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Aaronson and Arkhipov recently used computational complexity theory to argue that classical computers very
likely cannot efficiently simulate linear, multimode, quantum-optical interferometers with arbitrary Fock-state
inputs [Aaronson and Arkhipov, Theory Comput. 9, 143 (2013)]. Here we present an elementary argument that
utilizes only techniques from quantum optics. We explicitly construct the Hilbert space for such an interferometer
and show that its dimension scales exponentially with all the physical resources. We also show in a simple example
just how the Schrodinger and Heisenberg pictures of quantum theory, while mathematically equivalent, are
not in general computationally equivalent. Finally, we conclude our argument by comparing the symmetry
requirements of multiparticle bosonic to fermionic interferometers and, using simple physical reasoning,
connect the nonsimulatability of the bosonic device to the complexity of computing the permanent of a large

matrix.
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I. INTRODUCTION

There is a history of attempts to use linear quantum
interferometers to design a quantum computer. Cerny showed
that a linear interferometer could solve NP-complete problems
in polynomial time but only with an exponential overhead
in energy [1]. Clauser and Dowling showed that a linear
interferometer could factor large numbers in polynomial time
but only with exponential overhead in both energy and spatial
dimension [2]. Cerf, Adami, and Kwiat showed how to build
a programmable linear quantum optical computer but with an
exponential overhead in spatial dimension [3].

Nonlinear optics provides a well-known route to universal
quantum computing [4]. We include in this nonlinear class the
so-called “linear” optical approach to quantum computing [5],
because this scheme contains an effective Kerr nonlinearity [6].

In light of these results there arose a widely held belief
that linear interferometers alone, even with nonclassical
input states, cannot provide a road to universal quantum
computation and, as a corollary, that all such devices can be
efficiently simulated classically. However, recently Aaronson
and Arkhipov (AA) gave an argument that multimode, linear,
quantum optical interferometers with arbitrary Fock-state
photon inputs very likely could not be simulated efficiently
with a classical computer [7]. Their argument, couched in the
language of quantum computer complexity class theory, is not
easy to follow for those not skilled in that art. Nevertheless,
White and collaborators, and several other groups, carried
out experiments that demonstrated that the conclusion of AA
holds up for small photon numbers [8—11]. Our goal here is
to understand—from a physical point of view—why such a
device cannot be simulated classically.

In their paper, AA prove that both strong and weak
simulation of such an interferometer is not efficient classi-
cally. In the context of Fock-state interferometers, a strong
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simulation implies the direct computation of the joint output
probabilities of a system. However, one can consider a “weak”
simulation where one could efficiently estimate the joint
output probabilities to within some acceptably small margin
of error. There are many examples of systems for which weak
simulation is efficient even when strong simulation is not, such
as finding the permanent of an n x n matrix with real, positive
entries. But as our goal is to provide the most straightforward
and physical explanation for this phenomenon, we do so only
for the strong case. Since many classical systems cannot even
be strongly simulated, it may at first seem unsurprising that
this is the case. However, we note that here not only does
our system’s classical counterpart—Galton’s board—admit
an efficient strong simulation, but so does a myriad of other
quantum interferometers with non-Fock-state inputs as we will
show.

We then independently came to the same conclusion as AA
in our recent analysis of multiphoton quantum random walks
in a particular multimode interferometer called a quantum
“pachinko” machine shown in Fig. 1 [12]. The dual-photon
Fock state | N) | M) is inputted into the top of the interferometer
and then the photons are allowed to cascade downwards
through the lattice of beam splitters (B) and phase shifters
() to arrive at an array of photon-number-resolving detectors
(V) at the bottom. Our goal was to compute all the joint
probabilities for, say, the gth detector received p photons,
while the rth detector received s photons, and so forth, for
arbitrary input photon number and lattice dimension. We failed
utterly. It is easy to see why.

Working in the Schrodinger picture, we set out to compute
the probability amplitudes at each detector by following the
Feynman-like paths of each photon through the machine, and
then summing their contributions at the end. For a machine of
numerical depth L, as shown in Fig. 1, it is easy to compute
that the number of such Feynman-like paths is 2LV So
for even a meager number of photons and levels the solution
to the problem by this Schrodinger picture approach becomes
rapidly intractable. For example, choosing N = M =9 and
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FIG. 1. Quantum pachinko machine for numerical depth L = 3.
We indicate an arbitrary bosonic dual-Fock input |N) | M) at the top
of the interferometer and then the lattice of beam splitters (B), phase
shifters (¢), and photon-number-resolving detectors (V). The vacuum
input modes |0) (dashed lines) and internal modes |¢) (solid lines)
are also shown. The notation is such that the superscripts label the
level £ and the subscripts label the row element from left to right.

L = 6, we have 2288 2 5 x 10%° total possible paths, which
is about four orders of magnitude larger than the number of
atoms in the observable universe. We were puzzled by this
conclusion; we expected any passive linear quantum optical
interferometer to be efficiently simulatable classically. With
the AA result now in hand, we set out here to investigate the
issue of the complexity of our quantum pachinko machine
from an intuitive physical perspective. The most mathematics
and physics we shall need is elementary combinatorics and
quantum optics.

Following Feynman, we shall explicitly construct the
pachinko machine’s Hilbert state space for an arbitrary level
L, and for arbitrary photon input number, and show that the
space’s dimension grows exponentially as a function of each of
the physical resources needed to build and run the interferome-
ter [13]. Because interference only occurs when the input state
has been symmetrized (with respect to interchange of mode),
we compute the size of the symmetrized subspace and show
that it too grows exponentially with the number of physical
resources. We remark that while a classical pachinko machine
(or Galtons board) will also have an exponential large state
space, because no interference occurs there is only a quadratic
increase with L in the number of calculations necessary to
simulate the output (corresponding to the number of beam
splitters in the interferometer). From this result we conclude
that it is very likely that any classical computer that tries to
simulate the operation of the quantum pachinko machine will
always suffer an exponential slowdown. We will also show that
no exponential growth occurs if Fock states are replaced with
photonic coherent states or squeezed states, which elucidates
part of the special nature of photonic Fock states. However, an
exponentially large Hilbert space, while necessary for classical
nonsimulatability, is not sufficient. We then finally examine the
physical symmetry requirements for bosonic versus fermionic
multiparticle states and show that in the bosonic case, in order
to simulate the interferometer as a physics experiment, one
must compute the permanent of a large matrix, which in turn is
a problem in a computer algorithm complexity class strongly
believed to be intractable on a classical or even a quantum
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computer. This concludes our elementary argument, which
invokes only simple quantum mechanics, combinatorics, and
a simplistic appeal to complexity theory.

II. THE PACHINKO MACHINE MODEL

As our argument is all about counting resources, we have
carefully labeled all the components in the pachinko machine
in Fig. 1 to help us with that reckoning. The machine has a
total of L levels of physical depth d each. The input state at the
top is the dual-Fock state |N )(1) |M )(2), where the superscripts
label the level number and the subscripts the element in the
row at that level (from left to right). We illustrate a machine
of total numerical depth of L = 3. For 1 < £ < L, we show
the vacuum input modes along the edges of the machine.
The resources we are most concerned about are energy, time,
spatial dimension, and number of physical elements needed
to construct the device. All of these scale either linearly or
quadratically in either L or N + M. The total physical depth
is D = Ld and so the spatial area is A = (v/2D)? = 2L%d>.
Using identical photons of frequency w, the energy per run is
E = (N + M)hw. The time it takes for the photons to arrive
at the detectors is T = ~/2Ld /c, where c is the speed of light.
In each level the photons encounter £ number of beam splitters
(BS) so the total number is #B = Zle ¢=L(L+1)/2.
Below each BS (with the exception of the Lth level) there
are two independently tunable phase shifters (PS) for a total
number of PS that is #¢ = Zﬁ;ﬂ 2¢ = L(L — 1). The total
number of detectors is #V = 2L. The total number of input
modes is equal to the total number of output modes and
is #1 = #0O = 2L. The total number of internal modes is
# = Zf;ll 2¢ = L(L — 1). As promised everything scales
either linearly or quadratically in either L or N + M.

The input state may be written in the Heisenberg picture
as |[N)? |M)9 = @™V @"™ 10)910)9 /v/NTM!, where &' is a
modal creation operator. Each BS performs a forward unitary
mode transformation Which We illustrate With Bl, of the
form al =irla?+tlad and al =+la% +irlad, where the
reflection and transm1ss10n coefficients r and ¢t are positive
real numbers such that 7> +t> = R + T = 1. The choice r =
t = 1/+/2 implements a 50:50 BS. Each PS is implemented
by, for example, applying the unitary operation exp(ip{7}) on
mode |)!, where 4! := a]'a! is the number operator, a! is the
annihilation operator conjugate to &Il ,and @] is a real number.
Finally, the 2L detectors in the final level L are each photon
number resolving [14].

To argue that this machine (or any like it) cannot be
simulated classically, in general, it suffices to show that this
is so for a particular simplified example. We now take N
and L arbitrary but M = 0 and turn off all the phase shifts
and make all the BS identical by setting <p,‘f =0, t,f =1,

and r,f =r for all (k,£). We then need the backwards BS

0
transformatlon on the creatlon operators, which is a; =

lral +ta anda2 :ta, —i—erTl Similar transforms apply
down the machine at each level. With M = 0 the input
simplifies to [N)?10)9 = (aI°)" 10)910)3 /+/NT and now we
apply the first backwards BS transformation |¢){ [¢)) =

(er“ AH)N |O) |0)(2) /+~/ N to get the state at level one.
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At every new level each a will again bifurcate according
to the BS transformations for that level, with the total number
of bifurcations equal to the total number of BS, and so the
computation of all the terms at the final level involves a
polynomial number of steps in L. It is instructive to carry
this process out explicitly to level L = 3 to get

2413 2 413

[1rt a,” —rctay +ir(® — )AB

lyr)?

1
- JN!

6
— 2%l +ircal +2al TTod.
=1

where we have used a tensor product notation for the states.
If r =0 or r =1 the state is easily computed. Since we are
seeking a regime that cannot be simulated classically we work

with r =1 = 1/4/2.
III. SOLUTION IN THE HEISENBERG AND
SCHRODINGER PICTURES

It is now clear from Eq. (1) what the general form of the
solution will be. We define

W= Y

o,
N =3

and the general solution has the form

2L N
( afa §L> 10"
=1

N
Z (l’ll,l’lz, ...,I’lzL)

N=X"7" n

[T (Fa")" 10", 3)

1<k<2L

1"[|0z, )

V) oy »

X

where all the coefficients af will be nonzero in general.
Since all the operators commute, as they each operate on
a different mode, we have expanded Eq. (3) using the
multinomial theorem where the sum in the expansion is
over all combinations of non-negative integers constrained by
N =375 nand

N N!
= 0)
ni,no, ...,Nop ni'ny! .. nop!

is the multinomial coefficient [15]. The state |)" is highly
entangled over the number-path degrees of freedom. Each
monomial in the expansion of Eq. (3) is unique and so the
action of the set of all monomial operators on the vacuum will
produce a complete orthonormal basis set for the Hilbert space
at level L, given by W ]—[L, | [ne)5, where the n, are
subject to the same sum constramt Let us call the dimension of
that Hilbert space dim[ H (N, L)], which is therefore the total
number of such basis vectors.

Taking L = 3 and N = 2, we can use Eq. (3) to compute
the probability a particular sequence of detectors will fire with
particular photon numbers. What is the probability detector
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one gets one photon, detector two also gets one, and all the
rest get zero? This is the modulus squared of the probability
amplitude of the state |1)3 [1)3 [0)3 [0)] [0)3 |0)3. Setting r =
t = 1/«/5 for the 50:50 BS case, from Eq. (1) we read off
o} =irt?> =i/(2v/2)ando3 = —r’*t = —1/(2+/2),and so the
probability of this event is given by Pjjgp00 = 0.031.

It turns out that it is possible (for general L and N) to
compute the single and binary joint probabilities that detector
p gets n photons and detector g gets m [16]. However, comput-
ing arbitrary joint probabilities between triplets, quadruplets,
etc., of detectors rapidly becomes intractable. We can provide
a closed-form expression for dim[ H(N,L)] by realizing that
it is the same as the number of different ways one can add up
non-negative integers that total to fixed N. More physically,
this is the number of possible ways that N indistinguishable
photons may be distributed over 2L detectors. The answer is
well known in the theory of combinatorics and is

dim[H(N,L)] = (N +2L - 1>,

N (&)

where this is the ordinary binomial coefficient [17]. For our
example with L =3, N = 2 Eq. (5) implies that the number
of distinct probabilities P, np qrst 10 be tabulated is again 21.

We first examine two “computationally simple” examples.
Taking N arbitrary and L = 1 we getdim[H(N,1)] = N + 1,
which is easily seen to be the number of ways to distribute N
photons over two detectors. Next taking N = 1 and L arbitrary
we get dim[H(1,L)] = 2L, which is the number of ways to
distribute a single photon over 2L detectors. If we were to
invoke Dirac’s edict—“Each photon then interferes only with
itself.”—we would then expect that adding a second photon
should only double this latter result [18]. Instead the effect
of two-photon interference on the state space can be seen
immediately by computing dim[H (2,L)] = L(2L + 1). That
is, adding a second photon causes a quadratic (as opposed to
linear) jump in the size of the Hilbert space. Dirac was wrong;
photons do interfere with each other, and that multiphoton
interference directly affects the computational complexity. All
these three cases are simulatable in polynomial time steps with
N and L, but we see a quadratic jump in dimension as soon
as we go from one to two photons. These jumps in complexity
continue for each additional photon added and the dimension
grows rapidly.

We therefore next investigate a “‘computationally complex”
intermediate regime by fixing N =2L — 1. That is, we
build a machine with total number of levels L and then
choose an odd-numbered photon input so that this restric-
tion holds. Equation (5) becomes dim[ H(N)] = (2N)!/(N!)>.
Deploying Sterling’s approximation for large N, in the form
n! = (n/e)*~/2rn we have dim[H(N)] = 22N/\/7TN. This
is one of our primary results. The Hilbert space dimension
scales exponentially with N = 2L — 1. Since all the physical
parameters needed to construct and run our quantum pachinko
machine scale only linear or quadratically with respect to N
or L, we have an exponentially large Hilbert space produced
from a polynomial number of physical resources—Feynman’s
necessary condition for a potential universal quantum
computer.
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Let us suppose we build onto an integrated optical circuit a
machine of depth L = 69 and fix N = 2L — 1 = 137. Such a
device is not too far off on the current quantum optical techno-
logical growth curve [19]. Then we have dim[ H(137)] = 108,
which is again on the order of the number of atoms in the
observable universe. Following Feynman’s lead, we conclude
that, due to this exponentially large Hilbert space, we have
a sufficient condition that a classical computer cannot likely
efficiently simulate this device. However, this is not a necessary
condition. From the Gottesman-Knill theorem we know that
quantum circuits that access an exponentially large Hilbert
space may sometimes be efficiently simulated [20]. We will
strengthen our argument (below) by discussing the necessity
of properly symmetrizing a multiparticle bosonic state and tie
that physical observation back to the complexity of computing
the permanent of a large matrix.

Let us now compare our Heisenberg picture result to that
of the Schrodinger picture. In the computationally complex
regime where N = 2L — 1 the number of distinct Feynman-
like paths we must follow in the Schrodinger picture is
QLN — pN(N+D/2 = 9N*/2 Taking N = 137 and L = 69, as
in the previous example, we get an astounding 2%433 =
4 x 10%% total paths. Dirac proved that the Heisenberg and
Schrodinger pictures are mathematically equivalent, that they
always give the same predictions, but we see here that they
are not always necessarily computationally equivalent [21].
Calculations in the Heisenberg picture are often much simpler
than in the Schrodinger picture. The fact that the two pictures
are not always computationally equivalent is implicit in the
Gottesman-Knill theorem; however, it is satisfying to see here
just how that is so in a simple optical interferometer [20].

IV. SAMPLING WITH COHERENT & SQUEEZED STATE
INPUTS

To contrast this exponential overhead from the resource of
bosonic Fock states, let us now carry out the same analysis
with the bosonic coherent input state input |8 ) |O)2, where
we take the mean number of photons to be | ,8|2 =n. In the
Heisenberg picture this input becomes ﬁ?(ﬂ) |O)? |0>3, where
DY(B) = exp(Bal’ — *a?) is the displacement operator [22].
Applying the BS transformations down to final level L we get

|y —exp( z:ozea,3 - B* Z L*AL>

L
= Hexp(ﬂaZLay — B*a L*AL) |0)E

2L .
= l_[ |:3°‘zL>e : (6)
=1

At the output we have 2L coherent states that have been
modified in phase and amplitude. This is to be expected, as it
is well known that linear interferometers transform a coherent
state into another coherent state. Since all the coefficients
al are computable in #B = L(L + 1)/2 steps, this result is
obtained in polynomial time steps in L, independent of n.
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The mean number of photons at each detector is then simply
nt = |Bak? =nlal|?

A similar analysis may be carried out for bosonic squeezed
input states. Taking, for example, a single mode squeezed
vacuum input |“§)0 IO) SO(S) |0) |O)2, with the squeezing

operator defined as$%(£) = exp{[£*(@%)% — £(a[°)21/2}, we

arrive at
/ 20 10)%,

2L 2 2L
¥)" =exp §*<Z°‘e&zL> —S(Zaza%)
=1 (=1
(7

which does not in general decompose into a separable product
of single-mode squeezers on each output port. Nevertheless,
the probability amplitudes may still be computed in a time
polynomial in L by noting that, from Eq. (5) with N =2,
there are at most 2L (L + 1) terms in this exponent that must be
evaluated. This result generalizes to arbitrary Gaussian state
inputs [23]. The output of the interferometer may be then
calculated on the transformed device in polynomial steps in L.

The exponential scaling comes from the bosonic Fock
structure |N) = (@HN |0) / VN! and the rapid growth of
the number-path entanglement in the interferometer. It is
well known that beam splitters can generate number-path
entanglement from separable bosonic Fock states. For ex-
ample, the simplest version of the HOM effect at level one
with separable input |l)0 |l)0 becomes [y)] |1p)2 = (l”L1
ash@l' +ialy10)110)3 /2 = i[12)} 10)) + 100} 12)31/v/2, a
NOON state [24]. Such entangled NOON states violate a
Bell inequality and are hence nonlocal even though the input
was not [25]. For arbitrary bosonic Fock input states and
interferometer size the amount of number-path entanglement
grows exponentially fast. However, even in the case of
fermionic interferometers, where there is a restriction of two
identical particles per mode, the Hilbert space can still grow
exponentially fast (just not quite as fast as in the case of bosons)
as we shall now show.

2

V. COMPARISON OF BOSONIC TO FERMIONIC FOCK
STATE INPUTS

We now compare the multimode bosonic Fock-state inter-
ferometer to the multimode fermionic interferometer. We will
restrict ourselves to spin-1/2 neutral fermions such as neutrons
that are commonly used in interferometry. Now the number of
fermions per input mode is restricted to zero, one, or two and
we can have two only if they have opposite spin states to be
consistent with the Pauli exclusion principle. The exclusion
principle is derived from the requirement that the total
multiparticle fermionic wave function, which is the product
of the spin and spatial wave functions, is antisymmetric under
the interchange of any two particle state labels. Likewise,
there is a constraint on the bosonic multiparticle multimode
wave function that the total wave function be symmetric. The
symmetry of the wave function must be enforced at each beam
splitter where the particles become indistinguishable and the
spatial part of the wave function experiences maximal overlap
for multiparticle interference to occur. For the sake of argument
we take the coherence length of the particles to be infinite (or
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at least much larger than the depth of the interferometer Ld)
so that enforcing the correct symmetry at each beam splitter
requires enforcing the correct symmetry everywhere in space.

Some care must now be used in the notation. For example,
when we write the bosonic spatial wave function input state
|1)Zm |1)%m, we are assuming both bosons have the same
spin state, since clearly this state is spatially symmetric
under particle interchange its spin state must also be, so
that the product of the two (total wave function) remains
symmetric. To denote this point we instead write |T)I/’4m |T>11)3m
to explicitly show the spin state. [More properly we should
write ¥°(x4,)%"(xp,) [1)5. 1) . but this notation is a bit
cumbersome.] Thence for a 50:50 BS the HOM effect for

. . . BS
bosons in the same spin state can be written, |1)4 |1)} =

|TT)'j‘0ul |0)1b90m + IO)ZM |TT)%M, so both bosons “stick” at the
beam splitter and emerge together. This effect arises as a
direct result of the fact that the spatial part of the wave
function, which gives rises to an effective attraction at the
BS, is symmetric. We could instead prepare an antisymmetric
bosonic singlet spin state input IT),qu N«)%m - |¢>iin |T>%m’
in which case the spatial wave function must be also anti-
Symmetric’ wb(xAin)¢b(xBin) - Ipb(-xBin)13017(-)(:&“)’ so that the
product of the two remains symmetric. In this case the particles
behave fermionically as far as the spatial wave-function
overlap is concerned at the BS and they repel each other in

an anti-HOM effect, always exiting out separate ports and

BS
never together; [1)% 1) — L)% D = M4 5., —

|¢)Z IT)% [26,27]. The reverse happens for fermions.

out out

For example, the symmetric spin input state |T)‘£in |T)£m
is allowed for fermions only if the spatial wave function
is antisymmetric, ¥/ (xa )/ (xp,) — ¥/ (xp )P/ (xa,), s0
that the entire wave-function product remains antisymmetric.
Since the spatial part governs the HOM effect they repel
at the BS and obey an anti-HOM effect and always exit
out separate ports, consistent with the exclusion principle,

namely |T)£m |T)£i“ B |T)£0u[ |T)£ﬂm. However, we can make
the fermions behave spatially bosonically by preparing them
in a spin-antisymmetric singlet input state, which then must
be symmetric in the spatial part, and so they behave as bosons
as far as the spatial overlap is concerned, and we recover
the usual HOM effect, where now they always exit the same
port together: 1)} [1)5 — 14 NG — 1114, 10)
|¢T)£Om |O)£Om. There is no violation of the exclusion principle
as they also always exit with opposite spins. (This type
of effective spatial attraction between fermions in a spin
singlet state explains why the ground state of the neutral
hydrogen molecule is a bound state.) It is clear then that
even fermions can experience number-path entanglement in
a linear interferometer, although not to the same degree as
bosons. However, this entanglement is still sufficient to lead
to an exponential growth in the fermionic Hilbert space, as we
shall now argue.

Now we are ready to apply our resource counting argument
to the fermionic case. For fermions the computationally
complex regime may be accessed when the number of input
particles N is half the number of input modes 2L. The
dimension of the Hilbert space may be computed as before

and turns out to be, for this example, (215) This also grows

out

PHYSICAL REVIEW A 89, 022328 (2014)

exponentially as a function of the resources choosing N = L.
Following the same Sterling’s approximation argument as
above we get exactly the same exponential formula for the
Hilbert space dimension as with bosons, namely 22 /</7 N.

So, in general, in both the fermionic and bosonic case the
Hilbert space dimension grows exponentially with respect to
the resources: particle number and mode number. However,
Feynman’s arguments notwithstanding, an exponential growth
in the Hilbert space is only sufficient but not necessary to attain
classical nonsimulatability. For example, from the Gottesman-
Knill theorem, we can construct a Clifford-algebra-based
quantum computer circuit that accesses an exponentially
large Hilbert space but still can be simulated efficiently
classically [20]. Sometimes there are shortcuts through Hilbert
space, as we shall now argue is the case here for fermions but
not for bosons.

In order to access these large Hilbert spaces in the
interferometer one must require that multiparticle interference
take place at each beam splitter, where the particles must
be indistinguishable, and the spatial wave-function overlap
determines the type of particle-mode entanglement that will
result. The overall bosonic wave function (spatial multiplied by
spin) must be totally symmetric and the overall fermionic wave
function must be totally antisymmetric at each row of BS, and
so they must have these symmetries everywhere in space and
particularly at the input. Now if we give up on a complete tabu-
lation of the Hilbert state space at level L, due to its exponential
growth, and treat the interferometer using a standard quantum
optical input-output formalism, there is an efficient way to take
a given multiparticle, multimode input state at the top of the
interferometer to the bottom of the interferometer. This method
is called matrix transfer and is accomplished by encoding each
level of BS transformations in terms of L matrices of size
(2L) x (2L) and then multiplying them together. This can be
done in the order of O(L?) steps and so it is efficient.

We must now address the issue of computing the sampling
output of the interferometer. While the one- and two-particle
joint particle detection probabilities at the detectors may be
computed efficiently, computation of the higher-order joint
probabilities rapidly become intractable [16]. In order to
compute the complete joint probability distribution, we must
compute the determinant (if the input is fermionic) or the
permanent (if the input is bosonic) of the (2L) x (2L) matrix
found above. Using the method of Laplace decomposition for
constructing the determinant of a matrix, one decomposes the
large determinant into a sum over ever-smaller determinants,
appending alternating plus and minus signs to each in a
checkerboard pattern. Constructing the permanent follows the
same process but all the signs are now only plus.

However, for the determinant, there is a polynomial shortcut
through the exponential Hilbert space—the row-reduction
method. For fermions we may always construct the most
general input state efficiently. On the other hand, there is
no known method such as row reduction to compute the
permanent of an arbitrary matrix efficiently. The most efficient
known protocols for the permanent computation are variants on
the Laplace decomposition and all scale exponentially with the
size of the matrix. This problem of computing the permanent,
in the lingo of computer complexity theory, is that it is in the
class of “#P-hard” (sharp-P-hard) problems. All problems in
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this class are very strongly believed to be intractable on any
classical computer and also strongly suspected to be intractable
on even a quantum computer [7]. While some matrices have
a general form for which the permanent can be more easily
computed, for an arbitrary interferometer setup, this matrix
does not have a general form which we can exploit in order to
shortcut the computation of the permanent. We are left with the
task of using our most efficient, general, exact permanent com-
puting algorithm (Ryser’s formula), which requires O(2%£L?)
number of steps [28]. Finally, we have reached the snag that
undermines our ability to efficiently compute the output and
so renders simulation of the device classically intractable.

VI. CONCLUSION

In conclusion, we have shown that a multimode linear
optical interferometer with arbitrary Fock input states is very
likely not simulatable classically. Our result is consistent with
the argument of AA. Without invoking much complexity
theory, we have argued this by explicitly constructing the
Hilbert state space of a particular such interferometer and
showed that the dimension grows exponentially with the
size of the machine. The output state is highly entangled
in the photon number and path degrees of freedom. We
have also shown that simulating the device has radically
different computational overheads in the Heisenberg versus
the Schrodinger picture, illustrating just how the two pictures
are not in general computationally equivalent within this
simple linear optical example. Finally, we supplement our
Hilbert space dimension argument with a discussion of the
symmetry requirements of multiparticle interferometers and
particularly tie the simulation of the bosonic device to the
computation of the permanent of a large matrix, which is
strongly believed to be intractable. It is unknown (but thought
unlikely) if such bosonic multimode interferometers as these

PHYSICAL REVIEW A 89, 022328 (2014)

are universal quantum computers, but regardless they will
certainly not be fault tolerant. As pointed out by Rohde [29],
it is well known that Fock states of high photon number are
particularly sensitive to loss [30]. They are also supersensitive
to dephasing as well [31]. This implies that even if such a
machine turns out to be universal it would require some type
of error correction to run fault tolerantly. Nevertheless, such
devices could be interesting tools for studying the relationship
between multiphoton interference and quantum information
processing for small numbers of photons. If we choose each
of the PS and BS transformations independent of each other,
we have a mechanism to program the pachinko machine by
steering the output into any of the possible output states.
Even if universality turns out to be lacking we may very
well be able to exploit this programmability to make a special
purpose quantum simulator for certain physics problems such
as frustrated spin systems [32].
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