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Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation
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Communication in quantum wireless multihop networks is useful in global quantum networks. We propose a
scheme for faithful quantum communication in quantum wireless multihop networks, by performing quantum
teleportation between two distant nodes which do not initially share entanglement with each other. The required
entanglement among intermediate nodes is established through entanglement swapping based on arbitrary types
of Bell pairs. All the measurement outcomes and the types of Bell pairs are sent to the destination node
independently. The initial quantum state can be finally recovered by corresponding local operations. Our scheme
can reduce end-to-end communication delay by using simultaneous measurements in contrast to the scheme
based on sequential entanglement swapping.
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I. INTRODUCTION

Quantum physics provides completely new methods to
create, transmit, manipulate, and store information. Hence in
recent years a great interest has been aroused in quantum
information science, such as quantum communication [1]
and quantum computation [2]. Quantum communication is
necessary for any future quantum networks, such as quantum
Internet [3,4] and quantum wireless networks [5–7], irre-
spective of whether such communication is over distances of
centimeters or thousands of kilometers [8–10].

Quantum teleportation [11] is usually utilized to achieve
quantum communication. It employs a special form of bipartite
maximally entangled state known as the Bell pair, where two
physically separated quantum systems, such as electrons or
photons, share a nonlocal correlation that Einstein famously
referred as “spooky action at a distance” [12]. Although
long-distance quantum teleportation has been realized in
experiment [13–15] since the first experimental realization
in 1997 [16], the point-to-point communication distance is
limited due to losses in quantum channels. This limitation
can be overcome by entanglement swapping [17,18], which
aims to establish entanglement between two distant nodes via
intermediate nodes. Entanglement swapping is of practical
importance in quantum networks and is the basis of quantum
repeaters [19,20].

Quantum communication schemes are important for an
efficient quantum network [3]. Wireless technology has sup-
plied more flexible and inexpensive ways in the classical
communication field, while due to the quantum features of
quantum networks, quantum wireless communication requires
new communication mechanisms [6]. Cheng et al. [5] first
proposed a quantum routing mechanism in a hierarchical
network architecture to teleport a quantum state from one node
to another even though they do not share Bell pairs mutually.
Then Yu et al. [21] proposed a routing protocol for a wireless
ad hoc quantum communication network and a distributed
wireless network [7].
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In this paper, we propose a quantum communication
scheme enabling quantum teleportation between two nodes
which do not initially share entanglement mutually. The
required Bell pairs are distributed to them by entanglement
swapping via intermediate nodes. Here we consider a practical
case where the Bell pairs among the intermediate nodes
do not need to be the same type. Moreover, in contrast
to the sequential entanglement swapping scheme commonly
used in quantum repeaters, our scheme employs simultaneous
Bell measurements in all intermediate nodes where the
measurement results and the Bell pair types are sent to
the destination node independently. While in the sequential
entanglement swapping scheme, the Bell measurement results
are sent to the upstream node and thus each intermediate
node has to wait for the classical information transmission
before performing entanglement swapping. These sequential
operations introduce large delay to the whole quantum state
communication process and, furthermore, the neighbor nodes
have to build communication channels to exchange classical
information. We show the simultaneous swapping scheme
utilized in our paper can reduce the end-to-end communication
delay compared with the sequential entanglement swapping
scheme. In addition, the classical communication channels
are more flexible and are not indispensable between neighbor
nodes. The local operations to recover the initial quantum state
are only required at the destination node. We make detailed
calculations on the recovering operations corresponding to all
combinations of measurement results and Bell pair types.

The rest of the paper is organized as follows. In Sec. II,
the general multihop communication system is introduced.
Teleportation is investigated in detail from one-hop to multihop
cases and a state discriminant vector P is introduced in Sec. III.
In Sec. IV, two methods are proposed to determine P and are
applied to more general cases. Discussions and conclusions
are drawn in Secs. V and VI.

II. QUANTUM WIRELESS MULTIHOP NETWORK
SYSTEM

A quantum wireless multihop network (QWMN), as shown
in Fig. 1, is composed of spatially separated wireless quantum
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FIG. 1. Quantum wireless multihop network model.

nodes (WQNs). Most of them are distributed mobile quantum
devices with both quantum and wireless communication
capabilities. They can store quantum particles and process
information. The data transmitted in QWMNs are mostly the
quantum bits (qubits) instead of the classical bits (c-bits). Qubit
is the unit of quantum information, which is represented as
a linear combination of computational basis states |0〉 and
|1〉. Generally, we use |χ〉 = α |0〉 + β |1〉 to model the qubit,
where α and β are complex probability amplitudes satisfying
|α|2 + |β|2 = 1.

In this paper, quantum teleportation is used to transfer a
quantum state from one node to another with communication
channels between them. There are two kinds of communication
channels: classical wireless channels for transmitting c-bits
and quantum wireless channels for teleporting qubits. In Fig. 1,
the wave and dashed lines represent classical and quantum
wireless channels, respectively.

Two nodes are called one-hop neighbors if they both
fall within the mutual communication radius and thus can
communicate with each other. Classical wireless channels
exist between them. Two nodes which share at least one Bell
pair are called quantum neighbors. Quantum wireless channels
exist between them. Four types of Bell pairs used in quantum
communication are defined as [22]

|β00〉 ≡ |�+〉 = (|00〉 + |11〉)/
√

2,

|β01〉 ≡ |�+〉 = (|01〉 + |10〉)/
√

2,

|β10〉 ≡ |�−〉 = (|00〉 − |11〉)/
√

2,

|β11〉 ≡ |�−〉 = (|01〉 − |10〉)/
√

2.

(1)

The Bell pairs can be shared by nodes in advance. They can be
transformed into each other through unitary operations with
Pauli matrices such as

|β01〉 = X ⊗ I |β00〉 , |β10〉 = Z ⊗ I |β00〉 ,

|β11〉 = iY ⊗ I |β00〉 = ZX ⊗ I |β00〉 ,
(2)

where X = [ 0
1

1
0 ], Y = [ 0

i

−i

0 ], and Z = [ 1
0

0
−1 ] are

Pauli matrices and I = [ 1
0

0
1 ] is the identity matrix.

The entanglement is a precious resource in QWMNs and
consumed in every teleportation process. It is impossible for
one node to share Bell pairs with every WQN in the network.
If there is no direct Bell pair shared between the source and
destination nodes, entanglement swapping can be used to
establish entanglement between them. Measurement outcomes

and Bell pair types are transmitted in classical wireless
channels. Two nodes could transfer quantum information if
and only if both quantum and classical wireless channels,
direct or hop by hop, exist simultaneously between them.
A routing protocol establishes both classical and quantum
communication paths in distributed way. The nodes on
quantum paths are used to establish quantum channels and the
nodes on classical communication paths are used to transmit
classical information to the destination node for each node on
quantum paths. Therefore, these two paths can be different.
As shown in Fig. 1, for example, no direct quantum and
classical channels exist between N1 and N4. However, with
the help of the intermediate nodes N5 and N3, we could
establish quantum and classical channels between them. For
example, a quantum path can select the path N1 → N5 → N4.
N1 can communicate with N4 through N1 → N3 → N4, while
N5 can communicate with N4 directly. The nodes on quantum
paths can transmit classical information to the destination node
in different communication paths. The routing mechanism
is not discussed in this paper and the paths are assumed to
have been selected appropriately according to the network
conditions and metrics using existing routing mechanisms in
wireless networks and quantum networks [23–26]. Moreover,
besides the multihop network our scheme can also function in
a network where each node can send classical communication
only to the quantum teleportation destination node.

III. QUANTUM TELEPORTATION BASED
ON ARBITRARY TYPES OF BELL PAIRS

Quantum teleportation is widely used in many applications
to transmit quantum states from one node to another separate
node. With Bell pairs shared between two nodes, the sender
performs the Bell measurement on its particle from the
entangled pair and the qubit to be teleported. Then the sender
sends the measurement results to the receiver in the classical
channel. The receiver performs result-dependent unitary oper-
ations on its particle to recover the quantum state. The receiver
would know nothing about the initial state and the teleportation
would fail without the classical information.

A. One-hop quantum teleportation based on different
types of Bell pairs

We first review the process of the standard quantum
teleportation. The basic quantum circuit [22] for teleportation
is given in Fig. 2. Alice first sends the qubit state to be
teleported |χ〉 and the particle shared from Bell pairs to the
controlled-NOT (CNOT) gate, followed by a Hadamard (H) gate

Alice

Bob

Bell
pair

A1

A2

B1 ZX

FIG. 2. Basic quantum circuit for quantum teleportation.
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on the control state and two projection measurements on the
computation basis states on the two particles. The CNOT gate,
H gate, and the projection measurements together constitute
the Bell measurement. The wave line denotes the classical
information reported to the receiver through the classical
wireless channel.

Assume Alice intends to send a qubit |χ〉 to Bob and they
share the Bell pair |β11〉 = (|01〉 − |10〉)A2B1/

√
2 in advance.

The subscripts (e.g., A2, B1.) stand for the ordinal number at
the owner’s side. For example, A2 represents Alice’s second
qubit. The state of the initial three-qubit system |ϒ11〉 can be
written as

|ϒ11〉 = |χ〉A1 ⊗ |β11〉A2B1

= (α |0〉 + β |1〉)A1 ⊗ 1√
2

(|01〉 − |10〉)A2B1

= 1√
2

[α (|001〉 − |010〉) + β (|101〉 − |110〉)]A1A2B1.

(3)

After Alice sends her qubits through a CNOT gate and an H
gate, the entire system state turns into

|ϒ ′
11〉 = 1

2 [−|11〉 ⊗ (α|0〉 + β|1〉)
+ |10〉 ⊗ (α|1〉 + β|0〉) − |01〉 ⊗ (α|0〉 − β|1〉)
+ |00〉 ⊗ (α|1〉 − β|0〉)]A1A2B1. (4)

Then Alice performs projection measurements on her two
qubits with the basis states |11〉, |10〉, |01〉, and |00〉. The
measurement outcomes indicate that Bob’s qubit state changes
to one of the four possible states accordingly: α |0〉 + β |1〉,
α |1〉 + β |0〉, α |0〉 − β |1〉, and α |1〉 − β |0〉, which can be
transformed from the original state |χ〉 by Pauli operators, and
hence the system state can be rewritten as

|ϒ ′
11〉 = 1

2 (−|11〉 ⊗ |χ〉 + |10〉 ⊗ X |χ〉
− |01〉 ⊗ Z |χ〉 + |00〉 ⊗ XZ |χ〉)A1A2B1 . (5)

Therefore, according to the two c-bits measurement result
information sent by Alice, Bob can perform local unitary
operations on his qubit to recover the original qubit state.
For example, when the measurement result Bob gets is 10, his
qubit state is X |χ〉 and thus the X unitary operation is needed.

We should note that the minus signs before states |11〉
and |01〉 are global phases for the final states which have no
affections to the teleportation results. Hence, in the following
paper, we ignore them when we refer the measurement results
and the final qubit states.

With analogy calculations we can obtain the final system
states in one-hop quantum teleportation when the other three
types of Bell pairs are shared. In Table I, measurement
outcomes are listed out corresponding to the four possible
qubit states in the receiver node for different types of Bell
pairs shared. The relation between measurement outcomes
and possible qubit states varies according to the types of
Bell pairs shared. Consequently, different quantum unitary
operations should be applied when the types of the Bell pairs
shared between two nodes are different. For example, when
the measurement outcome is 11, if |β11〉 is shared, Bob does
not need to do anything, while if |β00〉 is shared, Bob then

TABLE I. Relation between measurement outcomes and possible
qubit states.

|β00〉 |β01〉 |β10〉 |β11〉
|χ〉 00 01 10 11
X |χ〉 01 00 11 10
Z |χ〉 10 11 00 01
XZ |χ〉 11 10 01 00

needs to apply both X and Z unitary operations to recover the
original state.

In the complex network environment, all shared Bell pairs
are not guaranteed to be of the same type. Therefore, the
Bell pair types shared in every hop are also essential for
faithful teleportation and are crucial for determining the
corresponding unitary operations to recover the final qubit
state. Consequently, not only the measurement outcomes but
also the Bell pair types should be sent to the destination node as
the classical information. Thus, after doing the measurements
simultaneously, four c-bits classical information should be
reported independently from each node on path: two c-bits
measurement outcomes and two c-bits Bell pair types.

B. Two-hop quantum teleportation

In QWMN, there is usually no direct Bell pair shared
between the source and destination nodes. In this case,
quantum communication is feasible in the multihop way, where
entanglement swapping (ES) is used to distribute entangled
particles to two nodes which have never interacted with each
other before. For detail, as shown in Fig. 3, assume Alice wants
to teleport a quantum state to Bob. They have no direct Bell pair
shared, but the intermediate node Candy shares one Bell pair
with Alice and another with Bob. When Candy performs Bell
measurements on her two particles and sends measurement
results to Alice and Bob, the remaining two particles at Alice
and Bob sides become entangled. In this way, a quantum
channel between Alice and Bob is established.

Figure 4 shows the quantum circuit for two-hop quantum
teleportation, where compared with the basic one-hop one both
Alice and Candy are required to transmit classical information
to Bob through classical wireless channels. After collecting the
information, Bob would apply the proper unitary operation(s)
to recover the original state.

Alice Candy Bob

FIG. 3. Two-hop teleportation.
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FIG. 4. Quantum circuit for two-hop communication.

We consider a practical network where the Bell pairs
shared are not the same type. Here, for analysis in detail, we
assume that Candy shares |β00〉 and |β11〉 with Alice and Bob,
respectively. Then the four-qubit state of Bell pair channels
has the form

|ϕ〉 = |β00〉A2C1 ⊗ |β11〉C2B1. (6)

When Candy sends her two qubits through a CNOT gate and
her first qubit through an H gate, then we have

|ϕ〉 → 1
2 (|00〉C1C2 ⊗ |β11〉A2B1 − |01〉C1C2 ⊗ |β10〉A2B1

+ |10〉C1C2 ⊗ |β01〉A2B1 − |11〉C1C2 ⊗ |β00〉A2B1).

(7)

The 2 c-bits measurement outcome information transmitted by
Candy indicates the type of the Bell pair Alice and Bob now
share. With this Bell pair, Alice and Bob can perform quantum
teleportation as normal. The entire five-qubit system state is
written as

|ϒ0011〉 = |χ〉A1 ⊗ |β00〉A2C1 ⊗ |β11〉C2B1. (8)

After Alice and Candy both perform CNOT gates and H gates,
the entire system becomes∣∣ϒ ′

0011

〉 = 1
4 [(|0110〉 − |1001〉 − |1100〉 − |0011〉)A1A2C1C2

⊗ (α |0〉 + β |1〉)B1

+ (|1000〉 + |1101〉 + |0010〉 − |0111〉)A1A2C1C2

⊗ (α |1〉 + β |0〉)B1

+ (|1110〉 − |1011〉 − |0001〉 − |0100〉)A1A2C1C2

⊗ (α |0〉 − β |1〉)B1

+ (|0000〉 + |0101〉 + |1010〉 − |1111〉)A1A2C1C2

⊗ (α |1〉 − β |0〉)B1]. (9)

In Eq. (9), all the 16 possible measurement outcomes
are classified into four groups leading Bob’s qubit to four
possible states. For example, when the outcomes are contained
in the group of 0000, 1111, 0101, and 1010, Bob’s state
should be α |1〉 − β |0〉 and both X and Z unitary operations
are needed to recover the original state. Introducing the
logical relation, if and only if the logic algebra expression
A1 ⊕ C1 · A2 ⊕ C2 = 1, Bob’s qubit state is α |1〉 − β |0〉.
Here the original subscripts A1, A2, C1, and C2 are taken
to denote the measurement outcomes 0 and 1. The signals

“⊕,” “·,” and “ ” represent logic exclusive or (XOR), AND,
and negation, respectively. The logic algebra expressions show
the logical relation of every group of measurement outcomes,
which can be seen as the discriminant of the final qubit state.
Thus we can express Bob’s qubit state as

|	〉 = (A1 ⊕ C1 · A2 ⊕ C2) × (α|0〉 + β|1〉)B1

+ (A1 ⊕ C1 · A2 ⊕ C2) × (α|1〉 + β|0〉)B1

+ (A1 ⊕ C1 · A2 ⊕ C2) × (α|0〉 − β|1〉)B1

+ (A1 ⊕ C1 · A2 ⊕ C2) × (α|1〉 − β|0〉)B1. (10)

We can see that only one logical algebra expression can
equal to 1, so that Bob’s final qubit state must be one of the four
possible states. For instance, when the measurement outcome
is 0110, A1 = 0, A2 = 1, C1 = 1, and C2 = 0. Substituting
them into Eq. (10), we could obtain the final qubit state |	〉 =
α |0〉 + β |1〉. We define L00, L01, L10, and L11 to denote the
logic algebra expressions

L00 = A1 ⊕ C1 · A2 ⊕ C2, L01 = A1 ⊕ C1 · A2 ⊕ C2,

L10 = A1 ⊕ C1 · A2 ⊕ C2, L11 = A1 ⊕ C1 · A2 ⊕ C2.

(11)

Then Eq. (10) can be rewritten as

|	〉 = [L11,L10,L01,L00]

⎡⎢⎢⎢⎣
|χ〉

X |χ〉
Z |χ〉

XZ |χ〉

⎤⎥⎥⎥⎦ . (12)

The vector [L11,L10,L01,L00] is the state
discriminant vector to the possible qubit state vector
[|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T . For different Bell pair types, we
assume the possible qubit state vector is fixed. The state
discriminant vector would vary on the sequence of the four
logic algebra expressions in different Bell pair type cases.

C. State discriminant vectors for arbitrary Bell pair
combinations

We first consider the affection of the Bell pair sequence
on the state discriminant vector by making Candy share |β11〉
and |β00〉 with Alice and Bob, respectively. Compared with
Eq. (6), the two Bell pairs are identical but with swapped
sequence. After Candy performs the CNOT and H gates, the
four-qubit state of Bell pairs evolves as follows:

|ϕ〉 = |β11〉A2C1 ⊗ |β00〉C2B1

→ |00〉C1C2 ⊗ |β11〉A2B1 + |01〉C1C2 ⊗ |β10〉A2B1− |10〉C1C2

⊗ |β01〉A2B1 − |11〉C1C2 ⊗ |β00〉A2B1. (13)

We can see that Eqs. (7) and (13) have the same relation
between measurement outcomes and possible Bell pairs ignor-
ing the global phase factors. Therefore, Bob’s final qubit state
has the same form according to the measurement outcomes
as shown in Eq. (12). We can similarly examine all the other
Bell pair combinations, and can reach the conclusion that the
sequence of the Bell pairs on the paths has no affection on
the state discriminant vectors for Bob’s final qubit state. We
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TABLE II. State discriminant vectors P in the two-hop case for
different Bell pair groups.

|β00〉A2C1 |β01〉A2C1 |β10〉A2C1 |β11〉A2C1

|β00〉C2B1 P1 P2 P3 P4

|β01〉C2B1 P2 P1 P4 P3

|β10〉C2B1 P3 P4 P1 P2

|β11〉C2B1 P4 P3 P2 P1

define P as the state discriminant vector, which is one of the
four possible values Pk (k = 1, 2, 3, 4) shown as follows:

P1 = [L00,L01,L10,L11], P2 = [L01,L00,L11,L10],

P3 = [L10,L11,L00,L01], P4 = [L11,L10,L01,L00].
(14)

Bob’s qubit state can be then written as

|	〉 = P · [|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T . (15)

We give the state discriminant vectors P for different
Bell pair groups in the two-hop case corresponding to
[|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T in Table II. The rows represent the
types of Bell pair shared between the first hop (Alice and
Candy) with the subscript A2C1, while the columns show the
shared Bell pair between the second hop (Candy and Bob)
with the subscript C2B1. We can see that P is symmetrical
because the sequence of the Bell pair has no influence on the
state discriminant vector and the final qubit state.

D. Multihop quantum teleportation

The above calculations can be generalized to multihop
quantum teleportation straightforwardly. For the n-hop case,
we redefine the logic algebra expressions L00, L01, L10, and
L11 as

L00 = ⊕n
i=1N

1
i · ⊕n

i=1N
2
i , L01 = ⊕n

i=1N
1
i · ⊕n

i=1N
2
i ,

L10 = ⊕n
i=1N

1
i · ⊕n

i=1N
2
i , L11 = ⊕n

i=1N
1
i · ⊕n

i=1N
2
i ,

(16)

where N1
i and N2

i denote the measurement outcomes of the
first and second particles in the ith node, respectively, and
⊕n

i=1N
1
i = N1

1 ⊕ N1
2 · · · ⊕ N1

n , (the same for ⊕n
i=1N

2
i ).

Substituting Eq. (16) into Eq. (14), Bob’s qubit state can
then be expressed as Eq. (15). This expression can also be
applied to the one-hop case. Take |β00〉 as Bell pair shared,
for example. With the one-hop outcomes N1, Bob’s qubit state
could be written as

|	〉 = (A1 · A2) × (α|0〉 + β|1〉)B
+ (A1 · A2) × (α|1〉 + β|0〉)B
+ (A1 · A2) × (α|0〉 − β|1〉)B
+ (A1 · A2) × (α|1〉 − β|0〉)B

= P1 · [|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T . (17)

We give the state discriminant vector P corresponding to
[|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T in Table III. We can see the results
coincide with those given by Table I.

In the n-hop case, there would be 4n possible measurement
outcomes. We need an effective way to determine the state

TABLE III. State discriminant vectors P in the one-hop case with
arbitrary Bell pair types.

|β00〉 |β01〉 |β10〉 |β11〉
P P1 P3 P2 P4

discriminant vector P in the n-hop case with reasonable
complexity. In the next section, we present two methods to
determine the specific P corresponding to different cases.

IV. GENERAL QUANTUM COMMUNICATION SCHEME

In this section we first give two methods for calculating
the state discriminant vector P, and then describe the whole
scheme followed by an example.

A. Determine P through derivation

The derivation for the discriminant vector P may be
deduced by finding the discipline among the results in Table II.
Let us reconsider the two-hop case shown in Fig. 4, where the
Bell pair group is |β00〉 and |β11〉. The initial system state given
by Eq. (8) can be rewritten as

|ϒ0011〉 = |χ〉A1 ⊗ |β00〉A2C1 ⊗ [(ZX ⊗ I ) |β00〉]C2B1. (18)

After the two CNOT gates and H gates the system state becomes

|ϒ ′
0011〉 = [(H ⊗ I )U ]A1A2 ⊗ [(H ⊗ I )U (I ⊗ ZX)]C1C2

⊗ IB1 |χ〉A1 ⊗ |β00〉A2C1 ⊗ |β00〉C2B1 , (19)

where U and H represent the CNOT and H operators given by

U =

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎦, H = 1√
2

[
1 1
1 −1

]
. (20)

By inserting the identity operator in the Hilbert space of qubits
C1 and C2, IC1C2 = UC1C2(HC1 ⊗ IC2)(HC1 ⊗ IC2)UC1C2 in
Eq. (19), it can be rewritten as

|ϒ ′
0011〉 = [(H ⊗ I )U ]A1A2

⊗ [(H ⊗ I )U (I ⊗ ZX)U (H ⊗ I )(H ⊗ I )U ]C1C2

⊗ IB1 |χ〉A1 ⊗ |β00〉A2C1 ⊗ |β00〉C2B1

= (I ⊗ I )A1A2 ⊗ T 11
C1C2 ⊗ IB1|ϒ ′

0000〉, (21)

where

|ϒ ′
0000〉 = [(H ⊗ I )U ]A1A2 ⊗ [(H ⊗ I )U ]C1C2 ⊗ IB1

× |χ〉A1 ⊗ |β00〉A2C1 ⊗ |β00〉C2B1, (22)

is the system state after two CNOT and H gates when the Bell
pair group is |β00〉 and |β00〉, and

T 11
C1C2 = [(H ⊗ I )U (I ⊗ ZX)U (H ⊗ I )]C1C2

=

⎡⎢⎣ 0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤⎥⎦ (23)
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can be seen as the transformation operator on qubits C1, C2,
for transforming |ϒ ′

0000〉 to |ϒ ′
0011〉. To obtain the correction

operation to the state discriminant vector P1 for the Bell group
|β00〉, |β00〉, we first calculate the transformation operator
T 11

C1C2 on the computational basis state, having

T 11|00〉 = −|11〉, T 11|01〉 = |10〉,
T 11|10〉 = −|01〉, T 11|11〉 = |00〉.

(24)

Comparing the above transformation results with the logic
algebra expressions given by Eqs. (11) and (14) we can infer
the correction operations are L00 → L11, L01 → L11, L10 →
L01, and L11 → L00 or, equivalently, P1 → P4. Then we can
define a correction matrix C3 to the state discriminant vector
P1 satisfying

P4 = P1C3, with C3 ≡

⎡⎢⎣0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎦. (25)

With analogy calculations, we may find when Bell pair
groups are |β00〉, |β01〉 and |β00〉, |β10〉 the transformation
operators from |ϒ ′

0000〉 to |ϒ ′
0001〉 and |ϒ ′

0010〉 are

T 01
C1C2 = [(H ⊗ I )U (I ⊗ X)U (H ⊗ I )]C1C2, (26)

T 10
C1C2 = [(H ⊗ I )U (I ⊗ Z)U (H ⊗ I )]C1C2, (27)

respectively. The corresponding correction matrices to the state
discriminant vector P1 can be found as

C1 ≡

⎡⎢⎣0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎦, C2 ≡

⎡⎢⎣0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎦, (28)

which satisfy P2 = P1C1 and P3 = P1C2. For completion, we
define

C0 ≡

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ (29)

as the correction matrix for P1 itself. Then, as Eq. (15), we can
write Bob’s qubit state,

|	0011〉 = P1C0C3 · [|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T , (30)

with the discriminant vector P = P4 = P1C0C3.
It can be easily verified that the four matrices C0, C1, C2,

and C3, are commutative, which is in accordance with our
previous statement that the sequence of Bell pair types does
not affect the state discriminant vector P . Therefore, Bell pair
types and corresponding numbers would determine the state
discriminant vector P . The type of Bell pairs in each hop
is transmitted to the receiver together with the measurement
outcomes. The number of Bell pairs shared along the path is
equal to the number of quantum hops. Therefore, when the
system comes to the n-hop case, the system state with n Bell

pairs is

|ϒ〉 = |χ〉A1 ⊗ |β00〉⊗a0 ⊗ |β01〉⊗a1 ⊗ |β10〉⊗a2 ⊗ |β11〉⊗a3

= I ⊗ (I ⊗ I )⊗a0 ⊗ (X ⊗ I )⊗a1 ⊗ (Z ⊗ I )⊗a2

⊗ (ZX ⊗ I )⊗a3 |χ〉A1|β00〉⊗n. (31)

where a0, a1, a2, and a3 denote the numbers of the four types
of Bell pairs shared on quantum paths and their sum is equal
to quantum hop count n. Then Bob’s qubit state can be written
as

|	〉 = P1C
a0 mod 2
0 C

a1 mod 2
1 C

a2 mod 2
2 C

a3 mod 2
3

× [|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T
= P · [|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T , (32)

with the state discriminant vector

P = P1 ·
3∏

i=0

C
ai mod 2
i . (33)

Note that modulo-2 arithmetic is applied on the type numbers
to reduce the matrix calculation complexity since the operators
have the properties C0

2 = C1
2 = C2

2 = C3
2 = I4, where I4 is

the identity matrix in four-dimensional space.

B. Determine the parameter P through finite state machine

We have found that P1, P2, P3, and P4 can transform into
each other with correction matrices defined by Eqs. (25), (28),
and (29). The transformations of state discriminant vectors can
form an finite state machine (FSM) as shown in Fig. 5. The
circles denote the four state discriminant vectors, and arrow
lines represent the transformations of the state discriminant
vectors under the effect of the Bell pairs marked on the arrow
lines. With the help of the FSM, the vector P in Eq. (15) can
be determined by the Bell pairs shared between intermediate
nodes along the path. Moreover, the state transforms back
when there are an even number of Bell pairs with the same
type. This property is analogous to modulo-2 arithmetic in
Eq. (32).

Without loss of generality, assume P1 as the initial state
discriminant vector. Take the Bell pair group |β00〉, |β11〉, and
|β10〉 as an example to illustrate the function of the FSM.

P00

00

00

00

01

01

10
10

11 11

1 P2

3 4P P

FIG. 5. Finite state machine model to obtain state discriminant
vectors.
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It is a three-hop communication with parameter n = 3. The
vector starts from P1. Under the effect of |β00〉, the vector
remains unchanged. Then it changes to P4 because of the
Bell pair |β11〉 and finally goes to P2. This process is marked
on Fig. 5 with dashed arrow lines. Hence we get P = P2 =
[L01,L00,L11,L10]; the final qubit state is

|	〉 = P2 · [|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T . (34)

Substituting the measurement outcomes into Eq. (34), we
can obtain the final qubit state and the corresponding unitary
operations for recovering the original quantum state.

C. Description of the whole scheme

The whole scheme for communication in multihop net-
works based on arbitrary Bell pairs and teleportation is shown
in Fig. 6. In the QWMN, the nodes on quantum paths share
Bell pairs with adjacent nodes. They also have classical paths
connecting the destination node. First, every node on quantum
paths except the destination node performs measurements on
its two qubits independently. The measurements do not depend
on any information from other nodes and can be carried out
immediately after the nodes are selected on quantum paths.
After measurements, each of the source and intermediate nodes
sends four c-bits information to the destination node, including
two c-bits measurement outcomes and two c-bits Bell pair
types shared with its upstream node. The transmissions of
classical information are in a wireless hop-by-hop way. The
wireless communication paths can be different from quantum
paths. Finally, when the destination node has gathered all
classical information reported, it would do the following three
steps.

(1) Perform XOR on measurement outcomes of correspond-
ing particles to calculate the logical relation among them.

(2) Determine the state discriminant vector P through two
methods introduced above.

(3) Via the state discriminant vector P determine the final
qubit state and corresponding unitary operations.

The above three steps at the destination node are integrated
together into a generalized formula given by Eq. (32). It can
be seen as a black box, the input of which are measurement
outcomes and Bell pair types, and the output of which is the
required unitary operations. Finally, the corresponding unitary
operations are performed to reconstruct the original state.

unitary operations

classical wireless channel

Bell pair
types

measurement 
outcomes

4 
c-

bi
ts

 in
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rm
at

io
n

Bell pair

intermediate nodes 

source

destination

unitary operation
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vector P
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FIG. 6. (Color online) Scheme for quantum communication in
QWMN.

N1 N10N9N7N2
0001 0011

FIG. 7. Example of multihop quantum communication. (The
selected path on topology of Fig. 1.)

D. Example of communication in QWMN

An example is presented to better illustrate the whole
process of communication in the QWMN. As shown in
Fig. 1, assume the source node N1 intends to transmit a
qubit state |χ〉 = α |0〉 + β |1〉 to the destination node N10.
However, there is no available Bell pair shared between N1

and N10. To achieve successful transmission, a multihop path
has been selected according to specific metrics. We choose the
path N1 → N2 → N7 → N9 → N10 for simplicity, where the
quantum and classical paths are assumed to be the same. We
model it as a line of nodes shown in Fig. 7.

The direction to the destination node is defined as upstream
direction. Along this direction, the Bell pair |β01〉, |β00〉,
|β11〉, and |β00〉 are shared between adjacent nodes as marked
above dashed lines in Fig. 7. There are also classical wireless
channels available so that every node can report classical
information to the destination node N10. When the commu-
nication starts, the source and intermediate nodes measure
their two particles which are entangled with adjacent nodes.
Each of the three intermediate nodes and the source node
produces two c-bits measurement outcomes, one c-bit for the
first particle and the other for the second one. Then these four
nodes transmit these two c-bits measurement outcomes and
two c-bits Bell pair types to the destination node independently
through classical wireless channels hop by hop. After the
destination node N10 has successfully collected all information
from these four nodes, it calculates the logical relation among
measurement outcomes. Assume the measurement outcomes
on N1

1 , N2
1 , N1

2 , N2
2 , N1

7 , N2
7 , N1

9 , N2
9 are 0, 1, 0, 0, 1, 1, 1,

0, so that P1 = [1,0,0,0]. Then substituting a0 = 2, a1 = 1,
a2 = 0, a3 = 1, and n = 4 into Eq. (33), we obtain

P = P1 ·
3∏

i=0

C
ai mod 2
i

= P1 ·

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦
2 mod 2⎡⎢⎣0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎦
1 mod 2

×

⎡⎢⎣0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎦
0 mod 2⎡⎢⎣0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎦
1 mod 2

= [1,0,0,0] ·

⎡⎢⎣0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎦
⎡⎢⎣0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎦
= [0,0,1,0] = P3. (35)
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Then substituting P into Eq. (15), we obtain the final qubit
state at the node of N10

|	〉 = [0,0,1,0] · [|χ〉,X|χ〉,Z|χ〉,XZ|χ〉]T
= Z |χ〉 = α |0〉 − β |1〉 . (36)

Therefore, the required unitary operation to recover the state
|χ〉 should be Z. Until then, the whole process of quantum
multihop communication has been completed. The original
state has been teleported to the destination N10 from the source
N1 successfully.

We can also determine P through the state transformation
with FSM depicted in Fig. 5. With the FSM, we can also obtain
the same result P = P3 = [0,0,1,0] and thus the same final
qubit state and the required operations.

V. DISCUSSIONS

In our scheme, a simultaneous and independent entangle-
ment swapping method is utilized. The source and intermediate
nodes perform measurements and do not depend on any spe-
cific sequence. Then each node sends four c-bits information
to the destination node independently, including two c-bits
measurement outcomes and two c-bits Bell pair types. After
gathering all this information, the destination node determines
the corresponding unitary operations and recovers the qubit
state. For discussion, we refer to our scheme as scheme A.

As we referred to in Sec. I, the commonly used method
in quantum repeaters is the sequential entanglement swapping
scheme, which is different from our scheme. We refer to it as
scheme B. The intermediate nodes on quantum paths perform
entanglement swapping sequentially. It is not necessary for
the destination node to know all the Bell pair types in the
network. Starting from the intermediate node closest to the
source node, the intermediate node performs entanglement
swapping one by one and sends two c-bits Bell pair types
created to its upstream node. The quantum channels from
the source node to the destination node are established by
these sequential entanglement swapping operations. Then the
source node teleports the quantum state and transmits two
c-bits measurement outcomes to the destination node for initial
state recovery. For the example shown in Fig. 7, the scheme B
works as follows.

(1) N2 performs entanglement swapping with N7, creating
a quantum channel between N1 and N7. Because N2 knows
the state of its shared entanglement with N1 and N7, only two
c-bits need to be communicated from N2 to N7.

(2) N7 performs entanglement swapping with N9, transmit-
ting two c-bits to N9, creating entanglement between N9 and
N1.

(3) N9 performs entanglement swapping with N10, trans-
mitting two c-bits to N10, creating entanglement between N1

and N10. Thus N10 knows that the entanglement swapping is
completed.

(4) N1 teleports its qubit to N10, transmitting two c-bits
measurement outcomes to N10 (hopping through N2, N7, and
N9).

In this section, we discuss the performance of our scheme
and make comparisons on our scheme A and the scheme
B. Two performance metrics are adopted including classical

wireless communication cost and quantum communication
delay.

A. Classical wireless communication cost

We define classical wireless communication cost as the
number of the data transmission required in the scheme. It
includes all the classical information transmitted by the nodes.
Therefore, the cost of one transmission is the product of the
number of data and the hop number that the information need
to be transmitted. The total communication cost is the sum of
all the transmissions in the process. Let Hi

d denote the classical
wireless communication hop count from the ith node to the
destination node on quantum paths, where i = 1, . . . ,N − 1,
with i = 1 for the source node and N represents the number
of nodes on quantum paths. Therefore, the classical wireless
communication cost of scheme A is

Cc-bit
A = 4 ×

N−2∑
i=1

Hi
d + 2HN−1

d . (37)

Note that the destination node knows the Bell pair type they
share and thus the last hop node only needs to transmit its
two c-bits measurement outcomes to the destination node.
In the example shown in Fig. 7, the wireless communica-
tion paths to the destination node are the same with the
quantum paths. Therefore, in this case Hi

d = N − i, and
the cost is then C̃c-bit

A = 4 × ∑N−2
i=1 (N − i) + 2 × 1 = 2(N2 −

N − 1). For N = 5, the classical wireless communication cost
is 38 c-bits.

Although the measurement outcomes discussed above are
in the unit of “c-bit,” in realistic communication they are
all transmitted in the form of packet. In classical wireless
communications protocol, such as Wimax, WiFi, and LTE, a
packet usually requires at least 30 Bytes [27,28]. It seems that
the communication cost is more reasonable to be expressed in
the unit of “packet,” which contains the useful information and
communication overhead. Consequently, the classical wireless
communication cost of scheme A is written as

C
packet
A =

N−1∑
i=1

Hi
d, (38)

and 10 packets are required in the example shown in Fig. 7.
In scheme B, the classical information is exchanged

between intermediate nodes. The classical wireless commu-
nication cost is then

Cc-bit
B = 2 ×

N−1∑
i=2

Hi
u + 2H 1

d , (39)

where Hi
u denotes the hop count from the ith node on

quantum paths to its upstream (i + 1)th node. Explicitly,
2 × ∑N−1

i=2 Hi
u is the transmission among intermediate nodes,

and 2H 1
d represents the measurement outcomes of telepor-

tation transmitted from the source node. In the example
shown in Fig. 7, the classical wireless communication cost is
then C̃c-bit

B = 2 × ∑N−1
i=2 1 + 2(N − 1) = 4N − 6. Therefore,

for N = 5, scheme B requires 14 c-bits. Similarly, in the unit
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N1 N9N2
01 0011

Upstream direction

00 N10N7

N71 72N

FIG. 8. Multihop quantum communication without direct wire-
less paths between adjacent nodes.

of packet, we have

C
packet
B =

N−1∑
i=2

Hi
u + H 1

d , (40)

and scheme B needs seven packets in the example shown in
Fig. 7.

We can see that the communication cost of scheme A is
more than scheme B in the example case. However, this is
not always true in complicated network environment. When
the path and topology change, the cost difference could
also change. For example, when there is no direct classical
wireless communication path between neighbor nodes in
quantum paths, as shown in Fig. 8, the wave and dashed
lines denote wireless classical and quantum communication
channels, respectively. The node N7 needs to hop through
N71 and N72 to communicate with its neighbor node N9.
However, N7 can communicate with the destination node N10

directly. In this case, our scheme needs less packets. Generally,
comparing Eqs. (38) and (40), we have C

packet
A � C

packet
B , when∑N−1

i=2 Hi
d �

∑N−1
i=2 Hi

u. It indicates that when the sum of hop
count from each intermediate node to destination is less than or
equal to the sum of hop count between each intermediate node
and its upstream node, scheme A requires less or equal packets
than scheme B. We can also find the condition for scheme A
requiring less or equal communication cost in unit of “c-bit”
than scheme B, which is 2

∑N−2
i=2 Hi

d + H 1
d �

∑N−2
i=2 Hi

u.

B. Quantum communication delay

The measurements and wireless communication introduce
extra delay in quantum communication, which cannot be
ignored, explicitly including node processing delay, wireless
medium access delay, the transmission, and propagation delay.
The short delay is pursued due to the limited decoherence
time in quantum memory and QOS (quality of service)
need. Assume each measurement takes Dm seconds and each
wireless communication takes Dw seconds.

In scheme A, the measurements are performed without
dependence on any measurement sequence. The wireless
communication delay is equal to the time needed for one packet
transmitted from the farthest node to the destination node,
because when the farthest node sends its classical information,
the other intermediate nodes can send theirs simultaneously
without any mutual interference. The farthest node is defined
as the node which has the biggest hop count to destination, i.e.,
Hf = max{Hi

d}. Therefore, the total quantum communication
delay of scheme A is written as

DA = Dm + Dw × Hf = Dm + Dw × max
{
Hi

d

}
. (41)

In scheme B, the measurements and wireless communi-
cation are performed in sequence. The intermediate node
depends on the two c-bits information from its downstream
node and only performs measurements for entanglement
swapping after receiving this information. Therefore, the total
communication delay of scheme B is

DB =
N−1∑
i=2

(
Dm + DwHi

u

) + (
Dm + DwH 1

d

)
= (N − 1)Dm + Dw

(
H 1

d +
N−1∑
i=2

Hi
u

)
. (42)

Since max{Hi
d} < H 1

d + ∑N−1
i=2 Hi

u, from Eqs. (41) and (42),
we obtain DA < DB . Therefore, scheme A requires less
time for quantum communication, and it has shorter delay in
general.

To the end, we should state that these two schemes can be
used not limited in wireless networks, but in wider applicable
scenarios. All of the results of this paper could be applied to
both wireless and wired multihop networks.

VI. CONCLUSIONS

In summary, we studied quantum communication in a wire-
less multihop network, by proposing a scheme for quantum
teleportation between two nodes in the network, which have
no direct Bell pair shared. We made detailed calculations on
one-hop and two-hop cases and generalized all the results
to the multihop case. Our scheme employs a simultaneous
and independent entanglement swapping method. All the
intermediate nodes make Bell measurements independently on
any measurement results of other nodes, and only need to send
measurement outcomes and Bell pair types to the destination
node. After gathering all the information, the destination node
performs local operations to recover the initial qubit state. We
gave two efficient methods to determine the operations.

Our scheme has several merits. First, our scheme does not
require the Bell pairs shared by the intermediate nodes in
the network to be the same type. This merit is of practical
importance since in realistic networks, the nodes may have
different accordance on Bell pair types. Second, we made
detailed comparisons on our scheme and the sequential
entanglement swapping scheme usually used in quantum
repeaters. We find that our scheme can reduce communication
delay, although in some networks our scheme may cost more
classical information. Third, our scheme does not require
communication channels between all the neighbor nodes but
only needs one path from each intermediate node to the
destination node. This merit may facilitate its application in
some networks. Finally, our scheme is scalable and can be also
used to wired or hybrid quantum networks.

Quantum communication schemes are crucial for designing
efficient quantum networks. We hope our approach may
stimulate more investigations on communication proposals for
quantum networks.
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