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Hybrid topological quantum computation with Majorana fermions: A cold-atom setup
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In this paper, we present a hybrid scheme for topological quantum computation in a system of cold atoms
trapped in an atomic lattice. A topological qubit subspace is defined using Majorana fermions which emerge in a
network of atomic Kitaev one-dimensional wires. We show how braiding can be efficiently implemented in this
setup and propose a direct way to demonstrate the non-Abelian nature of Majorana fermions via a single-parity
measurement. We then introduce a proposal for the efficient, robust, and reversible mapping of the topological
qubits to a conventional qubit stored in a single atom. There, well-controlled standard techniques can be used
to implement the missing gates required for universal computation. Our setup is complemented with an efficient
nondestructive protocol to check for errors in the mapping.
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I. INTRODUCTION

The study of topological states of matter is a new direction
in the physics of highly entangled quantum matter. Topologi-
cally ordered states are host to interesting and unique prop-
erties, in particular, quasiparticle excitations which exhibit
fractional or non-Abelian quantum statistics. The existence of
such quasiparticles opens up the possibility for fundamentally
new phenomena beyond those attributed to systems of bosons
or fermions. One example of such quasiparticles are Majorana
fermions (MFs). In addition to their fundamental interest [1,2],
MFs have also been proposed as the basis of a topological
quantum computer. There, the interchange (braiding) of MFs
is used to perform fault-tolerant gates [3–6].

Proposals for the realization and braiding of MFs have been
proposed in various solid-state systems [7–13], and their ob-
servation has been reported in superconductor-semiconductor
systems [14–17]. In parallel to the proposal of these solid-state
setups, systems supporting MFs and proposals for the reading
and writing of a quantum memory have also been proposed
in systems of cold atoms trapped in optical lattices [18–21].
These systems have the advantage of unprecedented control,
in particular the possibility to carry out manipulations on
individual sites and links of the lattice grid, as has been
demonstrated in the ground-breaking experiments [22–24].
Based on this experimental progress, an efficient braiding
protocol for MFs in an atomic Kitaev wire network has been
proposed [25], and it has been demonstrated that this protocol
is immune to typical experimental errors.

However, in both solid-state and cold-atom realizations,
controlled access to the topologically protected degrees of
freedom remains a challenge. And while braiding of MFs
realizes quantum gates in a topologically protected way,
braiding alone can not realize all necessary gates for universal
computing [26]. A natural compromise is thus a hybrid
system, coupling the topologically protected system to a
conventional qubit in order to complete the gate set [27,28].
Many hybrid systems have been proposed in solid-state setups
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[29–31], where many current protocols require, for example,
measurements and state distillation [32–35].

In the following, we propose a system which exploits the
control available in atomic setup to implement (i) braiding
of MFs in an atomic Kitaev wire setup, (ii) a way to
demonstrate the non-Abelian nature of MFs with a single parity
measurement, and (iii) a reversible mapping protocol which
maps the topological qubit to a conventional qubit stored in
a single atom. This mapping allows for the realization of the
missing gates, which can be implemented via well-controlled,
standard techniques as well as for the initialization and readout
of the qubit. Together, these pieces realize a hybrid scheme
which allows for a proof-of-principle demonstration of the use
of the braiding of MFs for universal quantum computation in
an experimentally realizable atomic setup.

Our proposal is based on zero-energy MFs that emerge as
quasiparticles with anyonic statistics in a network of atomic
one-dimensional (1D) quantum wires coupled to a reservoir
of fermionic molecules [18]. The degenerate ground-state
subspace of this system is used to define a qubit subspace,
where braiding of the MFs realizes topologically protected
gates. Using the possibility for single-site and single-link
addressing in atomic systems [22–24], this topological ground-
state subspace can be adiabatically mapped to a conventional
qubit system, where the quantum information is stored as the
presence or absence of an atom on a single site. Once the
topological qubit has been mapped to this conventional qubit,
there are many standard techniques to implement the missing
gates [36], for example, collisional gates [37], and using the
long-range Rydberg interaction [38–40]. Here, we consider
the use of Rydberg gates, as there exist experimental setups
which are able to implement both the Kitaev wire and carry out
these gates [41]. Finally, an efficient, nondestructive protocol
can be carried out to verify if the mapping protocol has been
successfully implemented.

Our analysis includes an analytical solution of the ideal
Kitaev wire system and a numerical analysis of the nonideal
system including effects of imperfect single-site–link address-
ing. In this analysis, we do not consider finite-temperature
effects or effects of interactions between wires. These effects
lift the degeneracy of the ground-state subspace; this splitting
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determines the lifetime of the topological qubit and sets an
upper bound on the time allowed for adiabatic manipulation of
the Majorana fermions. However, this splitting has been shown
to be exponentially smaller than the single-particle excitation
energy in the wires [42]. This exponential suppression ensures
that the time scale on which the protocol is carried out can be
chosen such that this ground-state splitting can be neglected
while still satisfying the condition for adiabaticity.

This article is organized as follows: In Sec. II, we begin
with a review of the emergence of MFs in the Kitaev quantum
wire and we briefly explain one possibility to realize this
system in a cold-atom setup. In Sec. III, we present an
extended discussion of the braiding protocol introduced in
[25], adding a detailed discussion on the effect of experimental
errors and the consequences of an external harmonic trap. In
Sec. IV, we explain how a topologically protected logical qubit
space can be defined, and we present the set of qubit gates
that can be achieved in this setup via braiding. In Sec. V,
we present a protocol that allows for a robust mapping of
the topologically protected qubit to a conventional qubit.
This protocol is reversible, and allows for preparation and
readout of an arbitrary qubit state. Additionally, we show
how the long-range interaction of Rydberg states allows for
an efficient check if the mapping protocol has been carried
out successfully. Finally, in Sec. VI, we show how Rydberg
physics can be exploited further to implement the missing
gates for universal quantum computation. The combination
of the building blocks presented in Secs. IV–VI provides us
with a hybrid system connecting a topologically protected and
a topologically unprotected conventional qubit system for an
efficient implementation of a universal quantum computer.

II. MAJORANA FERMIONS IN THE KITAEV CHAIN

In this section, we briefly review theoretically the realiza-
tion of MFs in the Kitaev quantum wire and introduce their
implementation in an atomic setup. This will provide the basis
for braiding in Sec. III, the definition of a topological qubit
subspace in Sec. IV, and the mapping to the conventional qubit
subspace, shown in Sec. V. Then, we explain how the recent
advances in cold-atom experiments bring an AMO realization
of this model into experimental reach.

A. Theoretical review of Majorana fermions in a Kitaev wire

Following the proposal by Kitaev [43], we consider a
system of single-component fermions that are confined to a
one-dimensional 1D wire of N sites [see Fig. 1(a)], governed
by the Hamiltonian

HK =
N−1∑
j=1

H
(K,J,�)
j,j+1 − μ

∑
j

a
†
j aj , (1)

where we define the coupling Hamiltonian H (K,J,�) between
two sites as

H
(K,J,�)
j,j+1 ≡ H

(h,J )
j,j+1 + H

(p,�)
j,j+1, (2)

with

H
(h,J )
j,j+1 ≡ −Ja

†
j aj+1 + H.c.,

H
(p,�)
j,j+1 ≡ �ajaj+1 + H.c. (3)

(a) (b)

FIG. 1. (Color online) (a) A schematic of Kitaev chain with N

sites; the j th site corresponds to the fermionic operator âj . The
Majorana modes c2j−1,c2j are defined according to Eq. (4). The
fermionic Bogoliubov modes are ãν , and are composed of Majorana
modes from neighboring sites, leaving two unpaired Majorana modes
(γL/R) on the ends of the wires. For the ideal chain (J = �),
these modes are γL = c1,γR = c2N . For a nonideal chain (J �= �),
these modes decay exponentially into the bulk. (b) Enforcing closed
boundary conditions links the two end modes forming a closed ring,
with no unpaired Majorana modes.

Here, a
†
j and aj , j = 1, . . . ,N are fermionic creation and

annihilation operators. The parameters J > 0 and � ∈ R

denote the hopping and pairing amplitudes, respectively, and
μ is a chemical potential.

A Hamiltonian of the form (1) can be easily diagonalized
in the Majorana representation. There, instead of using the
2N creation and annihilation operators, we work with the 2N

Hermitian operators

c2j−1 = a
†
j + aj ; c2j = (−i)(a†

j − aj ) (4)

that fulfill {ck,cl} = 2δkl . In this representation, the Hamilto-
nian can be rewritten as H = i

∑
k,l hklckcl , where h = −hT is

a real matrix. For the “ideal” quantum wire (J = |�|,μ = 0),
the Hamiltonian simplifies to H = −iJ

∑N−1
j=1 c2j c2j+1. In

this case, the Hamiltonian has two zero Majorana modes
γL/R = c1/2N located at the ends of the wire and combine
to form a zero-energy nonlocal fermion f = γL − iγR (Bol-
ogoliubov zero-energy mode). The other N − 1 fermionic
Bolgoliubov modes have the form ã†

ν = (c2ν+1 + ic2ν), ν ∈
[1,N − 1] and link neighboring sites in the bulk [see Fig. 1(a)].
In the ideal wire, these modes are degenerate, with energy 2J .

In the general case |�| �= J , |μ| < 2J , the corresponding
zero-energy Majorana modes are γL/R = ∑

j ν
L/R

j cj , where
the (real) coefficients νj are such that these modes are localized
at the left and right edges of the wire, decaying exponentially
inside the bulk. The energy of these modes, and of the
corresponding nonlocal fermion f = γL − iγR , is not exactly
zero (as is the case for the ideal wire) rather the energy scales
such as ∼ exp(−Nξ ) and approaches zero for N → ∞. The
energies of the other N − 1 fermionic Bogoliubov modes are
no longer degenerate, rather they split into an energy band.

Since the Hamiltonian (1) commutes with the fermion-

number parity operator P = (−1)
∑

j a
†
j aj , the ground-state

subspace decomposes into two decoupled sectors. The two
degenerate ground states |+〉 and |−〉 (with even and odd
parity, respectively) correspond to the presence or absence
of one nonlocal fermion f : The ground states fulfill the
conditions f |−〉 = 0 and f †|−〉 = |+〉.
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FIG. 2. (Color online) The experimental realization of a Kitaev
wire in an optical lattice setup. The hopping term ∼J comes naturally
in an optical lattice setup, while the pairing ∼� is realized by the
dissociation of a molecule from the BEC reservoir with a rf field. A
Raman coupling creates an effective spin-orbit coupling as well as a
magnetic field giving an effective single-component model [18].

In the following, we call the Kitaev chain of the form in
Hamiltonian (1) an “open” chain, in reference to the open
(unlinked) boundary conditions at each end of the chain
[see Fig. 1(a)]. Additionally, it will be useful to define a
“closed” chain by enforcing periodic boundary conditions
which link the last site to the first site, obtaining a closed
ring [see Fig. 1(b)]. This closed chain no longer has a
degenerate ground-state space; there is one unique (odd-parity)
ground state |g〉 and N first excited states. In addition to
the N − 1 excited states shown above given by ã†

ν |g〉, one
additional gapped Bogoliubov mode is present due to the
periodic boundary conditions. The associated state ã

†
N |g〉 =

(c1 + ic2N )|g〉 is the N th Bogoliubov mode.

B. Implementation of the Kitaev chain with cold atoms

The physical implementation of the Kitaev wire has been
discussed mainly in a solid-state context. In these systems, a
semiconductor wire can be coupled to an s-wave supercon-
ductor, giving rise to the pairing term necessary in the Kitaev
Hamiltonian [9,12]. Here, we pursue a complementary route
considering a system of cold atoms confined to an optical
lattice.

In the following, we briefly summarize the atomic real-
ization of the Kitaev wire proposed in [18]. We assume a
tunneling, tight-binding model where the hopping term of the
Hamiltonian in Eq. (1) (a†

j aj+1 + H.c.) arises naturally. In

Ref. [18], it has been shown that the pairing term a
†
j a

†
j+1 +

H.c., can be engineered via the coupling of the system to a BEC
reservoir of Feshbach molecules. The main idea is to couple
the two internal spin states (a†

p,↑,a
†
p,↓) of the trapped atoms

with momentum p in a 1D wire of fermions to a Feshbach
molecule via a rf field. This results in an effective pairing
term of the form �a

†
p,↑a

†
−p,↓ + H.c., as shown schematically

in Fig. 2. Additional lasers generate optical Raman transitions
with photon recoil to create both an effective magnetic field and
an effective spin-orbit coupling, which project out one of the
spin components, such that we obtain the spinless pairing term
of Eq. (1) [18]. Estimates give an energy gap separating the
Majorana states from the rest of the spectrum on the order of
tens of nano Kelvins. For an alternative proposal, see Ref. [19].

Our approach is motivated by several ground-breaking
experiments which have proven that the control available

in atomic systems provides a unique platform for studying
quantum states. This includes the possibility for optical lattices
to be loaded in a well-controlled way, as shown by [44]. This
experiment was followed by a breakthrough in controllability,
allowing for atom addressing and imaging at the level of
single sites [23,24]. This possibility for single-site addressing
is integral for the implementation of braiding shown in
Sec. III and the mapping to the conventional qubit subspace
shown in Sec. V.

III. BRAIDING OF MAJORANA FERMIONS

The braiding, or interchange, of two Majorana modes γ1

and γ2 gives rise to the nontrivial transformation γ1 �→ −γ2,
γ2 �→ γ1. This remarkable property can be used as the basis
to form topologically protected gates [3–5]. In this section,
we present a protocol on how to efficiently braid atomic MFs
which can be realized in an optical lattice implementation
of a set of Kitaev wires. We present an extended analysis
based on the protocol introduced in [25]; here, we include an
extended discussion on possible experimental errors, including
the effects of an external harmonic trap, as well as including
a proposal for the direct demonstration of the non-Abelian
statistics of MFs via a single-parity measurement.

We consider two Kitaev wires that are aligned in parallel as
depicted in Fig. 3. In Sec. III A, we consider the case of ideal
wires, which we solve analytically. In Sec. III B, we solve
numerically the experimentally realistic scenario of nonideal
wires. Additionally, we will further consider the effect of an
external harmonic trapping potential. We label the sites on
the two wires by (w,j ), where w = u,l denotes the upper
resp. lower wire and j = 1, . . . ,N enumerate the sites in
the one-dimensional configuration. Each wire is described
by a Hamiltonian H (w) of the form given in Eq. (1), with
j → (w,j ), J,�,μ �→ Jw,�w,μw. In the following, only
operations on the two sites (u,1) and (l,1) on the left side
of the wire and the nearby links are required. To simplify
notation, we label the involved sites by �s1 = (u,1), �s2 = (u,2),
�s3 = (l,1), and �s4 = (l,2) (see Fig. 3). We start with an analysis
of two ideal wires, i.e., Ju = �u > 0, Jl = �l > 0, μu,l = 0,
as this case allows for a simple analytic treatment. We assume
without loss of generality |Ju| > Jl . Extending the analysis
to nonideal wires will be done numerically in the following
section.

A. Ideal case

In the case of two ideal wires, the Majorana modes on
the upper and lower wires are of the form γ

(u)
L = ĉu,1, γ

(u)
R =

cu,2N , γ
(l)
L = cl,1, γ

(l)
R = cl,2N . We introduce now a protocol

that allows for the braiding of the left Majorana modes γ
(u)
L

and γ
(l)
L :

γ
(u)
L �→ γ

(l)
L , γ

(l)
L �→ −γ

(u)
L . (5)

This braiding is done by adiabatically changing the Hamilto-
nian on the left side of the wire in four steps, as shown in Fig. 3.
The protocol requires the ability to switch on and off (i) the
hopping H

(h,J )
�si ,�sj

= −Ja
†
�si
a�sj

+ H.c., (ii) the pairing H
(p,�)
�si ,�sj

=
�a�si

a�sj
+ H.c. between the neighboring sites �si and �sj , and
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FIG. 3. (Color online) Four-step braiding protocol for two ideal quantum wires. The zero-energy Majorana modes γ
(u)
L ,γ

(l)
L that are initially

at the ends of the upper and lower chains are shown as red (light gray) and black (dark gray), respectively. Majorana modes which are blue
(in the bulk of the wires) correspond to those coupled into finite-energy fermionic modes. The coupling of sites via hopping on the upper
(lower) chain (Ju(l)) and pairing (�) (Kitaev coupling) is indicated by gray solid links, while the coupling via hopping only (J⊥) is shown as a
square-dashed link.

(iii) the local potential H
(V )
�si

= 2V a
†
�si
a�si

on site �si . Note that a
combination of (i) and (ii) allows us to switch on and off the
(Kitaev) coupling H

(K,J,�)
�si ,�sj

= H
(h,J )
�si ,�sj

+ H
(p,�)
�si ,�sj

≡ H
(K,J )
�si ,�sj

since
J = � in this case. These operations rely on the possibility
to address single sites or links in cold-atom experiments, as
demonstrated in [23,24].

We describe now in detail the four steps of the braiding
protocol. The underlying physical process of the braiding
protocol is the transfer of one fermion from the system (i.e.,
either from the upper or from the lower wire) into the lower
wire. To this end, we decouple first the sites �s1 and �s2 from the
rest of the chain, such that when they are completely decoupled
they carry one fermion that has been extracted from the original
system. Then, we transfer this fermion to the lower (or upper)
wire. Finally, we restore the original configuration. In the
following, we parametrize the adiabatic changes in each step of
duration tf via two continuous and monotonic time-dependent
functions Ct,St : [0,J tf ] → [0,1], with C(0) = 1, C(tf ) = 0
and S(0) = 0, S(tf ) = 1. To simplify the presentation, we will
only write the Hamiltonian for the four involved sites in each
step. We follow the evolution of the zero modes which are
always separated by a finite gap �E from the rest of the
spectrum.

In the first step, we decouple the two leftmost sites �s1 and �s3

from the system by switching off the couplings H
(K)
�si ,�sj

between
sites �s1 − �s2 and �s3 − �s4, and, at the same time, switching on
a hopping of strength J⊥ between sites �s1 − �s3:

HI(t) = Ct

[
H

(K,Ju)
�s1�s2

+ H
(K,Jl )
�s3�s4

] + StH
(h,J⊥)
�s1�s3

.

By solving the Heisenberg equations of motion, we find the
evolution of the zero modes satisfy

γ
(u)
L (t) = 2JlCtcu,1 − J⊥Stcl,3√

4J 2
l C2

t + J 2
⊥S2

t

,

γ
(l)
L (t) = 2JuCtcl,1 − J⊥Stcu,3√

4J 2
u C2

t + J 2
⊥S2

t

,

such that at t = tf , γ
(u)
L (tf ) = −cl,3 and γ

(d)
L (tf ) = −cu,3.

These zero modes are always separated by the gap �E(t) =√
J 2

l C2
t + J 2

⊥S2
t from the rest of the spectrum. At the end of

step I, the two sites �s1 and �s3 are independent of the rest of the
system and are coupled to one another with hopping parameter
J⊥. As the adiabatic theorem ensures that the system remains
in the ground state throughout the entire evolution, at the

end of step I, exactly one fermion will occupy the symmetric
superposition state on these two sites. As we will discuss in
the following section, this extraction of one particle from the
system will contribute to the robustness of the protocol against
errors.

In the second step, we put now this fermion in the lower
wire by switching on H

(K,Jl )
�si ,�sj

between sites �s3 − �s4 and H
(p,J⊥)
�si ,�sj

between the sites �s1 − �s3:

HII(t) = H
(h,J⊥)
�s1�s3

+ St

[
H

(p,J⊥)
�s1�s3

+ H
(K,Jl )
�s3�s4

]
.

The zero modes evolve as

γ
(u)
L (t) = 2JlStcu,1 − J⊥(1 − St )cl,3√

4J 2
l S2

t + J 2
⊥(1 − St )2

, γ
(l)
L (t) = −cu,3,

such that at the end γ
(u)
L (tf ) = cu,1 and γ

(d)
L (tf ) = −cu,3.

The gap is given by �E(t) = min(�E1,�E2) > 0, where

�E1 = J⊥(1 + St ) and �E2 =
√

J 2
⊥(1 − St )2 + 4J 2

l S2
t . Note

that at this stage the Majorana mode γ
(u)
L (γ (l)

L ) has already
been moved from the upper (lower) to the lower (upper)
wire. However, two additional steps are needed to recover the
original configuration of the wires. In the third step, we move
the Majorana mode from the site �s1 to the site �s3 by switching
on the local potential H

(V )
�s1

and simultaneously switching off

the coupling H
(K,J⊥)
�si�sj

between the sites �s1 − �s3:

HIII(t) = StH
(V )
�s1

+ CtH
(K,J⊥)
�s1�s3

+ H
(K,Jl )
�s3�s4

.

The evolution of the zero mode

γ
(u)
L (t) = J⊥Ctcu,1 + V Stcl,1√

J 2
⊥C2

t + V 2S2
t

results in γ
(u)
L (tf ) = cl,1, while γ

(l)
L (t) = −cu,3

remains fixed. The energy gap is given by �E(t) =
min(Jl,2

√
J 2

⊥C2
t + V 2S2

t ). In the fourth and final step, we

switch off the local potential H
(V )
�s1

and switch on the coupling

H
(K,Ju)
�s1�s2

between sites �s1 − �s2:

HIV(t) = StH
(K,Ju)
�s1�s2

+ H
(K,Jl )
�s3�s4

+ CtH
(V )
�s1

.

The energy gap is calculated to be �E(t) =
min(Jl,2

√
V 2C2

t + J 2
⊥S2

t ) and the zero modes are given
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FIG. 4. (Color online) Evolution of the Majorana correlation
functions 〈iγ (u)

L γ
(u)
R 〉 (red, ◦), 〈iγ (l)

L γ
(l)
R 〉 (blue, �), 〈iγ (l)

L γ
(u)
R 〉 (blue,

�), and 〈iγ (u)
L γ

(l)
R 〉 (red, �) during the braiding protocol with errors

δK,δv,δ⊥ in the local operations for two nonideal quantum wires with
|�| = 1.5J and μ = 0. Markers are only drawn in regions where the
correlation functions are nonzero.

by γ
(u)
L = cu,3 and

γ
(l)
L (t) = −JStcu,1 + V Ctcu,3√

(JSt )2 + (V Ct )2
. (6)

Thus, steps I–IV lead to the desired braiding of the Majorana
modes in the left edge of the two wires; corresponding to, up
to a trivial phase factor, the unitary

Uul = eπγ
(u)
L γ

(l)
L /4. (7)

Note that the braiding in the other direction U
†
ul and γ

(u)
L �→

−γ
(l)
L , γ

(l)
L �→ γ

(u)
L can be achieved by putting the uncoupled

fermion in the upper (instead of the lower) wire with a simple
modification of Steps II–IV.

The braiding results in the change of the correlation
functions of the Majorana operators (see Fig. 4) and thus also
results in the change of the long-range fermionic correlations.
This can also be translated into the change of the fermionic
parities of the wires: If |+w〉 (|−w〉) denotes the state of
the w = u,l wire with even (odd) parity and, for example,
we start from the state |+u+l〉 with both wires having
even parity, then the braiding Uul results in Uul|+u+l〉 =
(|+u+l〉 + |−u−l〉)/

√
2 and U 2

ul|+u+l〉 = |−u−l〉. The result
of the braiding, therefore, can be checked by measuring the
change of the Majorana correlation functions in time-of-flight
or spectroscopic experiments [45], or by measuring the parity
of the wires by counting the number of fermions modulo two
[23].

B. Effects of imperfections in a cold-atom setup

We have just demonstrated the braiding for the case
of ideal Kitaev wires and perfect local operations (single
site-link addressing). Since none of these assumptions are
experimentally realistic, we now present a detailed discussion
of the effect of relevant experimental errors on the braiding
protocol.

1. Nonideal wires and imperfect addressing

First, we relax the assumption of the ideal wire J �=
|�|, μ �= 0. Then, we assume cross talk induced by im-
perfect single-site and single-link addressing. This implies
the following: (i) Switching on the hopping J and/or the
pairing � between the sites (u,1) − (l,1) on the upper and
lower wires also introduces the hopping Jδ⊥ and/or the
pairing δ⊥� between the adjacent sites (u,2) − (l,2), where
0 � δ⊥ � 1. (ii) Switching off the couplings between the
sites (w,1) − (w,2) also reduces the couplings between the
sites (w,2) − (w,3) by a factor (1 − δK ), where 0 � δK � 1.
(iii) Raising the local potential V on the site (u,1) results in a
local potential δvV (0 � δv � 1) on the neighboring sites (u,2)
and (l,1). These errors are shown as they appear in each step of
the braiding protocol in Fig. 5. Since it is not possible to give
a simple analytic solution for the braiding protocol for these
cases, we have carried out a numerical analysis for a system of
N = 40 sites with � = 1.5J . Current experimental techniques
have an error in the single-site addressing of about 10%. It is
a reasonable assumption to take errors in the addressing on an
individual wire larger than the errors in operations that involve
both wires due to a difference in the wave-function overlap.
Thus, in the following, we present numerical results for
0 � δ⊥ � 0.3, 0 � δK � 0.7, and 0 � δv � 0.2. The results
are given in Fig. 6 for δv = 0.1,0.2. For δv = 0, the error is
less than 10−4 for all δ⊥,δK in the given parameter regime.
As can be concluded from the figure, the braiding protocol
is remarkably robust against relatively strong errors. We also
conclude the system is more robust against errors on operations
on an individual wire than against those involving operations
that couple both wires since the latter lead to a coupling of the
Majorana fermions.

In addition to the experimental errors listed above, the
protocol described above assumed adiabatic evolution. In
general, the adiabaticity criteria would imply that Tf , the
total time of the protocol, should be much larger than the
inverse gap. Here, this implies Tf � �/J . However, numerical
simulations show that already for Tf = π/2�/J , we obtain a

FIG. 5. (Color online) Errors occurring at each step in the braiding protocol. The errors include: a nonideal chain J �= �, differing couplings
on each chain Ju �= Jl , and cross talk due to imperfections in local operations which implies switching on couplings between two sites induces
a coupling between adjacent sites with strength 0 < δk,δ⊥ < 1 and turning on a potential on a site i induces a potential on neighboring sites
with strength 0 < δv < 1.
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FIG. 6. (Color online) The error of the braiding protocol, de-
fined as 〈iγ (l)

L γ
(u)
R 〉 for increasing error δK . The results for δ⊥ =

0,0.05,0.1,0.15,0.2,0.25,0.3 are shown. In the left panel, δV = 0.1
and in the right panel, δV = 0.2. The origin of each error is shown
explicitly in Fig. 5.

fidelity which deviates from unity with ∼10−6. For hopping
of the order of J ∼ 500 Hz, this corresponds to a total time
duration of the protocol of the order of milliseconds.

2. Influence of an external harmonic confinement

In the previous section, we have discussed the effects of
experimental errors on the braiding protocol that stem from
imperfect operations and nonideal wires. Many experiments
with cold atoms have an external trapping potential that might
also have harmful effects on the braiding protocol. In the
following, we discuss the influence of a harmonic external
confining potential. Typically, such a confining potential is
shallow, i.e., the potential changes only slightly on the period
of the lattice. We show in the following that the presence
of such a potential does not influence the results of the
braiding. We model the harmonic potential via Vtrap(xj ) =
Vt [(L + 1)/2 − j ]2/L2, where xj = ja is the position of
lattice site j = 1, . . . ,L, a is the spacing, and Vt measures
the strength. This potential is added to the potential from the
lasers configuration which creates the finite lattice with L sites.

In Fig. 7, we compare the numerical results with and without
the harmonic potential. We consider a potential with strength
Vt = J for quantum wires of N = 40 sites, |�| = 1.2J , μ =

(a) (b)

FIG. 7. (Color online) Influence of a shallow harmonic trap on a
Kitaev chain (see text): (a) the density distribution, (b) physical extent
of the Majorana modes.

FIG. 8. (Color online) Adiabatic braiding protocol in the pres-
ence of a harmonic trap with Vt = J : Adiabatic evolution of the
Majorana correlation functions 〈iγ (u)

L γ
(u)
R 〉 (red, ◦), 〈iγ (l)

L γ
(l)
R 〉 (blue,

�), 〈iγ (l)
L γ

(u)
R 〉 (blue, �), and 〈iγ (u)

L γ
(l)
R 〉 (red, �) during the braiding

protocol with errors δK in the local operations (see main text) for two
nonideal quantum wires of length L = 40 with |�| = 1.2J, μ = 0,
and δK = 0.05.

0, and δK = δ⊥ = δv = 0.05. This potential is strong enough to
have a visible effect on the density distribution n(j ) = 〈a†

j aj 〉,
and also changes the MF wave function |vj | defined via γL =∑

j vj c2j−1. In Fig. 8, we show the evolution of the correlations
between MFs during the braiding protocol, concluding that the
harmonic potential does not affect the results of the braiding.
Note also that in the case of a harmonic trap, the correlation
functions 〈iγ (l)

L γ
(u)
R 〉 and 〈iγ (u)

L γ
(l)
R 〉 have larger (∼0.1) values

in the middle of the protocol as compared to the case with
no harmonic confinement (see Fig. 4 of the main text) where
this difference can not be distinguished. The nonzero values of
these correlations are due to the overlap of the wave functions
(coefficients vj ) of the evolving Majorana zero modes with
those at the beginning of the protocol. As it is illustrated in
Fig. 7, a shallow harmonic trap increases the extension of the
Majorana zero modes and therefore leads to larger overlaps.

From the discussion of the last two sections, we can
conclude that the braiding protocol is insensitive to the class
of errors most likely to dominate in an experiment as long as
the two Majorana wave functions are spatially well separated,
and the protocol is performed on a time scale which satisfies
adiabaticity. This resilience against error can be intuitively
understood by recalling that the protocol is based on extracting
and reinserting one physical fermion.

C. Demonstration of non-Abelian statistics of MFs via parity
measurement

The non-Abelian nature of MFs manifests itself as the
noncommutativity of the braiding operations between them.
Here, we propose a simple setup to demonstrate this noncom-
mutativity via a single-parity measurement of an individual
wire. For this purpose, we consider a system of three Kitaev
wires (labeled w1,w2,w3), each supporting Majorana modes
(γ

(wj )
L ,γ

(wj )
R ) located at the left and right ends of each wire,

as shown in Fig. 9. The two braiding operations U1,2 =
exp[πγ

(w1)
R γ

(w2)
R /4] and U2,3 = exp[πγ

(w2)
R γ

(w3)
R /4] act to

interchange the Majorana fermions γ
(w1)
R γ

(w2)
R and γ

(w2)
R γ

(w3)
R ,

respectively, at the ends of neighboring wires. The non-Abelian
statistics of the Majorana fermions implies that these braiding
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FIG. 9. (Color online) A setup of three Kitaev wires w1,w2,w3

with Majorana modes γ
wj

L ,γ
wj

R located at the left and right ends
of each wire, respectively. The braiding of neighboring Majorana
modes U1,2 = exp[πγ

(w1)
R γ

(w2)
R /4] and U2,3 = exp[πγ

(w2)
R γ

(w3)
R /4] do

not commute, i.e., U1,2U2,3 �= U2,3U1,2. This noncommutativity can
be probed with a parity measurement of a single wire (see text).

operations do not commute: If we begin in the even-parity
ground state of each wire |+w1 +w2 +w3〉, then braiding
U1,2U2,3 and U2,3U1,2 results in

U1,2U2,3|+1 +2 +3〉 = 1
2 (|+1 +2 +3〉 − |+1 −2 −3〉
−|−1 −2 +3〉 + |−1 +2 −3〉),

(8)
U2,3U1,2|+1 +2 +3〉 = 1

2 (|+1 +2 +3〉 − |+1 −2 −3〉
−|−1 −2 +3〉 − |−1 +2 −3〉),

which differ in the sign of the last term. While this difference in
sign could be impractical to measure, a simpler demonstration
of the non-Abelian statistics can be done by checking the
noncommutativity of pairs of consecutive braids U1,2U2,3 and
U2,3U1,2:

U1,2U
2
2,3U1,2|+1 +2 +3〉 = |+1 −2 −3〉,

(9)
U2,3U

2
1,2U2,3|+1 +2 +3〉 = |−1 −2 +3〉.

The difference can now be easily distinguished by a single-
parity measurement of the first or third wire, directly showing
the effect of the non-Abelian statistics of MFs.

IV. TOPOLOGICAL QUBITS AND GATES IN A NETWORK
OF QUANTUM WIRES

In the previous sections, we presented an extended discus-
sion of the realization and braiding of MFs in an optical lattice
setup. Now, we proceed by defining a qubit subspace from
a network of Kitaev wires and describing how braiding the
resulting MFs implements quantum gates.

Due to their nonlocal structure and their topological origin,
the MFs are intrinsically robust against local perturbations.
This renders the ground-state subspace of the Kitaev wire
an ideal system for storing quantum information. Note that
one Kitaev wire is not enough to store a qubit. The two
ground states |+〉 and |−〉 have different fermionic parity, and
their superposition is forbidden due to superselection rules.
This problem can be overcome by using two wires with four
Majorana fermions to define a qubit basis, as shown in Fig. 10.
In order to perform quantum gates via braiding efficiently, we
realize each of the two wires in a U shape, and denote the two

FIG. 10. (Color online) Definition of qubits in an optical lattice
setup. Each wire is formed into a U shape, such that the Majorana
fermions localized at the ends of each wire (i.e., γ̂ A

1 and γ̂ A
2 ) are

located next to each other on the lattice. This setup is scalable and
allows for Majorana fermions to be braided. A single qubit, labeled
as A(B), is defined on two wires with four Majorana fermions γ̂i , i =
1−4.

MFs on the left wire as γ A
1,2 while the two MFs on the right

wire are labeled γ A
3,4. We denote by |−〉Ax the odd-parity ground

state of the left (x = L) and right (x = R) chains, respectively.
Then, we define the local qubit basis for qubit A, |0̄〉, and |1̄〉
via the two odd-parity states

|0̄〉 ≡ |+〉AL ⊗ |−〉AR = f
A†
L |−〉AL ⊗ |−〉AR

(10)
|1̄〉 ≡ |−〉AL ⊗ |+〉AR = |−〉AL ⊗ f

A†
R |−〉AR,

where f
A†
L = γ A

1 − iγ̂ A
2 and f

A†
R = γ A

3 − iγ A
4 . This setup can

be readily scaled up to N qubits, as shown in Fig. 10 for the
case of N = 2, where the two qubits are labeled A and B. For
an alternative way to define an N -qubit space with a definite
parity, see [46].

From the setup depicted in Fig. 10 we conclude that the
protocol allows us to braid MFs on any two adjacent ends of
one or two wires. This implies we can realize the unitaries
Ûαα

12 , Ûαα
13 , Û

αβ

21 , and Û
αβ

43 , where α and β label two adjacent
wires and Û

αβ

ij = (1 − γ̂ α
i γ̂

β

j )/
√

2. Note that braiding unitaries

Ûαα
34 ,Ûαα

24 are, up to a phase, equivalent to an overall phase
Ûαα

12 ,Ûαα
13 . These unitaries will result in single-qubit operations

as well as two-qubit operations on neighboring qubits. First, let
us consider braids on one wire only; these will result in single-
qubit operations. As we show in Appendix A, the unitaries
Ûαα

12 and Ûαα
13 realize the single-qubit Pauli gates (X̂,Ŷ ,Ẑ) and

the Hadamard (Ĥ ) gate, via

Ẑα ⊗ 1 = Ûαα
12 Ûαα

12 , X̂α ⊗ 1 = Ûαα
13 Ûαα

13 Ûαα
12 Û12,

Ĥα ⊗ 1 = Ûαα
13 Ûαα

12 Ûαα
12 , (11)

and Ŷα = ẐαX̂α . To complete all single-qubit rotations, it is
also necessary to implement a π/8 phase gate. However, as
shown in [26], it is not possible to realize this gate due to the
form of the braiding unitary [Eq. (7)].

Second, we consider braids on neighboring wires Û
αβ

21 .
Alone, this unitary takes us out of the logical qubit subspace.
However, a combination of these unitaries with the braids
involving one wire only result in the swap gate:

ÛSWAP = [
ÛAB

21 ÛAB
43

][
ÛAA

12 ÛAA
34 ÛBB

12 ÛBB
34

][
ÛAB

21 ÛAB
43

]
. (12)
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Unitaries that are written in one square bracket can be
carried out simultaneously, so that the implementation of the
SWAP can be achieved in three steps only. Equation (12)
can be easily verified by multiplying the 16 × 16 matrices
that describe the effect of the braiding on the physical space
{|x〉AL|x〉AR|x〉BL |x〉BR}x=+,−.

While these braiding operations form the basis of topologi-
cally protected gates, braiding operations of Ising anyons alone
are not sufficient for universal quantum computation (UQC)
[47,48]. With the setup described above, a π/8-phase gate and
an entangling gate complete the gate set for UQC.

V. MAPPING BETWEEN TOPOLOGICALLY PROTECTED
AND UNPROTECTED SPACE

In this section, we introduce an efficient, robust, and
reversible mapping that allows for an interface between
the topologically protected qubit space to a topologi-
cally unprotected space. This mapping provides a platform
for (i) initialization of a wire in a desired parity state,
(ii) measurement, and (iii) the implementation of the missing
gates required for universal quantum computation. As was
the case for the braiding protocol, the mapping protocol is
based on the toolbox available for optical lattices introduced
in Sec. II B, in particular, the ability to address individual sites
and links. The objective is to map the nonlocal fermions of each
qubit (γ A

1 + iγ A
2 and γ A

3 + iγ A
4 in Fig. 10) to a local, physical

fermion on an additional site on the lattice. This locality is the
key for state initiation, measurement, and for the construction
of the missing quantum gates.

A. Basic idea

In Fig. 11, we show a minimal setup for carrying out this
protocol. The Kitaev Hamiltonian HK [given by Eq. (1)]
is realized on N sites that are arranged in a U-shape
configuration. We denote by |+/−〉 the even- and odd-parity
ground states of HK . The two ends of the wire 1 and N must
be separated by at least two empty sites which we denote by
N + 1 and N + 2. These sites are initially decoupled from the

FIG. 11. (Color online) Schematic of the mapping protocol. Left:
At t = 0, the chain is open and includes N sites, coupled via hopping
and pairing (shown as a gray link). The external sites, corresponding to
the operators âN+1,âN+2,âe are completely decoupled from the chain,
but the site of operator âN+2 is coupled to that of âe via hopping only
(shown as a gray dashed link). Right: At t = tf , the chain is closed
and includes N + 2 sites. There is one external site which will remain
occupied or empty depending on the initial parity of the open chain.
Closing the chain across two sites introduces a crucial geometric
asymmetry, the purpose of which is discussed in the main text.

chain. Further, the site N + 2 is coupled via hopping to a site
denoted by e, which we call the external site, and which is
initially empty. The site e can host one fermion, with creation
operator â

†
e . The geometric asymmetry in this setup ensures an

energy gap between the two lowest-lying states and the higher
excited states throughout the protocol. This gap will set the
time scale of the adiabatic protocol, as will be described in
detail in the following section. An alternative setup would be
completely geometrically symmetric, however, asymmetric in
coupling parameters.

Consider for the moment only the open chain and the
sites N + 1 and N + 2, and assume that we couple these
two sites adiabatically with the open chain and with each
other, such that in the end we obtain a realization of the
Kitaev Hamiltonian on a closed ring of length N + 2, realizing
the “closed chain” shown in Fig. 1(b). If we allow only
parity-preserving operations during the closing of the chain,
the adiabatic theorem implies that the odd-parity ground state
|−〉 is mapped to the (unique) ground state |g〉 of the closed
chain, while the even-parity ground state |+〉 is mapped to
an excited state of the system ã†

ν |g〉 (see the discussion in
Sec. II A).

Now, the external site, initially coupled to site N + 2, comes
into play. During the adiabatic passage from the open to the
closed chain, the hopping between the sites e and N + 2 is
switched off adiabatically; at the end of the evolution, the site
e is decoupled from the closed chain. As we explain in detail
in the following, this process can be engineered such that

|−〉 → |g〉 ⊗ |
e〉, |+〉 → |g〉 ⊗ â†
e |
e〉, (13)

where an empty site j is denoted by |
j 〉. Equation (13)
implies the odd- (even-) parity ground state of the open Kitaev
chain is mapped to an empty (occupied) external site in a
reversible way.

B. Mapping protocol Hamiltonian

Let us now describe this mapping protocol in detail. The
protocol can be carried out using only operations on the sites
N + 1, N + 2, and e and the associated links. It requires the
ability to switch on and off (i) the hopping between the site

N + 2 and the external site H
(h,J̃ )
N+2,e = J̃ â

†
N+2âe + H.c., (ii) the

couplings H
(K,J,�)
k,l = −Ja

†
kal + �akal + H.c. between any

two adjacent sites k,l ∈ {1,N,N + 1,N + 2}, and (iii) the
local potentials H

(V )
k = V a

†
kak on the sites k = N + 1, N + 2.

Again, we model the adiabatic passage via two continuous
and monotonic time-dependent functions Ct,St : [0,tf ] →
[0,1], with C(0) = 1, C(tf ) = 0 and S(0) = 0, S(tf ) = 1. The
Hamiltonian of the mapping is then given by

ĤI = HK + H (Ve)
e + Ct

[
H

(h,J̃ )
N+2,e + H

(V )
N+2 + H

(V )
N+1

]
+ St

[
Ĥ

(K,J,�)
N,N+1 + Ĥ

(K,J,�)
N+1,N+2 + Ĥ

(K,J,�)
N+2,1

]
, (14)

where HK is the Hamiltonian of the open Kitaev chain with N

sites [Eq. (1)]. At t = 0, the ground state of the Hamiltonian HI

will be a tensor product of the ground states of three decoupled
systems: the Kitaev wire, the decoupled site N + 1, and the
sites N + 2 and e that are coupled together by hopping J̃ . At
this time, the even- (odd-) parity ground states are |+(−)〉 ⊗
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|
N+1〉 ⊗ |
N+2,e〉, provided that

V > 0,

Ṽ = (V + Ve −
√

(V − Ve)2 + 4J̃ 2)/2 > 0. (15)

Here, V is the energy of a particle occupying the site N = 1,
and Ṽ is the energy of a single particle occupying the eigenstate
(a†

N+2 + a
†
e)|
N+2,e〉/

√
2, thus the above conditions ensure

that the ground state on these sites is the vacuum. The above
conditions are satisfied with a potential V satisfying

V >
J̃ 2

Ve

> 0 (condition 1). (16)

Violating condition 1 would alter the form of the ground state;
the consequence of this violation will be discussed further
in the following. Throughout the evolution from 0 to tf ,
the adiabatic theorem ensures that the system stays in the
corresponding eigenstate, as long as the energies within a
given parity subspace are nondegenerate. If we further impose
a second condition

0 < Ve < 2J (condition 2), (17)

we ensure that the odd-parity ground state |−〉 transfers to
the state |g〉 and an empty external site, while the even-parity
ground state |+〉 transforms to |g〉 and an occupied external
site. Thus, by tuning the Hamiltonian adiabatically, we obtain
〈â†

e âe〉 = 1(0) if the original parity of the chain was even (odd),
as shown in Fig. 14.

Despite its simple form, the eigenenergies of HI (t) can not
be represented in a compact analytic form, even in the special
case of J = �. Thus, to show the evolution of each state under
the Hamiltonian HI (t) subject to conditions 1 and 2, we have
carried out a detailed numerical analysis. A summary of the
results is presented in Fig. 12, where we present the evolution
of the lowest-lying eigenenergies of the Hamiltonian (14). We
parametrize the time evolution via Ct = cos φt , St = sin φt

with the adiabatic parameter φt that changes smoothly from 0
to π/2, as t changes from 0 to tf . In Fig. 12(a), we present
the evolution for the setup described above for the case of
an open chain of N = 8 sites, J = � = Ve = J̃ and V =
2J̃ 2/Ve = 2J . As φt is changed adiabatically from 0 to π/2,
the energies of two states |+〉 and |−〉 begin to split, resulting
in the evolution

|−〉 ⊗ |
N+1,N+2,e〉 mapping←→ |g〉 ⊗ |
e〉,
(18)

|+〉 ⊗ |
N+1,N+2,e〉 mapping←→ |g〉 ⊗ â†
e |
e〉.

The minimal gap between the energy of the second (red line)
and third (black line) lowest-lying states �E2,3 gives a measure
for the speed of the adiabatic process. From Fig. 12(b) it
becomes clear why we need to close the chain via two external
sites: The asymmetry introduced in our setup is fundamental
for the existence of a finite gap between the second (red line)
and third (black line) lowest-lying states. Now, we consider
the effect of violating the conditions 1 and 2 in Eqs. (16)
and (17). If we violate condition 1, we choose 0 < V < J̃ 2

Ve
.

The even- and odd-parity ground states of HI at φt = 0
will have now have one particle present in the symmetric
eigenstate of the sites N + 1 and e. By contrast, our initial
states, for which these sites are empty, are now excited states
with an energy |Ṽ | = |[V + Ve −

√
(V − Ve)2 + 4J̃ 2]/2| > 0

compared to the ground state. These states will evolve as
excited states and we obtain

|−〉 ⊗ |
N+1,N+2,e〉 mapping←→ ã†
ν |g〉 ⊗ â†

e |
e〉,
(19)

|+〉 ⊗ |
N+1,N+2,e〉 mapping←→ ã†
ν |g〉 ⊗ |
e〉.

At the end of the mapping, these states are largely degenerate,
with ν ∈ [1,N + 2] (see the discussion in Sec. II A). This will
cause a mixing of states at the end of the evolution and the
process will not be reversible. We illustrate this for the case
of V = 0.5J̃ 2/Ve in Fig. 13(a), where at φt = π/2 one can

(a) (b)

FIG. 12. (Color online) Energies of the lowest-energy eigenstates of the Hamiltonian in Eq. (14) as a function of the adiabatic parameter
φt ∈ [0,π/2], with parameters � = J,N = 8,J̃ = J,Ve = J,V = 2J̃ 2/Ve = 2J . At φt = 0, there are two degenerate ground states with odd
and even parity, respectively, in this parameter regime the next excited states are gapped by Ṽ = (3 − √

5)J/2 [see Eq. (15)]. Blue dashed
line: Evolution of the state |−〉 ⊗ |
N+1,N+2,e〉 → |g〉 ⊗ |
e〉. Red solid line: Evolution of the state |+〉 ⊗ |
N+1,N+2,e〉 → |g〉 ⊗ â†

e |
e〉. At
φt = π/2 this state has an energy offset Ve compared to the ground state. Black dotted line:. Higher-energy states of the system. (a) Asymmetric
closing, as shown in Fig. 11. (b) Closing protocol with a symmetric setup, obtained by omitting site N + 1 in Fig. 11. In this case of no
asymmetry, the gap between the lowest-lying states and the higher excited states closes.
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(a) (b)

FIG. 13. (Color online) Energies of the lowest-energy eigenstates of the Hamiltonian in Eq. (14) as a function of the adiabatic parameter
φt ∈ [0,π/2]. At φt = 0, there are two degenerate ground states with odd and even parity, respectively. Parameters: � = J,N = 8,J̃ = J .
(a) Violation of condition 1: Ve = J,V = 0.5J̃ 2/Ve = J/2. The initial states of the system are no longer the ground states of the system
rather they are excited states with energy |Ṽ | = (3 − √

17)J/4 as compared to the ground state [see Eq. (15)]. The evolution will be |−〉 ⊗
|
N+1,N+2,e〉 → ã†

ν |g〉 ⊗ â†
e |
e〉 (shown in blue dashed line) and |+〉 ⊗ |
N+1,N+2,e〉 → ã†

ν |g〉 ⊗ |
e〉 (shown in red solid line). Additional
eigenstates are shown as black dotted lines. The excited states of the chain are degenerate, as seen by the intersection of states at φt = π/2. (b)
Violation of condition 2: Ve = 3J,V = 2J̃ 2/Ve = 2J/3. It is no longer energetically favorable for a particle to occupy the site e, therefore the
evolution will be |−〉 ⊗ |
N+1,N+2,e〉 → |g〉 ⊗ |
e〉 (shown in blue dashed line) and |+〉 ⊗ |
N+1,N+2,e〉 → ã†

ν |g〉 ⊗ |
e〉 (shown in red solid
line). Again, the degeneracy of the excited states of the chain gives an intersection of states at φt = π/2.

explicitly see the crossing of our initial states (in blue and red)
with the other degenerate excited states of the chain.

On the other hand, if we violate condition 2 by taking the
potential Ve on the external site to be too large, then it is no
longer favorable for the external site to become occupied.
While the odd-parity state evolves to the ground state as
desired, the even-parity site evolves to an excited state of the
chain, with the external site remaining empty,

|−〉 ⊗ |
N+1,N+2,e〉 mapping←→ |g〉 ⊗ |
e〉,
(20)

|+〉 ⊗ |
N+1,N+2,e〉 mapping←→ ã†
ν |g〉 ⊗ |
e〉.

Again, due to the large degeneracy of the state ã†
ν |g〉 this

evolution will not be reversible. As an example, we show in
Fig. 13(b) the evolution for Ve = 3J .

As we have shown above, the mapping protocol allows
us to map the parity of the Kitaev chain to the occupation
of a physical site, and the adiabaticity ensures that the
protocol is reversible. As we will discuss in the following, this
mapping between a topologically protected and unprotected
space has several applications for quantum computation. As
a first application, note that the mapping can be used to
initialize and measure an arbitrary qubit state: To each of
the two wires forming one logical qubit via |0̄〉 = |+〉L|−〉R ,
|1̄〉 = |−〉L|+〉R we associate an external site eL and eR ,
respectively, which can each host one fermion a

†
eL

,a
†
eR

. Then,
applying the mapping protocol on both wires simultaneously,
we see that

|0̄〉 = |+〉L|−〉R mapping←→ a
†
e,L|
e〉L ⊗ |
e,R〉, (21)

|1̄〉 = |−〉L|+〉R mapping←→ |
e〉L ⊗ a
†
e,R|
e,R〉. (22)

This setup scales naturally to N qubits; the logical subspace
for N = 2 is shown schematically in Fig. 14.

In the following section, we discuss the experimental errors
which arise in implementing the Hamiltonian in Eq. (14).

C. Effect of imperfections in a cold-atom setup

When considering the physical implementation of the
Hamiltonian (14), we consider the following set of experimen-
tally relevant errors: (i) a nonideal Kitaev chain [� �= J,μ �= 0
in Eq. (2)], with deviations on the order of � − J ∼ 0.1J, μ ∼
0.1J , (ii) local fluctuations in the lattice (μi = μ ± μr , where
μr ∈ [−0.1J,0.1J ] is a random fluctuation on each site),
(iii) different lasers may be tuned at different timings [implying
that the functions Ct,St can vary independently in time while

FIG. 14. (Color online) The result of the mapping on two qubits,
each defined according to Eq. (10). A single qubit is shown enclosed
in a gray dashed line. At the end of the mapping and external site is
occupied (shown as a red site) on the left (if the qubit was in the state
|0̄〉) or on the right (if the qubit was in the state |1̄〉) .
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FIG. 15. (Color online) The minimal energy gap between the
even-parity state and the first excited state. Red circles: Ideal chain
parameters: Ve = J,N = 8,� = J,μ = 0. Blue squares: Including
the effects of experimental errors listed in the text. Ve = J,N =
8,� = 1.2J,μr ∈ [−0.1J,0.1J ], single-site addressability to 10%
accuracy and 5% lag time between lasers.

still satisfying C(0) = 1,C(tf ) = 0 and S(0) = 0,S(tf ) = 1],
and (iv) the lasers focused on an individual site are not perfect,
giving 10% laser intensity on neighboring sites.

To quantify the effect of these errors, we consider the size
of the energy gap �1 between the even-parity ground state and
the next excited state. The magnitude of this gap is controlled
by the coupling J̃ to the external site. In Fig. 15, we show �1

as a function of the coupling J̃ for both the ideal chain and a
nonideal chain, including the effect of addressing errors. From
this figure, we see that the errors have a very small effect on
the size of the energy gap or on the value of the ideal hopping
parameter J̃ , indicating that our protocol is robust against the
class of experimental errors arising due to a nonideal wire,
and imperfect site addressing. Note that the results shown in
Fig. 15 provide a lower bound on the size of the gap �1, which
can be further increased by introducing additional asymmetry
as mentioned in Sec. V A. The gap �1 sets the adiabatic time
scale of the mapping protocol. For a typical value of hopping,
J ∼ 500 Hz, this results in a time scale of tens of milliseconds.

D. Error check

In the previous sections, we have shown that while the
mapping protocol is immune to experimental errors associated
with the implementation of the mapping Hamiltonian, it is
essential that both condition 1 [Eq. (16)] and condition 2
[Eq. (17)] are satisfied. Violating these conditions has two
consequences: most crucially, the logical states will no longer
be mapped to the desired final states [as given in Eq. (18)].
In addition, the final states will be degenerate and thus the
adiabatic evolution will not be reversible. Here, we propose
methods to detect if one of these conditions has been violated.
These methods will leave the logical state unaffected, ensuring
that it will be done in a quantum nondemolition (QND) way,
and can be done on each qubit simultaneously.

1. Violation of condition 1

First, we consider the effect of violating condition 1. In this
case, performing the mapping protocol will leave the chain

FIG. 16. (Color online) The geometric setup for one qubit for the
proposed error check. The control qubit [shown in yellow (light gray)]
will remain in the ground state if there is one particle [shown in red
(dark gray)] on either of the external sites. If, due to an error in the
mapping, no particles are present, the control qubit will be excited
to an additional level which can be directly probed, as described in
Sec. V D of the text.

in an excited state rather than the desired ground state of
the Kitaev chain [see Eq. (19)]. These excited states, while
degenerate, all have fixed (even) parity, compared with the
odd-parity ground state. Thus, a parity measurement can
be performed on the chain to distinguish between the two.
If the chain is found to have even parity, it is clear an error has
occurred. If the chain is found in the correct ground state, the
chains must then be reinitialized in the ground state. In this
procedure, the atoms on the external sites are not affected, thus
the encoded information is preserved.

2. Violation of condition 2

Second, we consider the effect of violating condition 2.
In this case, performing the mapping results in no particles
occupying the external sites [see Eq. (20)]. Here, we propose
a protocol to detect this error by verifying if a particle is
present on one of the two external sites. This protocol will not
distinguish where the particle is located, thus ensuring that the
protocol remains quantum nondemolition.

This protocol relies on single-site addressing and requires
that we can excite atoms to an excited state. We require a
single site �sc located between the L and R chains defining the
qubit (see Fig. 16). This site hosts one fermion initialized in
the ground state |cg〉 which can also be excited to an excited
state |ce〉. Additionally, this protocol requires atoms which can
be excited into a Rydberg state. Once excited into a Rydberg
state, an atom interacts strongly with those within the Rybderg
blockade radius, inhibiting the excitation of a second atom to
the Rydberg state. Here, we use this interaction to carry out an
error check on each qubit, using a scheme adapted from that
developed by Mueller et al. [39].

The first step is to carry out a pulse sequence on the external
sites eL,eR and the site �sc. This pulse sequence is given in detail
in Appendix B, and will transfer the control atom to the state

|cg〉 → |cg〉 + (−1)n+1|ce〉, (23)

where n is the number of particles on the external sites of one
qubit (i.e., n = 〈a†

e,Lae,L + a
†
e,Rae,R〉).

Second, a π/2 pulse is applied to the control site, such that
the atom on site �sc will be in the |cg〉 state for an odd number
of particles (n = 1) or the |ce〉 state for an even number of
particles (n = 0,2).
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FIG. 17. (Color online) Schematic for the implementation of a
controlled-Z gate. The external sites are labeled eα

j where j = L/R

labels the left and right wires of a single qubit and α = A/B labels
the qubit. The external sites of two atoms are separated by a distance
ra . The control site between qubits A and B is labeled sAB

c [shown
in yellow (light gray)] and is at an equal distance between the two.
A controlled-Z gate can be implemented between qubits A and B

using the physics of the Rydberg blockade and the additional control
qubit [40].

The final step is to detect the state of the control atom which
will indicate if an error has occurred, while leaving the qubit
state unaffected.

VI. IMPLEMENTATION OF MISSING QUANTUM GATES:
CONTROLLED-Z AND π/8 GATE

In the previous section, we introduced a mapping which
coupled the topologically protected space to a conventional
qubit system, and showed that it is robust against the class
of experimental errors associated with a nonideal wire and
imperfect site-link addressing. Once the topological qubits
have been mapped to conventional qubits, stored as the
presence or absence of an atom on a single site, there are several
standard techniques which can be used to manipulate them for
quantum computation [36]. In particular, a phase gate can
be performed by exciting the atom to an excited state (with
energy offset) until the time evolution ensures the desired
phase. Additionally, there are several proposals for entangling
gates, including collisional gates [37], and using the long-range
Rydberg interaction [38–40]. Here, we consider the use of
Rydberg gates for a possible implementation of a controlled-Z
as experimental setups able to both implement the Kitaev wire
and carry out these gates are already developed [41]. Together
with the gates available from the braiding protocol, the phase
gate and the controlled-Z gate are sufficient to give a complete
gate set.

The implementation of a controlled-Z gate has been
discussed by Brion et al. [40]. In this particular setup,
implementing this gate requires an additional atom positioned
on site �sz between the two qubits A and B, separated by a
distance ra , as shown in Fig. 17. The particular scheme is
given in more detail in Appendix C and is summarized here
in brief. The first step to implement this gate is to excite
any atoms on the sites eα

L (here α = A,B) into the Rydberg
states. This excitation is done with a laser with Rabi frequency

1 � Vd (ra), for Vd (r) the strength of the Rydberg interaction
at distance r . This ensures that these two atoms do not interact

with each other. The second step is to use a second laser, with
Rabi frequency 
2 � Vdd (ra/2) to excite the atom on the
site �sz to the Rydberg state. Here, there are two possibilities.
If the two-qubit state was initially |00〉,|01〉,|10〉, due to the
arrangement of atoms on the sites eα

L, the first step will cause
a blockade on the atom on site �sz. However, if the two-qubit
state was initially |11〉, then there will be no blockade, and the
atom on site �sz will be successfully excited to the Ryberg state.
Finally, the atom on site �sz is brought back down to the ground
state with a phase shift of π , realizing a controlled-Z gate on
the two qubits.

We assume in this protocol that the lasers can be focused
such that the external sites can be excited to the Rydberg states
while leaving the chain in the ground state. Exciting an atom of
the chain to the Rydberg state would cause a blockade on the
control qubit regardless of the qubit state, rendering the gate
ineffective. This assumption, however, is not crucial, as one
can put extra (empty) sites between the sites eR/L and the chain
in order to ensure that these sites are adequately separated.

VII. OUTLOOK

In conclusion, we have presented a complete toolbox for
quantum computation in a system of cold atoms stored in
optical lattices. Our model takes a hybrid approach, where
elements of topological quantum computing are combined
with conventional quantum gates in an atomic setup. The
topological elements in this hybrid model include the storage
of qubits in the Majorana edge modes of a set of Kitaev
wires and the realization of topologically protected gates via
a protocol for braiding Majorana fermions. In addition, we
have described a protocol to read and write the topological
quantum memory which acts to map the topological Majorana
qubits to conventional atomic qubits defined by the presence
of single atoms. This provides not only a way to prepare
and measure qubits by standard atomic and quantum optic
techniques, but also allows for missing gates to be replaced
by the (nontopological, i.e., unprotected) entangling gates
with conventional atomic qubits, e.g., as collisional gates or
Rydberg gates [36–38].

We do not see the present hybrid quantum computing
model with atoms to be in direct competition with existing
quantum computing proposals and realizations with cold
atoms and ions, and their remarkable achievements in lab-
oratory implementations. In an ion trap quantum computer,
for example, long-lived quantum memory is achieved by
selecting physical qubits, which are insensitive from the
outset to perturbations, e.g., qubits encoded in clock states or
decoherence-free subspaces [49,50]. In addition, high-fidelity
quantum gates are realized as a combination of high-precision
control of external fields, and designing gates, which are
immune to the most important imperfections. In contrast, in
the present atomic hybrid scenario, the energy gaps underlying
the error protection are typically small in comparison with
realistic errors in atomic setups. Thus, the present model
system should be seen more as a playground to test the
basic principles and error protection of topological quantum
computing in a controlled environment. Equally important, we
provide realistic atomic tools for demonstrating non-Abelian
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statistics of Majoranas, for example, in an interferometer setup,
including preparation and readout.
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APPENDIX A: BRAIDING

Using the notation defined in Fig. 10, the braiding opera-
tions result in the following unitary operations [with the basis
(|00〉,|01〉,|10〉,|11〉)]:

U12 = (1 − γ̂1γ̂2)/
√

2 =
(

1 0
0 i

)
⊗ 12,

(A1)

U13 = (1 − γ̂1γ̂3)/
√

2 = 14 +
(

0 −1
1 0

)
⊗ 12,

where 1n is the identity matrix in n dimensions.

APPENDIX B: INTERFACE ERROR CHECK

In this Appendix, we expand on the protocol for an error
check, as introduced in Sec. V D. The protocol will determine
the number of particles occupying the two external sites
eL,eR associated with one qubit. For simplicity, we use |
〉 ≡
|
e〉L ⊗ |
e〉R,|L〉 ≡ a

†
e,L|
e〉L ⊗ |
e〉R and |R〉 ≡ |
e〉L ⊗

a
†
e,R|
e〉R .

The pulse sequence is as follows:
(1) Perform a 3π/2 pulse on the control atom and a π/2

pulse on the atoms on the external sites

|cg〉|
〉 → (|cg〉 − |ce〉)|
〉/
√

2,

|cg〉|L〉 → (|cg〉 − |ce〉)|L+〉/
√

2, (B1)

|cg〉|R〉 → (|cg〉 − |ce〉)|R+〉/
√

2,

where L(R)+ denotes the superposition between the ground
and excited states.

(2) Perform the protocol as outlined in [39]. This protocol
results in the acquisition of the phase φ if there is one atom on
either site eL or eR . As shown in [39], this phase can be chosen
to satisfy φ = π , thus obtaining

(|cg〉 − |ce〉)|
〉/
√

2 → (|cg〉 − |ce〉)|
〉/
√

2,

(|cg〉 − |ce〉)|L+〉/
√

2 → (|cg〉 − eiπ |ce〉)|L+〉/
√

2, (B2)

(|cg〉 − |ce〉)|R+〉/
√

2 → (|cg〉 − eiπ |ce〉)|R+〉/
√

2.

(3) Perform a global π/2 pulse on all atoms

(|cg〉 − |ce〉)|
〉/
√

2 → |ce〉|
〉,
(|cg〉 − eiπ |ce〉)|L+〉/

√
2 → |cg〉|L〉, (B3)

(|cg〉 − eiπ |ce〉)|R+〉/
√

2 → |cg〉|R〉.

FIG. 18. (Color online) Pulse sequence for implementing a
control-Z gate. If particles are present on the sites eA

L or eB
L they will

be excited to the Rydberg state |Ryd〉 via a laser with Rabi frequency

1 � Vdd (shown in red), causing a Rydberg blockade Vdd on the
atom on site �sz. A laser of Rabi frequency 
2 � Vdd excites the atom
on site �sz from the ground state to the Rydberg state. Due to the
blockade, this process will only be successful if there were initially
no particles on sites eA

L or eB
L .

Therefore, by measuring the control qubit in the excited state,
one can read out if there has been an error in the protocol
resulting in no extracted particles. Because the effect of a
particle on the left eL or right eR external site is equivalent,
this protocol is QND, giving no information on the qubit
information.

APPENDIX C: ENTANGLING GATE

In this Appendix, we give the detailed pulse sequence
required to implement the controlled-Z gate, as outlined
in Sec. VI. The pulse scheme is shown schematically in
Fig. 18. To describe the sequence in detail, we follow the
evolution of the four possible two-qubit logic states. Using
the same notation as above, |L〉 ≡ a

†
e,L|
e〉L ⊗ |
e〉R and

|R〉 ≡ |
e〉L ⊗ a
†
e,R|
e〉R , the four logical states are

|00〉 mapping←→ |L〉A|L〉B, |01〉 mapping←→ |L〉A|R〉B,
(C1)

|10〉 mapping←→ |R〉A|L〉B, |11〉 mapping←→ |R〉A|R〉B,

where A,B label the two qubits. The protocol is as follows:
(1) A pulse with Rabi frequency 
1 on the sites eA

L and eB
L

excites any atom present on these sites to the Rydberg level
|Ryd〉. We assume 
1 � Vdd (ra), where ra is the distance
between sites eA

L and eB
L (see Fig. 16). This ensures that these

atoms do not interact. The result is

|00〉 → |Ryd〉A|Ryd〉B, |01〉 → |Ryd〉A|R〉B,
(C2)

|10〉 → |R〉A|Ryd〉B, |11〉 → |R〉A|R〉B.

This is shown by the red pulses in Fig. 18.
(2) A second pulse with Rabi frequency 
2 � Vdd (ra/2)

on the site �sz to excite the atom on this site to the Rybderg state.
In the case of logical states |00〉,|01〉,|10〉, the excitation of this
atom is blocked by the Rydberg blockade induced by the atoms
on sites eα

L already occupying the Rydberg state. However, in
the case of the logical state |11〉 there is no blockade, and the
atom on site �sz is successfully excited into the Rydberg state.
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(3) A pulse on site �sz to deexcite the atom back to the
ground state, with a phase shift of π . Because the atom on site
�sz is only in the Rydberg state if the initial qubit state was |11〉,
this state alone will pick up this phase shift.

(4) A pulse to bring all atoms on sites eα
L back to the ground

state.

This protocol results in a controlled-Z gate acting on the
logical subspace

|00〉 → |00〉, |01〉 → |01〉,
(C3)

|10〉 → |10〉, |11〉 → −|11〉.
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