on the inequality (79) and then inequality (80)
to see whether these three modes are partially inseparable,
fully inseparable, or genuinely entangled.

The variation of the parameters �ij with r for the case G >

Ga is shown in Fig. 7, where frame (a) is for symmetric while
frame (b) is for asymmetric combinations of the quadrature
components. Also shown is �sum. We observe that in both
cases, there is a range of r at which two parameters of �am,
�ac, and �mc are simultaneously less than 1. This means that
fully inseparable tripartite entanglement can be realized in the
system. Moreover, the sum �sum is seen to be less than 2 in
some range of r indicating that genuine tripartite entanglement
is realized. With the minimized variances, shown in Fig. 7(b),
the fully inseparable and genuine tripartite entanglements
occur over a larger range of r than in the symmetric case.

The lack of the genuine tripartite entanglement at large r

can be regarded to the fact that in the case G > Ga , there is a
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(a)

(b)

FIG. 7. (Color online) Variation of the parameters �ij and �sum

with r = Gτ is shown for the case G > Ga with n0 = 0, α = 2 for
(a) symmetric combinations of the quadrature operators (ga = gm =
gc = 1), (b) asymmetric combinations of the quadrature operators
with optimal weight factors. The dashed line shows �am (black), �ac

(blue), and �mc (red). The solid green line shows �sum.

strong tendency of the system to behave as a two-mode rather
than a three-mode system. We have seen in Sec. III A that
for symmetric combinations of the quadrature operators, a
large bipartite entanglement occurs only between the cavity
and the superposition w modes (see Fig. 3). The similar
situation was seen for antisymmetric combinations of the
quadrature operators, illustrated in Figs. 6 and 7, where a large
bipartite entanglement was seen only between the mirror and
atomic modes at large r . Thus, we may conclude that tripartite
entanglement is ruled out at the cases where a large bipartite
entanglement is present.

Figure 8 shows the same situation as in Fig. 7 but for Ga >

G. We see that in the symmetric case, there is not a significant
difference between the cases G > Ga and Ga > G. However,
for the asymmetric case, the genuine tripartite entanglement is
present over all values of r .

The explanation again follows from the observation that
the presence of a tripartite entanglement is accompanied by
a smaller bipartite entanglement. In Sec. III B, we saw that
in the case with Ga > G there is no entanglement between
the cavity mode and the superposition mode w. Thus, the
entangled behaviors of the system do not tend to that of a two-
mode system. The fluctuations are redistributed more evenly
between the other three pairs of modes. This resulted in a
smaller bipartite entanglement.

We may conclude that the two cases of G > Ga and
Ga > G lead to quite different results not only for the

(a)

(b)

FIG. 8. (Color online) Same as in Fig. 7 but for the case Ga > G

with n0 = 0, α′ = 2.

bipartite, but also for tripartite entanglement. It is interesting
to note from Figs. 7 and 8 that the variation of the genuine
tripartite entanglement with r follows the variation of �a,m.
This suggests that the presence of an entanglement between
the mirror and the cavity mode is crucial for the genuine
entanglement between the modes.

V. QUANTUM STEERING

We have seen in Sec. III that in the case with G > Ga ,
a bipartite entanglement created between the mirror and the
cavity mode was then transferred to a pair of modes composed
of the superposition mode w and the cavity mode. However,
for the case with Ga > G, the entanglement was found to
be transferred to a different pair of modes composed of the
mirror and the atomic modes. It suggests that a kind of steering
behavior exists in the system that, depending on whether
G > Ga or Ga > G, the entanglement can be transferred into
different pairs of the modes. For this reason, we consider in
this section the effect of quantum steering that provides the
information as to how a given mode steers the other modes to
be entangled. In particular, is the steering directional? Also,
is it one-way or two-way steering? Moreover, is the steering
monogamic that if the mode A steers B then can a mode C

also steer B?
In order to develop our discussion to the problem of

quantum steering, we introduce the steering parameter defined
as [39–41]

EB|A = �inf,AXB�inf,APB, (81)
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where �inf,AXB ≡ �(XB |OA) and �inf,APB ≡ �
(
PB |O ′

A

)
are the variances of the conditional distributions P (XB |OA)
and P (PB |O ′

A), in which OA, O ′
A are arbitrary observables

of the system A, usually selected to minimize the variance
product [41,42]. Quantum steering exists if

EB|A <
1

2
. (82)

Note the inherent asymmetry of the steering parameter (81)
that EB|A < 1

2 does not necessary mean that EA|B < 1
2 . We

shall refer to the situation of EB|A < 1
2 and EA|B > 1

2 as the
one-way steering, and for EB|A < 1

2 and EA|B < 1
2 as a two-

way steering. The asymmetry reflects the asymmetric nature
of the original EPR paradox, in which it is the reduced noise
levels of Alice’s predictions for Bob’s system that are relevant
in establishing the paradox [43,44].

To see the quantum steering existing between the modes
of our optomechanical system we examine the conditional
probabilities of the output modes

�inf

(
Xout

i

∣∣Oout
j

) = �
(
Xout

i + gjO
out
j

)
, (83)

where the quadrature Oj is selected either Oj ≡ Xj or Oj ≡
Pj , depending on the type of the correlations between the
modes i and j . The variances are minimized with the choice
of the weight factor

gj = −
(〈
Xout

i ,Oout
i

〉 + 〈
P out

i ,Oout
i

〉)
2
(
�Oout

j

)2 . (84)

In the following part, we give illustrative figures of the
behavior of the steering parameters Ej |i as a function of r

for the two cases G > Ga and Ga > G. Comparison is made
with the monogamy results and the monogamy inequalities for
tripartite quantum steering recently derived by Reid [34].

Figure 9 shows the variation of the steering parameters with
r for the case G > Ga . The figure illustrates several interesting
features, in particular, about steering monogamy and its direc-
tionality. By inspection of the figure, we note the following:

(1) Ea|c > 1
2 and Ec|a > 1

2 over the entire range of r . Thus,
neither the cavity mode steers the atomic mode nor the atomic

FIG. 9. (Color online) Variation of the steering parameters Ei|j
with r for the case G > Ga , n0 = 0, and α = 2 (Ga = 0.75G). The
solid lines show Ea|m (black), Em|c (red), and Ea|w (blue). The dashed
lines show Em|a (black), Ec|m (red), and Ew|a (blue).

mode steers the cavity mode. It is easy to understand owing to
the beam-splitter-type coupling between the modes.

(2) Ea|w < 1
2 over the entire range of r while Ew|a < 1

2
only for r greater than some minimum value r0. This means
that the mode w always steers the cavity mode, but the cavity
mode steers w in a limited range for r . This also means that
at r � r0, one-way steering occurs between the modes, and it
turns into a two-way steering at r > r0. This is in agreement
with the result found for quantum steering in a two-mode
optomechanical system [27].

(3) The cavity and the mirror modes exhibit a quite
different steering behavior that Ea|m < 1

2 and Em|a < 1
2 over

a wide range of r , but the Em|a steering ceases at a large r . It
is interested that the behavior of Ea|m and Em|a is not linked
to the behavior of Ea|w and Ew|a but rather to the behavior of
Em|c and Ec|m. It is clearly seen from Fig. 9 that the steering
Em|c emerges at the same value of r where the steering Em|a
ceases. This feature is consistent with the monogamy result
for quantum steering that two parties, the cavity and atomic
modes, can not steer the same system, the mirror mode.

(4) According to the monogamy results of Reid [34], two
parties can not steer the same system, but a given system can
steer two other systems. This feature is also seen in our system.
It is evident from Fig. 9 that Ea|m < 1

2 and Ec|m < 1
2 over the

entire range of r . Thus, the dual steering is realized that the
mirror steers both the cavity mode and the atomic mode. Notice
the presence of another dual steering that also Ea|m < 1

2 and
Ea|w < 1

2 over the entire range of r .
(5) The monogamy relation of preventing the passing on

of steering is also seen in the system. Namely, it is seen from
the figure that Em|a < 1

2 and Ec|m < 1
2 but Ea|c > 1

2 . In other
words, the cavity mode steers the mirror and simultaneously
the mirror steers the atomic mode, but the atomic mode does
not steer the cavity mode.

(6) A detailed inspection of the figure reveals that at small
r , both Ea|m < 1

2 and Ea|w < 1
2 . Clearly, the mirror and the

mode w simultaneously steer the cavity mode. This result
seems to contradict the monogamy relation that two parties
can not steer the same system. However, the mirror and the
superposition mode w are not separate parties. The mode w is
a linear superposition of the mirror and the atomic modes. In
other words, the mirror mode is a part of the mode w and, as
such, the modes can not be treated as separate parties.

(7) It is easily verified that the monogamy inequalities
Ea|mEa|c � E2

a|w and Ea|m + Ea|c � 2Ea|w are also satisfied.
However, the inequality Ea|m � Ea|w is violated at small r . It
is not difficult to see from Fig. 9 that for large r , Ea|m � Ea|w,
but for small r , Ea|m � Ea|w. This discrepancy could be
understood by noting that at small r the state of the system
is not in an EPR state. The inequality is satisfied at large r

where the state of the system approaches an EPR state.
Figure 10 shows the steering parameters for Ga > G. We

see that the dependence of the steering parameters on r is
strikingly similar to that shown in Fig. 9 for the case G > Ga .
Therefore, we are not going to give a detailed discussion of the
results. We just only point out that the only difference between
the two cases is that in the present case there is no steering
either between the cavity mode and the mode w or between
w and the cavity mode, i.e., Ea|w > 1

2 and Ew|a > 1
2 for the

entire range of r ′ and all the parameter’s value.
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FIG. 10. (Color online) Variation of the steering parameters Ei|j
with r for the case Ga > G, n0 = 0, and α′ = 2 (Ga = 4G/3). The
black solid line shows Ea|m, the black dashed line Em|a , the red solid
line Em|c, and the red dashed line Ec|m.

In summary of this section, we have shown that the mirror
is more capable for steering of entanglement than the cavity
mode which is driven by a pulsed laser. The two-way steering
is found between the mirror and the atomic ensemble despite
the fact that they are not directly coupled to each other. No
quantum steering between the cavity mode and the ensemble
which are directly coupled to each other. The reason is in the
beam-splitter coupling between the modes. Thus, the results
show that there must be the parametric-type coupling present
in the system, at least between two modes.

VI. CONCLUSIONS

We have examined entangled properties and quantum
steering of a three-mode optomechanical system composed of
an atomic ensemble located inside a single-mode cavity with a
movable mirror and driven by a short laser pulse. Using the lin-
earization approach, we have derived analytical expressions for
the output-input relations between the amplitudes of the fields.
We have found a threshold effect for the dynamics of the sys-
tem imposed by the ratio G/Ga of the coupling strengths of the
oscillating mirror to the cavity mode and the cavity mode to the
atoms. Above the threshold (G > Ga), the system behaves as
an amplifier, whereas below the threshold (G < Ga), the sys-
tem behaves as an attenuator of the input laser pulses. We have
shown that bipartite entanglement can be generated in both
amplification and attenuation regimes, but a perfect bipartite
EPR state can be generated only in the amplification regime.
The results show that in the amplification regime, the system
tends to behave as a two-mode system composed of the cavity
mode and a superposition of the mirror and atomic modes.

We have also considered the inseparability criteria for
tripartite entanglement and have found that not only fully
inseparable tripartite entanglement, but also genuine tripartite
entanglement, can be realized in the system. The results show
that in the amplification, the bipartite and tripartite entangle-
ments exclude each other so that a large tripartite entanglement
is predicted in the range of the parameters where the bipartite
entanglement is small or even absent. The results are different
for the attenuation where tripartite entanglement occurs in
the range of the parameters where the bipartite entanglement

exists between the mirror and the cavity mode. The concept of
quantum steering has also been investigated, in particular, the
ability of the system for the directional one-way and two-way
steering of entanglement. Moreover, the monogamy relations
and monogamy inequalities for quantum steering have been
analyzed. It has been found that the mirror is more capable for
steering of entanglement than the cavity mode. The two-way
steering is found between the mirror and the atomic ensemble
despite the fact that they are not directly coupled to each other.
The mirror can steer both the cavity mode and the atomic mode.
No quantum steering has been found between the directly
coupled cavity mode and the atomic ensemble.
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APPENDIX

In this Appendix, we give the explicit expressions for the
relations between the output and input quadrature components
of the fields. If we make use of the relations between the
annihilation operators of the input and output fields and its
Hermitian conjugate, Eq. (36) for G > Ga and Eq. (47) for
Ga > G, we then find the relations between the quadrature
components of the input and output fields.

For the case G > G0, the in-phase quadrature components
satisfy the relations

Xout
a = −erαXin

a − α
√

e2rα − 1P in
m + β

√
e2rα − 1P in

c ,

Xout
m = (α2erα − β2)Xin

m + αβ(erα − 1)Xin
c

+α
√

e2rα − 1P in
a , (A1)

Xout
c = (α2 − β2erα )Xin

c − αβ(erα − 1)Xin
m

−β
√

e2rα − 1P in
a ,

and for the out-of-phase quadratures

P out
a = −erαP in

a − α
√

e2rα − 1Xin
m − β

√
e2rα − 1Xin

c ,

P out
m = (α2erα − β2)P in

m − αβ(erα − 1)P in
c

+α
√

e2rα − 1Xin
a , (A2)

P out
c = (α2 − β2erα )P in

c + αβ(erα − 1)P in
m

+β
√

e2rα − 1Xin
a .

Similarly, for the case Ga > G, we find

Xout
a = −e−r ′

β Xin
a − β ′

√
1 − e−2r ′

β P in
m + α′

√
1 − e−2r ′

β P in
c ,

Xout
m = (α′2 − β ′2e−r ′

β )Xin
m + α′β ′(1 − e−r ′

β )Xin
c

+β ′
√

1 − e−2r ′
β P in

a ,

Xout
c = (α′2e−r ′

β − β ′2)Xin
c − α′β ′(1 − e−r ′

β )Xin
m

−α′
√

1 − e−2r ′
β P in

a (A3)
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and

P out
a = −e−r ′

β P in
a − β ′

√
1 − e−2r ′

β Xin
m − α′

√
1 − e−2r ′

β Xin
c ,

P out
m = (α′2 − β ′2e−r ′

β )P in
m − α′β ′(1 − e−r ′

β )P in
c

+β ′√1 − e−2rXin
a ,

P out
c = (α′2e−r ′

β − β ′2)P in
c + α′β ′(1 − e−r ′

β )P in
m

+α′
√

1 − e−2r ′
β Xin

a . (A4)
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