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Fault-tolerant thresholds for quantum error correction with the surface code
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The surface code is a promising candidate for fault-tolerant quantum computation, achieving a high threshold
error rate with nearest-neighbor gates in two spatial dimensions. Here, through a series of numerical simulations,
we investigate how the precise value of the threshold depends on the noise model, measurement circuits, and
decoding algorithm. We observe thresholds between 0.502(1)% and 1.140(1)% per gate, values which are
generally lower than previous estimates.
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I. INTRODUCTION

In theory, scalable quantum computation is possible if
errors affecting qubits are not too strongly correlated and
occur with a probability below some threshold value [1]. If
the physical error rate is below the threshold, then quantum
gates protected by an error-correction code can be arranged
in a fault-tolerant manner such that any quantum circuit can
be efficiently simulated to any accuracy [2–5]. The precise
value of the threshold depends on an interplay between the
effective noise in the quantum computer and the structure of the
error-correction code in question as well as the sophistication
of the classical processing that accompanies the system [6].

Recently, the surface code has emerged as a promising
candidate for fault-tolerant quantum computation [7–15]. The
surface code requires nearest-neighbor gates in two spatial
dimensions with physical error rates of roughly 1% or less,
depending on the noise model. These requirements compare
favorably with other codes, which may require nonlocal
gates [16] or may have significantly lower tolerance to
errors [17–20]. For this reason, the surface code has under-
pinned several proposals for quantum computer architectures
in a range of physical systems, including superconducting
systems, atom-optical systems, trapped ions, quantum dots,
and nitrogen-vacancy centers in diamond [15,21–27].

This article concerns the value of the threshold error rate for
the surface code. Previous numerical estimates of the threshold
are in general agreement, ranging from 0.57% to 1.40%
per gate, depending on various assumptions [11–15,28–31].
However, the use of different methods to arrive at these
values makes it difficult to faithfully compare them. The
threshold is an important target for experimental devices
and, in part, determines the overhead of scalable quantum
computation [32]. Given this and considering the increasing
relevance of the surface code to the development of quantum
computer architectures, it is important to clearly understand
how the precise value of the threshold depends on assumptions
related to the noise model, measurement circuits, and decoding
algorithm.

Here, through a series of numerical simulations, we
investigate how the threshold is affected by these assumptions.
We estimate thresholds for several syndrome measurement
circuits under a range of physically motivated noise models. In
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general, our results highlight the dependency of the threshold
on properties of the underlying physical system. In some cases,
our results indicate that the threshold may be significantly
lower than previously thought. Our work complements other
recent results concerning the dependency of the threshold
on correlated errors caused by the presence of a bosonic
bath [33,34] and on the effective noise in superconducting
quantum circuits [35].

Notwithstanding the recent development of several alter-
native decoding algorithms for topological codes [36–43], we
restrict ourselves to decoding via Edmonds’ minimum-weight
perfect matching algorithm [44]. Also, we do not consider
other topological codes, such as color codes [45], instead,
referring the interested reader to the recent article of Landahl
et al. [46].

II. THE SURFACE CODE

The surface code, also known as the planar code, is a
variation of Kitaev’s toric code [7]. The toric code is defined
over 2d2 qubits located on the edges of a d × d square lattice
embedded on a two-dimensional torus, where d is the code
distance. The four-dimensional code space is the simultaneous
+1 eigenspace of the stabilizer generators [47], defined as

SX =
⊗

i∈n(v)

Xi, (1)

and

SZ =
⊗

j∈n(f )

Zj , (2)

where v is a vertex in the embedding, f is a face in the
embedding, n refers to the four neighboring qubits, and X

and Z are the usual single-qubit Pauli operators. The surface
code is similarly defined, but its topology is modified from a
torus to a two-dimensional plane with boundaries that alternate
between open and closed faces. Then, the two-dimensional
code space encodes a single logical qubit [8,9]. The logical
Pauli operators are the pair of homologically nontrivial chains
of X and Z operators that connect opposite boundaries of the
same kind, which preserve the code space, as they commute
with the stabilizer generators but act nontrivially on the logical
qubit. Although the logical Pauli operators can be deformed by
the stabilizer generators, their minimum length is always equal
to d. The structure of the surface code for d = 4 is illustrated
in Fig. 1.

1050-2947/2014/89(2)/022321(9) 022321-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.022321


ASHLEY M. STEPHENS PHYSICAL REVIEW A 89, 022321 (2014)

FIG. 1. (Color online) Structure of the surface code for d = 4
where open circles signify data qubits and closed circles signify
ancillary qubits. Stabilizer generators and logical operators are
indicated. Chains of X and Z errors affecting data qubits will
anticommute with the stabilizer generators at the end points, which
will have eigenvalues equal to −1 as indicated. End points may be
obscured if chains terminate on boundaries. In general, the number
of data qubits is d2 + (d − 1)2.

Universal quantum computation is achieved by manipu-
lating the logical operators using the techniques developed
by Raussendorf et al. [11,12]. By defining a surface code
on a plane with a more complicated topology, multiple
logical qubits are introduced. The various logical operators
are manipulated by deforming the topology of the surface
through a series of measurements [14]. Here, we restrict our
study to the case where a surface code encodes a single logical
qubit. In particular, we are interested in the active process
of quantum error correction, which is used to preserve the
quantum information stored in the surface code. Since this
process is largely unchanged in the presence of additional
logical qubits, our results are applicable in general.

III. MEASURING AND INTERPRETING
THE ERROR SYNDROME

Pauli errors affecting qubits in the surface code anti-
commute with a subset of the stabilizer generators. For
example, an X error anticommutes with the Z-type stabilizer
generators associated with the adjacent vertices, which will
have eigenvalues equal to −1. Connected chains of errors
anticommute with the stabilizer generators at the end points
of the chains, which may be hidden if the chains terminate on
boundaries as shown in Fig. 1.

In order to identify errors, we measure the eigenvalues of
the stabilizer generators, giving us an error syndrome. These
measurements are performed by introducing ancillary qubits as
shown in Fig. 1 and executing the measurement circuits shown
in Figs. 2 and 3. The circuits require nearest-neighbor gates
in two spatial dimensions and can be performed in parallel
(with one circuit for each stabilizer generator) across the
entire surface code. In general, the error syndrome may be
unreliable due to errors affecting the ancillary qubits, such as
measurement errors. To mitigate this, the measurement circuits
are repeated d times, and we record when a measurement

Z|0

North

West

East

South

H H

FIG. 2. Circuit to measure the eigenvalue of the stabilizer
generator SX associated with a vertex where the order of operations
is defined in relation to the ancillary qubit at that vertex. The circuit
depth is eight.

outcome changes from its previous value, which indicates that
an error of some kind has occurred. An error affecting a data
qubit will cause a pair of measurements separated in space to
change from its previous values, whereas, an error affecting
an ancillary qubit will cause a single measurement to change
from its previous value and then to immediately change back
again. In general, connected chains of errors can involve both
kinds of errors, so the end points, indicated by the changing
measurement outcomes, may be separated in both space and
time. Thus, the error syndrome is the entire space-time volume
of these changes.

Since errors perturb the state of the system from the code
space, error correction involves identifying a set of corrections
that will restore the state to the code space while preserving the
encoded quantum information. There are several algorithms
to interpret or to decode the error syndrome, which, in
general terms, balance accuracy (having a high likelihood
of identifying the correct homology class of the errors) with
efficiency (capable of decoding the syndrome for large codes
in a sufficiently short time) [10,36–43,48,49]. Here, we use
a decoding algorithm that identifies the most likely set of
errors consistent with the error syndrome where we consider
X and Z errors separately [10,12,29]. In the algorithm, each
measurement change is represented by a node in a graph.
Edges between nodes are weighted to reflect the probability
of the associated measurement changes being caused by a
connected chain of errors. A perfect matching of the graph
reveals a set of errors consistent with the error syndrome, and
the minimum-weight perfect matching reveals the most likely
set. From this set, an appropriate correction can be inferred.
Care must be taken to account for correlated errors that arise in
the measurement circuits, and edges should be appropriately
weighted to account for the fact that different kinds of errors
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FIG. 3. Circuit to measure the eigenvalue of the stabilizer
generator SZ associated with a face. The circuit depth is six.
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(which cause different pairs of measurement changes) may
occur with different probabilities [12].

IV. OVERVIEW OF NUMERICAL METHODS

Our aim is to determine the threshold error rate of the
surface code. For physical error rates below this value,
increasing the code distance (linearly) will decrease the logical
error rate (exponentially). To determine the logical error
rate as a function of the physical error rate, we perform
Monte Carlo simulations. In each instance, a set of errors is
generated based on some noise model, the error syndrome
is calculated and decoded, a correction is applied, and
the resulting homology class is calculated to test for the pres-
ence or absence of a logical error. For noise models in which
the error syndrome is unreliable, the measurement circuits are
repeated d times before the error syndrome is decoded. In our
simulations, minimum-weight perfect matching is performed
with Kolmogorov’s implementation [50] of Edmonds’ perfect
matching algorithm [44], and we use a Mersenne twister
pseudorandom number generator [51]. For each physical error
rate, the logical error rate is an average of approximately 106

independent instances where we ensure that at least 104 logical
errors are observed per point to limit statistical uncertainty.

For a local error model, decoding of the surface code can be
mapped to a three-dimensional random-plaquette gauge model
on classical spins where the zero-temperature phase transition
corresponds to the threshold error rate [10,48,49]. Following
Wang et al. [49], the behavior of the logical error rate near the
threshold corresponds to critical behavior in the spin model
where the spin-correlation length ξ scales according to

ξ ∼ |p − pth|−ν0 , (3)

where p is some physical error rate, pth is the threshold
error rate, and ν0 is the scaling exponent corresponding to
the universality class of the model. Thus, for sufficiently large
d, the logical error rate pl should follow

pl = (p − pth)d1/ν0 . (4)

Allowing for systematic finite-size effects, we fit our data to a
quadratic universal scaling function,

pl = A + B(p − pth)d1/ν0 + C(p − pth)2d2/ν0 , (5)

from which we determine pth and ν0. We perform simulations
for odd values of d between d = 3 and d = 17 where
p ∼ pth. Violations of the scaling ansatz are discernible for
the smallest codes such that the minimum code distance for
strong agreement between the numerical data and the ansatz
appears to be d = 7. To account for this, values of pth and
ν0 are determined from a best fit of the data for d � 9.
In every case, R2 > 0.999, indicating accurate fitting. When
plotting the data in Figs. 4 and 5, the curves for d � 9 follow
the universal scaling function in Eq. (5). Data for d � 7
are included for completeness, however, the corresponding
curves are independent polynomial fits that serve only as a
guide for the eye. Our results indicate that, for the various
circuit-based noise models we consider, which introduce only
short-range correlated errors, the value of ν0 is consistent with
the universality class of the strictly local three-dimensional
random-plaquette gauge model [49].

The surface code is defined by its hard boundaries.
However, it has been common to, instead, study the threshold
of the toric code, which effectively has periodic boundary
conditions in two spatial dimensions. Here, we present results
for the surface code. In this case, the measurement circuits at
the boundaries of the surface code are modified to account for
the omitted qubits. This changes their effective error rate from
the measurement circuits in the bulk. However, we will see that
the logical error rate rapidly converges to a single value at the
threshold as the code distance is increased, indicating that these
boundary effects are significant only for the smallest codes.
This suggests that the toric code and the surface code will
share the same threshold. However, because the structure of
the logical operators depends on the boundary conditions, the
correct boundary conditions should be used when an estimate
of the logical error rate is sought for some physical error rate.

Lastly, the threshold is sensitive to errors that arise in the
measurement circuits, which will, in turn, depend on the set
of gates native to the quantum computer. We consider three
cases, which are parametrized by the overall circuit depth:

(1) Depth-eight circuits. First, we assume the gate set
consists of the preparation of state |0〉, the single-qubit
Hadamard rotation, the two-qubit controlled-NOT gate, and
measurement in the Z basis. Then, referring to the circuits in
Figs. 2 and 3, the overall circuit depth is equal to eight. In this
case, there is an asymmetry between the two measurement
circuits with the longer circuit being more unreliable due to
the additional gates. This causes the threshold to split into an
X-error threshold and a Z-error threshold.

(2) Depth-six circuits. Second, we assume that the gate
set is extended to include the preparation of state |+〉 and
measurement in the X basis. This removes the need for the
Hadamard rotations in Fig. 2, and so, the overall circuit depth
is reduced to six.

(3) Depth-five circuits. Third, we assume measurement is
nondestructive and prepares the ancillary qubit in a known
state (either |+〉 and |−〉 or |0〉 and |1〉, depending on the
measurement basis). This allows the measurement and state
preparation to be combined, and so, the overall circuit depth
is reduced to five.

In each of these cases, all measurement circuits are
performed in parallel and repeated d times where identity
gates are inserted whenever qubits are required to be idle.
In the first case, we give the Z-error threshold, which is the
lower of the two thresholds and, therefore, sets the overall
threshold. In all other cases, we give the X-error threshold.
These thresholds set targets for the high-level gates specified in
the circuits, rather than for any lower-level physical operations.
Also, we have ignored gates that are not required for error
correction but which may be required to achieve universality
by distillation [52].

V. NUMERICAL RESULTS

A. Code capacity noise model

We begin with an idealized case in which the error syndrome
of the surface code can be measured perfectly. Single-qubit
Pauli errors are applied to data qubits with probability p. In this
case, we are effectively testing the code capacity of the surface
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FIG. 4. (Color online) Logical error rate as a function of the physical error rate for the standard circuit-based noise model for various code
distances. Solid curves are derived from the universal scaling function in Eq. (5), and dashed curves are polynomial fits that serve only as a guide
for the eye. Error bars indicate a ±2σ statistical error. The value of the physical error rate at the intersection is the threshold. (a) Depth-eight
circuits where the threshold splits into an X-error threshold and a Z-error threshold due to the asymmetry between the two measurement
circuits. The Z-error threshold is lower and, therefore, sets the overall threshold. (b) Depth-six circuits. (c) Depth-five circuits.

code. Because it is perfectly reliable, the error syndrome only
needs to be measured once. This eliminates the timelike aspect
of the decoding algorithm, and error correction is reduced to
interpreting the error syndrome in two spatial dimensions.
Note that this simplified decoding problem can be mapped to
the two-dimensional random-bond Ising model on classical
spins [10,48,49,53]. For the code capacity noise model, we
find

pth = 0.1030 ± 0.0001, (6)

ν0 = 1.47 ± 0.01, (7)

consistent with Wang et al. [49], who found pth = 0.1031 ±
0.0001 and ν0 = 1.46 ± 0.01. Our threshold is lower than
the threshold of ∼0.109 found for an optimal decoding
algorithm [54–57] but higher than the threshold of ∼0.09
found for a renormalization-group decoding algorithm [36].

B. Phenomenological noise model

Next, we move to a case in which errors can occur on
both data and ancillary qubits. Single-qubit Pauli errors are
applied to all qubits with probability p. This noise model
neglects the propagation of errors between data and ancillary
qubits in the measurement circuits but captures the essential
challenge of fault-tolerant error correction where the process
of error correction itself is inherently faulty. In this case, the
full decoding algorithm is required to account for the unreliable
error syndrome. For the phenomenological noise model, we
find

pth = 0.0290 ± 0.0001, (8)

ν0 = 1.01 ± 0.01. (9)

Again, this is consistent with Wang et al. [49], who found
pth = 0.0293 ± 0.0002 and ν0 = 1.00 ± 0.05. Our threshold
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FIG. 5. (Color online) Logical error rate as a function of the physical error rate for the balanced circuit-based noise model for various code
distances. See the caption for Fig. 4 for details. (a) Depth-eight circuits. (b) Depth-six circuits. (c) Depth-five circuits.

is lower than the threshold of ∼0.033 found for an optimal
decoding algorithm [58] but higher than the threshold of
∼0.0194 found for a renormalization-group decoding algo-
rithm [37].

C. Standard circuit-based noise model

Next, we move to a more general noise model, assuming
that all gates in the measurement circuits may introduce errors.
This is the most relevant case for fault-tolerant quantum
computation, although we note that the particulars of the
noise model will depend on the physical system under
consideration. For example, measurements may be slower and
less reliable than other gates. First, we consider a so-called
standard noise model. Erroneous single-qubit gates occur with
probability p, acting ideally followed by a single-qubit Pauli
error chosen randomly from set {X,Y,Z}. Similarly, erroneous
two-qubit gates occur with probability p, acting ideally
followed by a two-qubit Pauli error chosen randomly from

set {IX,IY,IZ,XI, . . . ,ZZ}. Lastly, erroneous initialization
and measurement each occur with probability p, preparing
or reporting the incorrect orthogonal eigenstate. Under the
standard noise model, for the depth-eight circuits, we find

pth = 0.005 02 ± 0.000 01, (10)

ν0 = 1.05 ± 0.01, (11)

for the depth-six circuits, we find

pth = 0.006 72 ± 0.000 01, (12)

ν0 = 1.06 ± 0.02, (13)

and, for the depth-five circuits, we find

pth = 0.008 46 ± 0.000 01, (14)

ν0 = 1.02 ± 0.01, (15)

as shown in Fig. 4.
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D. Balanced circuit-based noise model

The standard noise model is somewhat unreasonable as the
qubits involved in two-qubit gates are more reliable than idle
qubits. So, next, we consider a so-called balanced noise model,
which ensures that idle qubits have the same probability of
error as the qubits involved in two-qubit gates and accounts
for the fact that measurement is only sensitive to errors in one
basis. Specifically, the standard noise model is modified so
that erroneous single-qubit gates occur with the probability
of 4p/5 and erroneous initialization and measurement occurs
with the probability of 2p/3. Under the balanced noise model,
for the depth-eight circuits, we find

pth = 0.005 76 ± 0.000 01, (16)

ν0 = 1.05 ± 0.02, (17)

for the depth-six circuits, we find

pth = 0.007 49 ± 0.000 01, (18)

ν0 = 1.02 ± 0.01, (19)

and, for the depth-five circuits, we find

pth = 0.009 05 ± 0.000 01, (20)

ν0 = 1.00 ± 0.01, (21)

as shown in Fig. 5.

E. Perfect single-qubit gates

In some physical systems, single-qubit gates may be
significantly faster and more reliable than two-qubit gates.
In this case, the threshold will depend mainly on the two-qubit
controlled-NOT gates in the measurement circuits. We can
approximate this case by modifying the standard noise model
so that all single-qubit gates (including measurement and
initialization) are perfectly reliable. In this case, we find

pth = 0.011 40 ± 0.000 01, (22)

ν0 = 1.05 ± 0.03. (23)

F. Decoding algorithm with a rectilinear metric

Next, we consider the effect of simplifying the decoding
algorithm. Following Raussendorf et al. [12], our decoding
algorithm accounts for the relative probabilities of errors,
including correlated errors, that arise in the measurement
circuits. However, the threshold was previously estimated
using a decoding algorithm that ignores these correlated
errors [14,29]. This algorithm is also based on minimum-
weight matching on a graph, but the weights of edges
between nodes are made to equal the rectilinear distance
between those nodes, simply reflecting the minimum number
of single-qubit Pauli errors in a chain connecting the end
points. Without accounting for correlated errors, the surface
code corrects fewer errors than the code distance implies,
negatively affecting its performance, particularly at low error
rates. In fact, for d = 3, the code cannot reliably correct even a
single error. With this simplification, under the standard noise
model, for the depth-six circuits, we find

pth = 0.005 04 ± 0.000 01, (24)

ν0 = 0.99 ± 0.02. (25)

Fortunately, there is no significant cost to accurately account-
ing for correlated errors in the surface code. Similar methods
exist for accounting for correlated errors in concatenated quan-
tum error correction, also leading to significantly improved
performance [16,59,60].

G. Three-dimensional topological cluster states

Lastly, we consider an interesting and closely related
scheme known as topological cluster-state quantum error
correction [11,12]. In this scheme, the measurement circuits
are simulated by a series of single-qubit measurements on
a particular three-dimensional cluster state [12]. The scheme
may be more practical than the surface code in some physical
systems, partly due to its elegant tolerance against qubit loss,
which was shown by Barrett and Stace [28]. A modified
depth-six circuit is required to prepare the cluster state from
unentangled qubits and then to measure each qubit in the
appropriate basis [12]. However, the decoding algorithm is
largely unchanged from the algorithm for the surface code.
Under the standard noise model, we find

pth = 0.005 45 ± 0.000 01, (26)

ν0 = 1.01 ± 0.01, (27)

and, under the balanced noise model, we find

pth = 0.006 26 ± 0.000 01, (28)

ν0 = 1.01 ± 0.01. (29)

VI. DISCUSSION

It is instructive to compare our results with a range of
previous estimates of the threshold. We begin by noting
that it is reasonable to expect some slight variation between
estimates due to different implementations of the decoding
algorithm and the numerical simulations. Nevertheless, for
the code capacity and phenomenological noise models, our
results are consistent with Wang et al. [49]. For the remaining
circuit-based noise models, our results are summarized in
Table I and are compared with a range of previous estimates.
Of the values that can be directly compared, our results
are consistent only with the estimate of the threshold for
topological cluster-state error correction due to Barrett and
Stace [28]. Beyond this result, there is some variation with
our thresholds being significantly lower than those previously
reported. This discrepancy appears to be independent of the
particular measurement circuit, noise model, and decoding
algorithm.

To investigate this discrepancy, let us consider the definition
of the logical error rate. Recall that measurement circuits are
repeated to account for the fact that the error syndrome is
unreliable. We define the logical error rate to be the error
rate per d rounds of measurement, following Raussendorf
et al. [11,12]. This definition reflects the fact that, for a
roughly isotropic noise model, d rounds are required to achieve
the same protection against errors affecting ancillary qubits
as against errors affecting data qubits. In other words, if
we increase the code distance, then error correction takes
more time, which should be accounted for when calculating
the logical error rate. On the other hand, the estimates in
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TABLE I. Summary of thresholds for various circuit-based noise models where our results are compared with previous estimates. The
values without references are our results. If no uncertainty is given, none was reported in the associated reference.

Standard noise model Balanced noise model

Depth-eight circuits 0.00502 ± 0.00001 0.00576 ± 0.00001
0.00541 ± 0.00001b 0.00616 ± 0.00001a

0.0057a,b [15]
Depth-six circuits 0.00672 ± 0.00001 0.00749 ± 0.00001

0.0075c [12]
Depth-five circuits 0.00846 ± 0.00001 0.00905 ± 0.00001

0.009b [31] 0.0012b [30]
0.011b [30]

Perfect single-qubit gates 0.01140 ± 0.00001
0.0125b [15]
0.014b [30]

Rectilinear metric 0.00504 ± 0.00001
(depth-six circuits) 0.006b [14]

0.0078b [29]
Topological cluster states 0.00545 ± 0.00001 0.00626 ± 0.00001

0.0063 [28]
0.0067c [11]

aThreshold for X errors. For this noise model, the Z-error threshold is lower and, therefore, sets the overall threshold.
bEstimated from the logical error rate per round of measurement, rather than per d rounds of measurement.
cNot directly comparable due to minor differences in the measurement circuits and noise model.

Refs. [14,15,29–31] share a different definition (also see
Refs. [25,61]). According to this definition, the logical error
rate is the error rate per round of measurement (or, equivalently,
the logical error rate per round is reciprocated to give the
expected number of rounds until a logical error occurs). Note
that this definition is independent of the code distance d. In
both cases, for various code distances, the logical error rate is
plotted over a range of physical error rates, and the threshold
is estimated to be the physical error rate for which these curves
intersect.

Let us define the logical error rate to be the error rate per
round of measurement as per Refs. [14,15,29–31] and consider
two surface codes with code distances d = n and d = n + 2.
For some physical error rate pn, the logical error rate of the
two codes will be equal. However, if we fix the physical error
rate at pn and perform d rounds of measurement as required,
then the larger surface code will be more likely to fail. In
other words, according to this new definition, the two codes
are equally reliable, but according to our original definition,
the larger code is less reliable. The latter implies that the
threshold is actually at some physical error rate pth < pn. If
n becomes larger, then the relative difference between the two
code distances becomes smaller as does the relative difference
between their reliability over d rounds of measurement. So,
as n → ∞, we may expect pn → pth from above. This would
suggest that defining the logical error rate to be the error rate
per round of measurement could lead to an overestimate of the
threshold.

To test this assertion, we return to the depth-five circuits
under the standard noise model. Figure 6 shows the logical
error rate per round of measurement as a function of the
physical error rate for various code distances. As the code
distance increases, the physical error rate at which consecutive
curves intersect decreases. In particular, the intersection moves
from physical error rates above 0.01 to approximately 0.0095.

This is roughly consistent with the data in Refs. [30,31],
and qualitatively similar behavior can also be seen in
Refs. [14,15,29]. In Ref. [30], the threshold was estimated
to be 0.011 from the intersection of the d = 7 and d = 9
curves, and in Ref. [31], the threshold was estimated to be
0.009 from the intersection of the d = 45 and d = 55 curves.
The discrepancy between these two values was attributed to
significant boundary effects for d � 21. However, our earlier
simulations indicate that boundary effects are negligible for
d � 7, pointing to another explanation for this behavior. Also,
in Ref. [31], there appears to be no consistent intersection, even
for d > 25. This implies that the threshold is actually lower
than 0.009. Recall that, under the same assumptions, we found
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FIG. 6. (Color online) Logical error rate per round of measure-
ment as a function of the physical error rate for the depth-five circuits
under the standard noise model. Error bars indicate a ±2σ statistical
error. [Compare with Fig. 4(c).]
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pth = 0.008 46 ± 0.000 01 as shown in Fig. 4(c). Ultimately,
given the lack of error analysis in Refs. [14,15,29–31], it is
difficult to make a conclusive statement about the discrepancy
between these estimates and our results.

VII. CONCLUSION AND FURTHER WORK

To summarize, we have performed a series of numerical
simulations of the surface code, finding that the value of the
threshold error rate varies between 0.502(1)% and 1.140(1)%
per gate for typical assumptions made in studies of this kind.
Our results highlight the dependency of the threshold on
properties of the underlying physical system. For example,
having to perform additional gates to access initialization
and measurement in the conjugate basis significantly reduces
the threshold. Similarly, the highest thresholds will only be
realized if measurements (in both the X and Z bases) are
nondestructive or if all single-qubit gates are effectively free
from noise. However, in some cases, our results indicate
that the threshold may be significantly lower than previously
thought. The target for experimental devices may be lower
still, assuming that gates, such as the two-qubit controlled-NOT

gate, will be composed of several physical operations. The
operational error rate must also be sufficiently below the
threshold to limit the overhead due to error correction. Lastly,
our results indicate that the threshold for topological cluster-
state error correction is lower than for the surface code under
an identical noise model. However, like other schemes based
on cluster states, this scheme has several desirable properties
that may offset this disadvantage in some physical systems,
particularly systems with nondeterministic gates or systems
significantly affected by qubit loss or leakage.

We have limited ourselves to the question of the thresh-
old for the surface code with decoding via Edmonds’
minimum-weight perfect matching algorithm. Naturally, there
are many avenues for further work. Given the recent

proliferation of alternative decoding algorithms for topological
codes, such as the surface code [36–43], it would be valuable to
determine circuit-level thresholds for these algorithms, making
it easier to understand their practical costs and benefits. It may
also be possible to improve these thresholds by accounting
for additional correlations present in some noise models
(for example, the correlation between X and Z errors in
depolarizing noise) [36]. Comparing these thresholds in a
consistent manner will be necessary to draw strong conclusions
about the different approaches to error correction in the surface
code.

Another important open question is the performance of
the surface code at error rates well below the threshold. A
greater understanding of this regime—including an under-
standing of how performance is affected by the introduction
of additional logical qubits and nontrivial logical gates—will
assist in determining the true overhead of scalable quantum
computation under various assumptions. This question was
recently addressed by Bravyi and Vargo for the standard noise
model [61]. Expanding their work to consider a range of noise
models and decoding algorithms would be instructive.

Lastly, we highlight related schemes for topological
quantum error correction against noise models that differ
significantly from the typical models considered here. These
include schemes to tolerate high rates of qubit loss [28,62,63]
and a concatenated code tailored to highly dephasing-biased
noise [64]. Considering other physically motivated noise
models may lead to new schemes that could underpin quantum
computer architectures in the future.
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