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The practical construction of scalable quantum-computer hardware capable of executing nontrivial quantum
algorithms will require the juxtaposition of different types of quantum systems. We analyze a modular ion trap
quantum-computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits.
Local entangling quantum gates between qubit memories within a single register are accomplished using natural
interactions between the qubits, and entanglement between separate registers is completed via a probabilistic
photonic interface between qubits in different registers, even over large distances. We show that this architecture
can be made fault tolerant, and demonstrate its viability for fault-tolerant execution of modest size quantum
circuits.
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I. INTRODUCTION

A quantum computer is composed of at least two quantum
systems that serve critical functions: a reliable quantum
memory for hosting and manipulating coherent quantum
superpositions, and a quantum bus for the conveyance of
quantum information between memories. Quantum memories
are typically formed out of matter such as individual atoms,
spins localized at quantum dots or impurities in solids,
or superconducting junctions [1]. On the other hand, the
quantum bus typically involves propagating quantum degrees
of freedom such as electromagnetic fields (photons) or lattice
vibrations (phonons). A suitable and controllable interaction
between the memory and the bus is necessary to efficiently
execute a prescribed quantum algorithm. The current challenge
in any quantum-computer architecture is to scale the system
to very large sizes, where errors are typically caused by
speed limitations and decoherence of the quantum bus or its
interaction with the memory. The most advanced quantum
bit (qubit) networks have thus been established only in very
small systems, such as individual atomic ions bussed by the
local Coulomb interaction [2] or superconducting Josephson
junctions coupled capacitively or through microwave striplines
[3,4]. In this paper, we propose and analyze a hierarchy of
quantum information processing units in a modular quantum-
computer architecture that may allow the scaling of high
performance quantum memories to useful sizes [5]. This
architecture compares to the “multicore” classical information
processor, and is suitable for the implementation of complex
quantum circuits utilizing the flexible connectivity provided
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by a reconfigurable photonic interconnect network. Unlike
previous related proposals [6–13], all of the rudiments of
a modular universal scalable ion trap quantum-computer
(MUSIQC) architecture have been experimentally demon-
strated in small-scale trapped ion systems. Furthermore, we
show this reconfigurable architecture can be made fault
tolerant over a wide range of system parameters, using a variety
of fault-tolerant schemes.

We specialize to the use of atomic ion qubit memories,
due to the outstanding qubit properties demonstrated to
date. Qubits stored in ions enjoy a level of coherence
that is unmatched in any other physical system, underlying
the reason such states are also used as high performance
atomic clocks. Moreover, atomic ions can be initialized and
detected with nearly perfect accuracy using conventional
optical pumping and state-dependent fluorescence techniques
[14]. There have been many successful demonstrations of
controlled entanglement of several-ion quantum registers in
the past decade involving the use of qubit state-dependent
forces supplied by laser beams [2,15]. These experiments
exploit the collective motion of a small number of trapped ion
qubits, but as the size of the ion chain grows, such operations
are more susceptible to external noise, decoherence, or speed
limitations.

One promising approach to scaling trapped ion qubits is
the quantum charge-coupled device (QCCD), where physical
shuttling of ions between trapping zones in a multiplexed trap
is used to transfer qubits between (short) chains of ions [14,16].
This approach involves advanced ion trap structures, perhaps
with many times more discrete electrodes as trapped ion qubits,
and therefore motivates the use of micrometer-scale surface
traps [17–19] and novel fabrication techniques [20–22]. The
shuttling approach requires careful control of the time-varying
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FIG. 1. (Color online) Hierarchical modular quantum-computer
architecture hosting N = NELUNq qubits. (a) The elementary logic
units (ELU) consist of a register of Nq trapped atomic ion qubits,
whereby entangling quantum logic gates are mediated through
the local Coulomb interaction between qubits. (b) One or more
atomic qubits within each of the NELU registers are coupled to
photonic quantum channels, and through a reconfigurable optical
crossconnect switch (OXC, center), fiber beamsplitters, and position
sensitive imager (right), qubits between different registers can be
entangled.

trapping potential to manipulate the position of the atomic
ion, and cannot easily be extended over large distances for
quantum communications applications. The QCCD approach
is expected to enable a quantum information processing
platform where basic quantum error correction and quantum
algorithms can be realized. Further scaling in the near future is
likely limited by the complexity of the trap design, diffraction
of optical beams [23], and the hardware controllers to operate
the system.

Here we describe and analyze a MUSIQC architecture
that may enable construction of quantum processors with
up to 106 qubits utilizing component technologies that have
already been demonstrated. This architecture features two
elements described in Sec. II: stable trapped ion multiqubit
registers that can further be connected with ion shuttling, and
scalable photonic interconnects that can link these registers
in a flexible configuration over large distances, as shown in
Fig. 1. We highlight two unique features enabled by this
hardware platform. In Sec. III, we articulate architectural
advantages of this approach that allow significant speedup
and resource reduction in quantum circuit execution over
other hardware architectures, enabled by the ability to operate
quantum gates between qubits throughout the entire processor
regardless of their relative location. In Sec. IV, we prove
how a quantum network such as MUSIQC can support
fault-tolerant error correction even in the face of probabilistic
and slow interconnects. Section V discusses the experimental
challenges and technological developments necessary for its
realization. While we focus our discussions on quantum
registers composed of trapped atomic ions, the networking
aspect of this architecture is applicable to other qubit platforms
that feature strong optical transitions, such as quantum dots,
neutral atoms, or nitrogen-vacancy (NV) color centers in
diamond [1].

II. QUANTUM COMPUTING IN A MODULAR
ARCHITECTURE

A. The modular elementary logic unit (ELU)

The base unit of MUSIQC is a collection of Nq qubit
memories with local interactions, called the elementary logic
unit (ELU). Quantum logic operations within the ELU are
ideally fast and deterministic, with error rates sufficiently
small that fault-tolerant error correction within an ELU is
possible [24]. We represent the ELU with a crystal of Nq � 1
trapped atomic ions as shown in Fig. 2(a), with each qubit
comprising internal energy levels of each ion, labeled as |↑〉
and |↓〉, separated by frequency ω0. We assume the qubit
levels are coupled through an atomic dipole operator μ̂ =
μ(|↑〉〈↓| + |↓〉〈↑|). The ions interact through their external
collective modes of quantum harmonic motion. Such phonons
can be used to mediate entangling gates through application
of qubit-state-dependent optical or microwave dipole forces
[25–27]. There are many known protocols for phonon-based
gates between ions, and here we summarize the main points
relevant to the size of the ELU and the larger architecture.

An externally applied near-resonant running wave field
with amplitude E(x̂) = E0e

ikx̂ and wave number k couples
to the atomic dipole through the interaction Hamiltonian
Ĥ = −μ̂E(x̂), and by suitably tuning the field near sidebands
induced by the harmonic motion of the ions [14] a qubit-state-
dependent force results. In this way, qubits can be mapped
onto phonon states [14,25] and then onto other qubits for
entangling operations with characteristic speed Rgate = η�,
where η = √

�k2/(2m0Nqω) is the Lamb Dicke parameter, m0

is the mass of each ion, ω the frequency of harmonic oscillation
of the collective phonon mode, and � = μE0/2� is the Rabi
frequency of the atomic dipole independent of motion. For
optical Raman transitions between qubit states (e.g., atomic
hyperfine ground states) [14], two fields are each detuned by
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FIG. 2. (Color online) Elementary logic unit (ELU) composed
of a single crystal of Nq trapped atomic ion qubits coupled through
their collective motion. (a) Classical laser fields impart qubit state-
dependent forces on one or more ions, affecting entangling quantum
gates between the memory qubits. Second ion species is introduced
as refrigeration ions. (b) One or more of the ions (rightmost in the
figure) are coupled to a photonic interface, where a classical laser
pulse maps the state of these communication qubits onto the states of
single photons (e.g., polarization or frequency), which then propagate
along an optical fiber to be interfaced with other ELUs.
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� from an excited state of linewidth γ � �, and when their
difference frequency is near resonant with the qubit frequency
splitting ω0, we use instead � = (μE0)2/(2�

2�).
The typical gate speed within an ELU therefore slows down

with the number of qubits Nq as Rgate ∼ N
−1/2
q . As the size

of the ELU grows, so will the coupling between the modes
of collective motion that could lead to crosstalk. However,
through the use of pulse-shaping techniques [28], the crosstalk
errors need not be debilitating, although the effective speed of
a gate will slow down with size Nq . Changes of the ions’
motional states during the gate, arising from sources like
heating of the motional modes [29–31] or fluctuating fields,
will degrade the quality of the gates, leading to practical limits
on the size of the ELU on which high performance gates can
be realized. It is likely that long chains will require periodic
“refrigerator” ions to remove motional excitations between
gates. Since cooling is a dissipative process, these cooling
ions should be chosen to be different isotope or species of
ions and quench motional heating through sympathetic cooling
[32]. We estimate that ELUs ranging from Nq = 10−100
should be possible [2,15]. More than one ELU chain can
be integrated into a single chip by employing ion shuttling
through more complex ion trap structures [16]. Such extended
ELUs (EELUs) consisting of NE ELU chains can contain a
total of NqNE = 20–1000 physical qubits. For simplicity, we
focus the remainder of the article on systems with one ELU
per chip (NE = 1).

B. Probabilistic linking of ELUs

Two qubits from a pair of ELUs (or EELUs) can be
entangled by each emitting photon that interferes with each
other. Entanglement generated between these “communication
qubits” can be utilized as a resource to perform a two-qubit
gate between any pair of qubits, one from each ELU, using
local qubit gates, measurements, and classical communication
between the ELUs. In this scheme, the communication qubit is
driven to an excited state with fast laser pulses whose duration
τe � 1/γ , so that no more than one photon is emitted from
each qubit per excitation cycle following the atomic radiative
selection rules [Fig. 2(b)]. The photon can be postselected so
that one of its degrees of freedom (polarization, frequency, etc.)
is entangled with the state of the communication qubit [33–36].
When the photons from two communication qubits are mode
matched and interfere on a 50:50 beamsplitter, detectors on
the output modes of the beamsplitter can herald the creation
of entanglement between the memory qubits [37–41].

We consider two types of photonic connections, character-
ized by the number of total photons used in the entanglement
protocol between two communication qubits [42]. For type I
connections [shown in Fig. 3(a)], each communication qubit
with an index i (or j ) is weakly excited with probability
pe � 1 and the state of the ion+photon qubit pair is
approximately written (ignoring the higher-order excitation
probabilities) as ∼ √

1 − pe|↓〉i |0〉i + eikxi
√

pe|↑〉i |1〉i where
|n〉i denotes the state of n photons radiating from the commu-
nication qubit into an optical mode i, xi is the path length
from the emitter i to a beamsplitter, and k the optical wave
number [37]. When two communication qubits i and j are
excited in this way and the photons interfere at the beamsplitter,

(a) 

(b) 

e

↓
↑

e

↓
↑

pe <<1

pe ~ 1

qubit i qubit j 

qubit i qubit j 

FIG. 3. (Color online) (a) Type I interference from photons emit-
ted from two communication qubits. Each qubit is weakly excited
so that single-photon emission has a very small probability yet is
correlated with the final qubit state. The output photonic channels are
mode matched with a 50:50 beamsplitter and subsequent detection
of a photon from either output port heralds the entanglement of the
communication qubits. The probability of two photons present in
the system is much smaller than that of detecting a single photon.
(b) Type II interference involves the emission of one photon from
each communication qubit, where the internal state of the photon
(e.g., its color) is correlated with the qubit state. After two-photon
interference at the beamsplitter, coincidence detection of photons at
the two detectors heralds the entanglement of the communication
qubits.

the detection of a single photon in either detector placed at
the two output ports of the beamsplitter heralds the creation
of the state [eikxj |↓〉i |↑〉j ± eikxi |↑〉i |↓〉j ]/

√
2 with success

probability p = peFηD , where F is the fractional solid angle
of emission collected, ηD is the detection efficiency including
any losses between the emitter and the detector, and the sign
in this state is determined by which one of the two detectors
fires. Following the heralding of a single photon, the (small)
probability of errors from double excitation and detector dark
counts are given, respectively, by p2

e and Rdark/γ where Rdark

is the rate of detector dark counts. For type I connections to be
useful, the relative optical path length xi − xj must be stable
to much better than the optical wavelength ∼ 2π/k.

For type II connections [shown in Fig. 3(b)], each
communication qubit is excited with near unit probability
pe ∼ 1 and the single photon carries its qubit through two
distinguishable internal photonic states (e.g., polarization or
optical frequency). For example, the state of the system
containing both communication and photonic qubits is written
as [eik↓xi |↓〉i |ν↓〉i + eik↑xi |↑〉i |ν↑〉i]/

√
2, where |ν↓〉i and |ν↑〉i

denote the frequency qubit states of a single-photon emitted
by the ith communication qubit with wave numbers k↓ and
k↑ associated with optical frequencies ν↑ and ν↓, respectively.
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Here, |ν↑ − ν↓| = ω0 � γ so that these two frequency qubit
states are distinguishable. The coincidence detection of pho-
tons from two such communication qubits i and j after
interfering at a 50:50 beamsplitter herald the successful
entanglement of the communication qubits, creating the state
[ei(k↓xi+k↑xj )|↓〉i |↑〉j − ei(k↑xi+k↓xj )|↑〉j |↓〉i]/

√
2 with success

probability p = (peFηD)2/2 [38,39]. Other schemes have also
been proposed that scale similar to the type II connections
[43,44].

The success probability of the two-photon type II connec-
tion may be lower than that of the type I connection when
the light collection efficiency is low, but type II connections
are much less sensitive to optical path length fluctuations.
The stability requirement of the relative path length xi − xj

is only at the level of the wavelength associated with the
difference frequency 2πc/ω0 of the photonic frequency qubit,
which is typically at the centimeter scale for hyperfine-encoded
communication qubits.

In both cases, the mean connection time is given by
τE = 1/(Rp) where R is the repetition rate of the initial-
ization/excitation process and p is the success probabil-
ity of generating the entanglement. For atomic transitions,
R ∼ 0.1(γ /2π ), and for typical free-space light collection
(F ∼ 10−2) and taking ηD ∼ 0.2, we find for a type I
connection τE ∼ 5 ms (pe = 0.05) and for a type II connection
τE ∼ 250 ms where we have assumed γ /2π = 20 MHz.
Type II connections eventually outperform that of type I with
more efficient light collection, which can be accomplished by
integrating optical elements with the ion trap structure without
any fundamental loss in fidelity. Eventually, τE ∼ 1 ms should
be possible in both types of connections [45].

The process to generate ion-ion entanglement using photon
interference requires resonant excitation of the communication
qubits, and steps must be taken to isolate the communication
qubit from other memory qubits so that scattered light from
the excitation laser and the emitted photons do not disturb the
spectator memory qubits. It may be necessary to physically
separate or shuttle the communication qubit away from the
others, invoking some of the techniques from the QCCD
approach. This crosstalk can also be eliminated by utilizing a
different atomic species for the communication qubit [46], so
that the excitation and emitted light is sufficiently far from the
memory qubit optical resonance to avoid causing decoherence.
The communication qubits do not require excellent quantum
memory characteristics, because once the entanglement is
established between the communication qubits in different
ELUs, they can immediately be swapped with neighboring
memory qubits in each ELU.

C. Reconfigurable connection network in MUSIQC

The MUSIQC architecture allows a large number NELU

of ELUs (or EELUs) to be connected with each other using
the photonic channels, as shown in Fig. 1. The connection
is made through an optical crossconnect (OXC) switch [47]
with NELU input and output ports. The photon emitted from
the communication qubit in each ELU is collected into a
single-mode fiber and directed to a corresponding input port
of the OXC switch. Up to NELU/2 Bell state detectors, each
comprising two fibers interfering on a beamsplitter and two

detectors, are connected to the output ports of the OXC
switch. The OXC switch is capable of providing an optical
path between any input fiber to any output fiber that is
not already connected to another input fiber. An ideal OXC
switch achieves full nonblocking connectivity with uniform
optical path lengths. This optical network provides fully
reconfigurable interconnect network for the photonic qubits,
allowing entanglement generation between any pair of ELUs
in the processor with up to NELU/2 such operations running in
parallel. OXC switches that support 200–1100 ports utilizing
microelectromechanical systems (MEMS) technology have
been constructed and are readily available [47,48]. In practice,
the photon detection can be accomplished in parallel with a
conventional charge-coupled-device (CCD) imager or an array
of photon-counting detectors, with pairs of regions on the CCD
or the array elements associated with particular pairs of output
ports from the fiber beamsplitters, as shown in Fig. 1.

D. Current status of ion qubit experiments

Trapped ion experiments feature high quality qubits, and
have demonstrated high quality quantum logic operations in
the past two decades. Hyperfine qubits utilizing two ground
states of an atom are shown to routinely exhibit long coherence
times of a few seconds [49,50], and more than an order of
magnitude longer when operated in the “field-independent”
regime where the energy splitting of the two qubit states is
independent of the magnetic field fluctuations to first order
[51,52]. Optical qubits between a ground state and a metastable
excited state are also compelling candidates for qubits, when
stable laser systems can be constructed to control the transition
[14,15]. Recent experiments showed substantial progress in
improving the fidelity of individual operations necessary for
the quantum computation processes.

High fidelity qubit preparation with near-unity fidelity is
routinely achieved by optical pumping, although the experi-
mental characterization is typically limited by the qubit state
detection process. This is commonly referred to as state
preparation and measurement (SPAM) errors. High fidelity
qubit state detection with errors in the 10−4 range are available
in the optical qubit [53] with an average detection time of
150 μs, while a direct detection of hyperfine qubits can be
performed with 10−3 errors [54] with an average detection
time of 50 μs. Single qubit gates on hyperfine qubits driven
by microwave sources show the lowest level of error, in the
10−5–10−6 range [55,56]. The best performance of two-qubit
gate demonstrated to date features errors in the 7 × 10−3 range
[57], while recent progress indeed is approaching closer to the
10−3 range [56].

The prospect for further reduction of SPAM errors and
higher fidelity remains highly positive in the future, as
the researchers continue to search for protocols that are
robust against experimental errors, and improve experimental
imperfections that lead to residual errors.

III. PERFORMANCE ADVANTAGE OF MUSIQC
ARCHITECTURE

In this section we examine the performance of the MUSIQC
architecture under the assumption of large ELUs and low
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TABLE I. Assumptions on the time scales of quantum operation primitives used in the model.

Quantum Single-qubit Two-qubit Toffoli Qubit Remote entanglement
primitive gate gate gate measurement generation

Operation time (μs) 1 10 10 30 3000

errors. This allows us to directly compare our results to
previous studies on ion traps using the Steane [7, 1,3] code
and the quantum logic array (QLA) architecture [58,59]. In
Sec. IV, we will examine the limits of small ELUs and large
errors.

A. Computation model in MUSIQC

In the circuit model of quantum computation, execution
of two-qubit gates creates the entanglement necessary to
exploit the power of quantum physics in computation [24].
In the alternate model of measurement-based cluster-state
quantum computation, all of the entanglement is generated
at the beginning of the computation, followed by conditional
measurements of the qubits [60]. The MUSIQC architecture
presented here follows the circuit model of computation within
each ELU, but the probabilistic connection between ELUs is
carried out by generation of entangled Bell pairs similar to
the cluster-state computation model. In this sense, MUSIQC
realizes a hybrid model of quantum computation, driven by
the generation rate and burn rate of entanglement between
the ELUs. In the event the generation rate of entangled Bell
pairs between ELUs is lower than the burn rate, each ELU
would require the capacity to store enough initial entanglement
so that the end of the computation can be reached at the
given generation and burn rates of entanglement. The hybrid
nature of MUSIQC provides a unique hardware platform with
three distinct advantages: fully reconfigurable connectivity to
dynamically adjust the connectivity graph, constant time scale
to perform operations between distant qubits, and moderate
ELU size adequate for practical implementation. One can
further reduce the entanglement generation time by time-
division multiplexing (TDM) the communication ports at the
expense of added qubits. Moreover, the temporal mismatch
between the remote entanglement generation and local gates
is reduced as the requirement of error correction increases the
logical gate time.

For a complex quantum algorithm associated with a prob-
lem size of n bits, logical operations between spatially distant
qubit pairs are necessary. In a hardware architecture where
only local gate operations are allowed (e.g., nearest neighbor
gates), gate operations between two (logical) qubits separated
by long distances can be implemented with resource overhead
(number of qubits, parallel operations, and/or communication
time) polynomial in the distance between qubits, O(nk). When
a large number of parallel operations is available, one can
employ entanglement swapping protocols to efficiently dis-
tribute entanglement with communication times scaling either
polylogarithmically [61], or even independent of the commu-
nication distance [62]. This procedure requires extra qubits
that are used to construct quantum buses for long-distance
entanglement distribution, and the architecture adopting such

buses was referred to as quantum logic array (QLA) [58]. We
construct a simple model that provides a direct comparison
between the QLA and MUSIQC architectures in terms of
the resources required to execute useful quantum algorithms.
Despite the slow entanglement generation times, we find that
the performance of the MUSIQC architecture is comparable
to QLA (and its variations [63]), with substantial advantage in
required resources and feasibility for implementation.

In our simplified model, we consider hardware (1) capable
of implementing a Steane [7, 1,3] quantum error correction
code to multiple levels of concatenation, and (2) where all gate
operations are performed following fault-tolerant procedures.
This simplified model is designed to estimate the execution
time of the circuits in select architectures, and is not intended
to provide the complete fault-tolerant analysis of the quantum
circuit. For this model, we therefore require that the physical
error levels are sufficiently low (∼10−7) to produce the correct
answer with order-unity probability using only up to three
levels of concatenation of Steane code. We also assume that
the quality of entangled pairs that are generated in MUSIQC
architecture is high enough that error correction schemes can
improve its fidelity sufficient to achieve fault tolerance [64].
The hardware is based on trapped ion quantum computing
with the assumptions for the time scales for quantum operation
primitives summarized in Table I. The details of fault-tolerant
implementation of universal gate set utilized in this analysis is
summarized in Appendix A.

B. Construction of efficient arithmetic circuits

The example quantum circuit we analyze is an adder circuit
that computes the sum of two n-bit numbers. Simple adder
circuits form the basis of more complex arithmetic circuits,
such as the modular exponentiation circuit that dominates the
execution time of Shor’s factoring algorithm [65]. Quantum
adder circuits can be constructed using X, CNOT, and Toffoli
gates. When only local interactions are available without
dedicated buses for entanglement distribution, a quantum
ripple-carry adder (QRCA) is the adequate adder of choice
[66], for which the execution time goes as O(n). For QLA
and MUSIQC architectures, one can implement quantum
carry-lookahead adder (QCLA) that is capable of reducing the
runtime to O(log n) [67,68], at the expense of extra qubits
and parallel operations. QCLA dramatically outperforms
the QRCA for n above ∼100 in terms of execution time.
Practical implementation of large-scale QCLAs are hindered
by the requirement of executing Toffoli gates among qubits
that are separated by long distances within the quantum
computer. MUSIQC architecture flattens the communication
cost between qubits in different ELUs, providing a suitable
platform for implementing QCLAs. Alternatively, QLA archi-
tecture can also efficiently execute QCLAs using dedicated
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communication bus that reduces the connection time between
two qubits (defined as the time it takes to generate entangled
qubit pairs that can be used to teleport one of the qubits or the
gate itself) to increase only as a logarithmic function of the
separation between them [58].

C. MUSIQC implementation

In order to implement the QCLA circuit in MUSIQC archi-
tecture, each ELU should be large enough to accommodate the
generation of the |φ+〉L state shown in Fig. 9(a). This requires
a minimum of three logical qubits and a seven-qubit cat state,
and sufficient ancilla qubits to support the state preparation. We
balance the qubit resource requirements with computation time
by requiring four ancilla qubits per logical qubit, so that the
four-qubit cat states necessary for the stabilizer measurement
can be created in parallel. Implementation of each Toffoli gate
is realized by allocating a fresh ELU and preparing the |φ+〉L
state, then teleporting the three qubits from other ELUs into
this state. Once the gate is performed, the original logical
qubits from the other ELUs are freed up and become available
for another Toffoli gate. We find that 6n logical qubits placed
on 6n/4 = 1.5n ELUs is sufficient to compute the sum of two
n-bit integers using the QCLA circuit at the first concatenation
level of Steane code encoding.

Teleportation of qubits into the ELU containing the pre-
pared |φ+〉L state requires generation of entangled states via
photon interference. In order to minimize the entanglement
generation time, one should provide at least three optical ports
to connect to these ELUs in parallel. In order to successfully
teleport the gate, we need to create seven entangled pairs
to each ELU holding the input qubits. The entanglement
generation time can be reduced by running multiple optical
ports to other ELUs in parallel (we call this the port multiplexity
mp). In a typical entanglement generation procedure, the ion
is prepared in an initial state, and then excited using a short
pulse laser (∼5 ps). The ion emits a photon over a spontaneous
emission lifetime (∼10 ns), and the photon detection process
will determine whether the entanglement generation from a
pair of such ions is successful. If the entanglement generation
is successful, the pair is ready for use in the computation. If
not, the ions will be re-initialized (∼1 μs) and the process is
repeated. Since the initialization time of the ion is ∼100 times
longer than the time a photon is propagating in the optical port,
one can utilize multiple ions per optical port and “pipeline”
the photon emission process. In this time-division-multiplex
(TDM) scheme, another ion is brought into the optical port
to make another entanglement generation attempt while the
initialization process is proceeding for the unsuccessful ion.
This process can be repeated mT times using as many extra
ions, before the first ion can be brought back (we call mT the
TDM multiplexity). Using the port and TDM multiplexity, we
can reduce the entanglement generation time by a factor of
mpmT .

In our example, we assume multiplexities mp = 2 and
mT = 10 that require 100 qubits (= 3 × 7 + 3 × 4 + 3 × 2 ×
10) and 12 parallel operations per ELU as shown in Fig. 4(a).
This choice adequately speeds up the communication time
between ELUs to balance out other operation times in the
hardware. Multiple ELUs are connected by an optical switch

ELU with 100 physical qubits 
& 6 communication ports 
4 logical qubits (28) 
Communicator qubits (60) 
Ancilla qubits (12) 
12 parallel operations 

Logic Unit with 42 physical qubits 
In 7x7 square format 
4 logical qubits (28) 
Ancilla qubits (20), 1 spare qubit 
12 parallel operations 

Logic Block with 6 logic units embedded in 
communication units 
24 logical qubits 
882 communication qubits (7x7x18) 
441 parallel operations 

(b) 

(c) 

(a) 

FIG. 4. (Color online) Example of the MUSIQC and QLA hard-
ware considered. (a) Each ELU in MUSIQC is made up of 100
physical qubits and six communication ports (only one shown in the
figure), where 60 qubits are used to increase the bandwidth of the
remote entanglement generation. These ELUs are connected through
an OXC switch as shown in Fig. 1. (b) For QLA, each logic unit
is made up of 49 physical qubits hosting four logical qubits and
necessary ancilla qubits. (c) A logic block is six such logic units
embedded in communication units. Communication units are square
arrangements of 7 × 7 qubits, and eight such units fully surround the
logic unit.

to complete the MUSIQC hardware [Fig. 1(b)]. With these
resources, an efficient implementation of the QCLA circuit can
be realized by executing all necessary logic gates in parallel.
Under these circumstances, the depth of the n-bit in-place
adder circuit is given by [67]


log2 n� + 
log2(n − 1)� +
⌊

log2
n

3

⌋
+

⌊
log2

n − 1

3

⌋
+ 14,

(1)

for sufficiently large n (n > 6) where 
x� denotes the largest
integer not greater than x. Out of these, two time steps contain
X gates, four contain CNOT gates, and the rest contain Toffoli
gates which dominate the execution time of the circuit. We
assume an error correction step is performed on all qubits after
each time step, by measuring all stabilizers of the Steane code
and making necessary corrections based on the measurement
outcome.

Once the basic operational primitives outlined in the previ-
ous section are modeled at the first level of code concatenation,
we can construct all of these primitives at the second level
of concatenation using the primitives at the first level. We
can recursively construct the primitives at higher levels of
code concatenation. Since the cost of remote CNOT gates
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between ELUs are independent of the distance between them,
recursive estimation of circuit execution at higher levels of
code concatenation is straightforward on MUSIQC hardware.

D. QLA implementation

We consider a concrete layout of a QLA device optimized
for n-bit adder with one level of Steane [7, 1,3] encoding,
which can be used to construct circuits at higher levels of code
concatenation. In order to implement the fault-tolerant Toffoli
gate described in Fig. 9, one should assemble four logical
qubits into a single tight unit, as we did for the ELUs in the
MUSIQC architecture. In the QLA implementation, a “Logic
Unit (LU)” consists of a square of 49 (= 7 × 7) qubits, where
a block of 12 (= 3 × 4) qubits form a logical qubit with seven
physical qubits and five ancilla qubits [Fig. 4(b)]. Just like in
the MUSIQC example, 6n logical qubits placed on 1.5n LUs
are necessary for adding two n-bit numbers. Therefore, we
organize six LUs into a logical block (LB), capable of adding
two 4-bit numbers. Each LU in the LB is surrounded by eight
blocks of 7 × 7 communication units dedicated for distributing
entanglement using the quantum repeater protocol [Fig. 4(c)].
We assume that the communication of the qubits within each
LU is “free,” and do not consider the time it takes for such
communication. This simplified assumption is justified as the
communication time between LUs utilizing the qubits in the
communication units dominates the computation time, and
therefore does not change the qualitative conclusion of this
estimate.

Similar to the MUSIQC hardware example, a Tof-
foli gate execution involves the preparation of the
|φ+〉L state in an “empty” LU, then teleporting three

qubits onto this LU to complete the gate operation. The
execution time of the Toffoli gate therefore comprises the
time it takes to prepare the |φ+〉L state, the time it takes
to distribute entanglement between adequate pairs of LUs,
and then utilizing the distributed entanglement to teleport the
gate operation. Among these, the distribution time for the
entanglement is a function of the distance between the two
LUs involved, while the other two are independent of the
distance.

The QCLA circuit involves various stages of Toffoli gates
characterized by the “distance” between qubits that goes as
2t , where 1 � t � 
log2 n� [67]. In a two-dimensional (2D)
layout as considered in Fig. 4(c), the linear distance between
these two qubits goes as 2t/2, in units of the number of
communication units that the entanglement must be generated
over. A slightly more careful analysis shows that the linear
distance is approximately given by d(t) ≈ 3 × 2t/2 + 1 when
t is even, and d(t) ≈ 2(t+1)/2 + 1 when t is odd. Since each
communication unit has seven qubits along a length, the actual
teleportation distance is L(t) = 7d(t) in units of the length of
ion chain. The nested entanglement swapping protocol can
create entanglement between the two end ions in 
log2 L(t)�
time steps, where each time step consists of one CNOT gate, two
single-qubit gates, and one qubit measurement process. Using
the expression for d(t), we approximate log2 L(t) ≈ t/2 + 4
for both even and odd t , without loss of much accuracy.
Unlike in the case of MUSIQC, the entanglement generation
time is now dependent on the distance between the qubits
(although only in a logarithmic way), and the resulting time
steps needed for entanglement distribution within the QCLA
is (approximately) given by


log2 n�(
log2 n� + 17)/4 + 
log2(n − 1)�(
log2(n − 1)� + 17)/4 +
⌊

log2
n

3

⌋(⌊
log2

n

3

⌋
+ 17

)/
4

+
⌊

log2
n − 1

3

⌋(⌊
log2

n − 1

3

⌋
+ 17

)/
4.

It should be noted that in order to achieve this logarithmic time,
one has to have the ability to perform two qubit gates between
every pair of qubits in the entire communication unit in parallel.
The addition of two n-qubit numbers requires n/4 LBs. Since
each LB has 18 communication units, there are a total of
7 × 7 × 18 = 882 communication qubits in an LB. The
number of parallel operations necessary is therefore 441 simul-
taneous CNOT operations per LB, or 441n/4 ≈ 110n parallel
operations for n-bit QCLA. The number of X, CNOT, and
Toffoli gates that have to be performed remains identical to the
MUSIQC case since we are executing an identical circuit. We
assume that error correction is performed after every logic gate,
but the entanglement distribution process has high enough
fidelity so that no further distillation process is necessary.

Similar to the MUSIQC case, one can generate basic oper-
ational primitives at higher levels of code concatenation in the
QLA model. Unlike the first encoding level, one may not have
to explicitly provide communication channels for the second

level of code concatenation if the quality of the distributed
entanglement is sufficiently high so that neither entanglement
purification [69] nor error correction of the entangled pairs
[64] is needed. This type of “interlevel optimization” can be
justified because the remote interaction between two logical
qubits at the second level of code concatenation occurs very
rarely, and the communication units at the first level can be used
to accommodate this communication at higher level without
significant time overhead. If dedicated communication qubits
were provided in addition, these qubits might sit idle most
of the time leading to inefficient use of the qubit resources.
The number of physical qubits therefore scales much more
favorably at higher levels of code concatenation than in the first
level of the QLA architecture. The distance-dependent gate
operation at higher levels of code concatenation is somewhat
difficult to predict accurately, but the logarithmic scaling of
communication time allows effective estimation of the gate
operation time with only small errors.
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(a) 

(b) 

1 minute 

1 day 

1 month 

1 year 

FIG. 5. (Color online) (a) Execution time comparison of quan-
tum ripple-carry adder (QRCA) on a nearest-neighbor architecture
(green triangles), and quantum carry-lookahead adder (QCLA) on
QLA (red squares) and MUSIQC (blue diamonds) architectures, as
a function of the problem size n. All three circuits considered are
implemented fault tolerantly, using one level of Steane [7,1,3] code.
The execution time is measured in units of single-qubit gate time
(SQGT), assumed to be 1 μs in our model. (b) Execution time (blue
diamonds, left axis) and number of required physical qubits (red
squares, right axis) of running fault-tolerant modular exponentiation
circuit, representative of executing the Shor algorithm.

E. Results and comparison

Figure 5(a) and Table II summarize the resource require-
ments and performance of the QCLA circuit on MUSIQC and

TABLE II. Summary of the resource estimation and execution
times of various adders in MUSIQC and QLA architecture.

Performance QCLA on QCLA on QRCA on
metrics MUSIQC QLA NN

Physical qubits 150n 1176n 20(n + 1)
No. of parallel operations 18n 110n 8n + 43
Logical Toffoli (μs) 3250 2327a 2159
128-bit addition 0.16 s 0.13 s 0.56 s
1024-bit addition 0.22 s 0.18 s 4.5 s
16 384-bit addition 0.29 s 0.25 s 72 s

aDoes not include entanglement distribution time.

QLA architecture, as well as the QRCA circuit on a nearest
neighbor (NN) quantum hardware, where multiqubit gates
can only operate on qubits sitting right next to one another.
Although the QLA architecture considered in this example is
also an NN hardware, presence of the dedicated communica-
tion units (quantum bus) allows remote gate operation with
an execution time that depends only logarithmically on the
distance between qubits, enabling fast execution of the QCLA.
The cost in resources, however, is significant: Realization
of efficient communication channels requires ∼3 times as
many physical qubits as used for storing and manipulating
the qubits in the first level of encoding, and requires a large
number of parallel operations as well as the necessary control
hardware to run them. The execution time can be fast compared
to the MUSIQC architecture, which is hampered by the
probabilistic nature of the photonic network in establishing
the entanglement. We have dedicated substantial resources
in MUSIQC to speed up the entanglement generation time
as described in the previous section. Although MUSIQC
architecture will take ∼15%–30% more time to execute the
adder circuit, the resources it requires to operate the same task
is only about 13% of that required in the QLA architecture.
In both cases, we note the importance of moving qubits
between different parts of a large quantum computer. The
speed advantage in adder circuits translate directly to faster
execution of the Shor algorithm, so we adopted QCLA for
further analysis.

Once the execution time and resource requirements are
identified for the adder circuit, one can adopt the analyses
provided in Ref. [68] to estimate the performance metrics
of running the Shor algorithm. The execution time and total
number of physical qubits necessary to run the Shor algorithm
depends strongly on the level of code concatenation required
to successfully obtain the correct answer. We first estimate the
number of logical qubits (Q) and the total number of logic gate
operations (K) required to complete the Shor algorithm of a
given size, to obtain the product KQ. In order to obtain correct
results with a probability of order unity, the individual error
rate corresponding to one logic gate operation must be on the
order of 1/KQ [58]. From this consideration, we determine the
level of code concatenation to be used. Table III summarizes
the comparison on the number of physical qubits and the
execution time of running the Shor algorithm on MUSIQC
and QLA architectures for factoring 32, 512, and 4096 bit
numbers [59].

TABLE III. Estimated execution time and physical qubits neces-
sary to complete Shor algorithm of a given size. The numbers on top
(bottom) correspond to MUSIQC (QLA) architecture.

Performance
metrics n = 32 n = 512 n = 4096

Code level 1 2 3
No. of physical MUSIQC 4.7 × 104 9.2 × 107 4.1 × 1010

qubits QLA 3.7 × 105 7.2 × 108 3.2 × 1011

Execution MUSIQC 2.5 min 2.1 days 650 days
time QLA 2.2 min 1.5 days 520 days
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Figure 5(b) shows the execution time (in days) and the
total number of necessary physical qubits for completing
the modular exponentiation circuit on a MUSIQC hardware,
which is a good representation of running the Shor algorithm.
The discrete jumps in the resource estimate correspond to
addition of another level of code concatenation, necessary for
maintaining the error rates low enough to obtain a correct result
as the problem size increases. Using 2 levels of concatenated
Steane code, we expect to be able to factor a 128-bit integer
in less than 10 h, with less than 6 × 106 physical qubits in the
MUSIQC system. The execution time on QLA architecture is
comparable to that on MUSIQC architecture (within 20%), but
the number of required physical qubits is higher by about a
factor of 10. Furthermore, the total size of the single ELU
necessary to implement the QLA architecture grows very
quickly (over 4.5 × 107 physical qubits for a machine that can
factor a 128-bit number), while the ELU size in MUSIQC
architecture is fixed at moderate numbers (≈58 000 ELUs
with 100 qubits per ELU). Therefore, although still daunting,
the MUSIQC architecture substantially lowers the practical
technological barrier in integration levels necessary for a
large-scale quantum computer.

IV. FAULT TOLERANCE OF PROBABILISTIC
PHOTONIC GATES

In the previous section, we examined how the MUSIQC
architecture could be used to perform algorithms in the limit
of large ELUs and low errors using Steand code. In this section,
we turn our attention to the following fundamental question:
Given a finite coherence time, how slow can the creation
of entanglement be to still allow for fault tolerance? In this
context, it is adequate to consider a MUSIQC system where
many small ELUs are connected through the photonic network.
Here, we focus on the demonstration of fault-tolerant circuit
construction on MUSIQC architecture, rather than quantitative
analysis of the resource overhead for these schemes.

Naı̈vely, it would appear that the average entanglement
creation time τE must be much smaller than the decoherence
time scale τD to achieve fault tolerance, but we find that
scalable fault-tolerant quantum computation is possible for
any ratio τE/τD , even in the presence of additional gate errors.
While large values of τE/τD would lead to impractical levels of
overhead in qubits and time (similar to the case of conventional
quantum fault tolerance near threshold error levels [70]), this
result is still remarkable and indicates that fault tolerance is
always possible in the MUSIQC architecture. In this section,
we provide a complete description of the strategies used to
secure fault tolerance in MUSIQC architecture in this limit.

A. Analysis of fault tolerance for fast entangling gates

First, we consider the case where τE/τD � 1, where
fault-tolerant coding is more practical. When each ELU is
large enough to accommodate several logical qubits encoded
with a conventional error correcting code, one can implement
full fault-tolerant procedure within an ELU as in the example
presented in the previous section. When the ELUs are too small
to fit a logical qubit, fault tolerance can be achieved by mapping
to three-dimensional (3D) cluster states, a known approach

Step 1 Step 2 Step 3 Step 4Step 1 Step 1 Step 2 Step 3Bell:

Step 2 Step 3 Step 4CNOT (front) :

(a) 

(b) 

Step 2: CNOT Gates 

Step 3: Local Pauli-Z/X 
             Measurements 

Step 1: Bell State Creation 

z 

x 

z 

x 

z 

x 

face 

edge 

FIG. 6. (Color online) (a) Three steps of creating a 3D cluster
state in the MUSIQC architecture, for fast entangling gates. (Step
1) Creation of Bell pairs between different ELUs, all in parallel.
(Step 2) CNOT gates (head of arrow, target qubit; tail of arrow,
control qubit). (Step 3) Measuring of three out of four qubits per
ELU. If the ELU represents a face (edge) qubit in the underlying
lattice, the measurements are in the Z-(X) basis. The resulting state
is a 3D cluster state, up to Hadamard gates on the edge qubits.
(b) Schedule for the creation of a 3D cluster state in the MUSIQC
architecture. (Upper line) Schedule for Bell pair production between
ELUs representing face and edge qubits. (Lower line) Schedule for
the CNOT gates within the ELUs corresponding to the front faces of
the lattice cell. Schedules for the ELUs on other faces and on edges
are similar.

for supporting fault-tolerant universal quantum computation
[71]. This type of encoding is well matched to the MUSIQC
architecture, because the small degree of their interaction graph
leads to small ELUs. A similar approach has recently been
explored in Refs. [12,13].

Scheduling. For τE � τD , the 3D cluster state with qubits
on the faces and edges of a three-dimensional lattice can
be created using the procedure displayed in Fig. 6(a). The
procedure consists of three basic steps: (1) creation of Bell
states between different ELUs via the photonic link, (2) CNOT

gates within each ELU, and (3) local measurement of three
out of four qubits in each ELU. As can be easily shown using
standard stabilizer arguments, the resulting state is a 3D cluster
state, up to local Hadamard gates on the edge qubits.

The operations can be scheduled such that (a) qubits are
never idle, and (b) no qubit is acted upon by multiple gates
(even commuting ones) at the same time. The latter is required
in some proposals for realizing quantum gates with ion qubits.
To this end, the schedule [71] for 3D cluster state generation
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is adapted to the MUSIQC architecture, and the three-step
sequence shown in Fig. 6(a) is expanded into the five-step
sequence shown in Fig. 6(b). In steps 1–3 the Bell pairs across
the ELUs are created. In steps 2–4 the CNOTs within each ELU
are performed, and in steps 3–5 three qubits in each ELU are
measured. The sequence of operations is such that each of
the three ancilla qubits in every ELU lives for only three time
steps: initialization (to half of a Bell pair), CNOT, measurement.
No qubit is ever idle in this protocol.

What remains to complete the computation is the local
measurement of the 3D cluster state [71]. All remaining
measurements are performed in step 5 of the above procedure.
This works trivially for cluster qubits intended for topological
error correction or the implementation of topologically pro-
tected encoded Clifford gates [72], since these measurements
require no adjustment of the measurement basis. To avoid
delay in the measurement of qubits for the implementation of
non-Clifford gates, it is necessary to break the 3D cluster states
into overlapping slabs of bounded thickness [71].

Fault-tolerance threshold. We assume the following error
model. (1) Every gate operation, i.e., preparation and measure-
ment of individual qubits, gates within an ELU, and Bell pair
creation between different ELUs, can all be achieved within a
clock cycle of duration T . An erroneous one-qubit (two-qubit)
gate is modeled by the perfect gate followed by a partially
depolarizing one-qubit (two-qubit) channel. In the one-qubit
channel, X, Y , and Z errors each occur with probability
ε/3. In the two-qubit channel, each of the 15 possible errors
X1,X2,X1X2, . . . ,Z1Z2 occurs with a probability of ε/15. All
gates have the same error ε. (2) In addition, the effect of
decoherence per time step T is described by local probabilistic
Pauli errors X, Y , Z, each happening with a probability T/3τD .

A criterion for the error threshold of measurement-based
quantum computation with cluster states that has been estab-
lished numerically for a variety of error models is

〈K∂q〉({error parameters}) = 0.70. (2)

Therein, K∂q is a cluster state stabilizer operator associated
with the boundary of a single volume q, consisting of six
faces. Let f be a face of the three-dimensional cluster, and
Kf = σ

(f )
x

⊗
e∈∂f σ (e)

z as shown in Fig. 7(a). Then, K∂q =∏
f ∈∂q Kf = ⊗

f ∈∂q σ
(f )
x . Furthermore, for the above crite-

rion to apply, all errors—for preparation of local states, local
and entangling unitaries, and measurement—are propagated
forward or backward in time, to solely affect the 3D cluster
state.

The above criterion applies for a phenomenological error
model with local memory error and measurement error (the
threshold error probability per memory step and measurement
is 2.9% [73]), for a gate-based error model (the threshold
error probability per gate is 0.67% [71]), and further error
models with only low-order correlated error. Specifically, the
criterion (2) has numerically been tested for cluster state
creation procedures with varying relative strength of local vs
2-local gate error [71], with excellent agreement. In all cases,
the error correction was performed using Edmonds’ perfect
matching algorithm.

The detailed procedure for calculating the error probability
of the stabilizer measurement process for the 3D cluster state
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FIG. 7. (Color online) Hypercell construction II. (a) Lattice cell
of a three-dimensional four-valent cluster state. The dashed lines
represent the edges of the elementary cell and the solid lines represent
the edges of the connectivity graph. The three-dimensional cluster
state is obtained by repeating this elementary cell in all three spatial
directions. (b) Creating probabilistic links between several 3D cluster
states. (c) Reduction of a 3D cluster state to a five-qubit graph state,
via Pauli measurements. The shaded regions represent measurements
of Z; the blank regions represent measurements of X. The qubits
represented as black dots remain unmeasured. For details, see [71].
(d) Linking graph states by Bell measurements in the remaining
ELUs. Four-valent, 3D cluster states of arbitrary size can be created.

is provided in Appendix B. In combination with criterion (2),
we obtain the threshold condition:

ε + 55

32

T

τD

< 2.9 × 10−3. (3)

Overhead. The operational cost of creating a 3D cluster
state and then locally measuring it for the purpose of compu-
tation is 24 gates per elementary cell in the standard setting, and
54 gates per elementary cell in MUSIQC. Here the elementary
cell of a 3D four-valent cluster state is shown in Fig. 7(b).
The overhead of the MUSIQC architecture over fault-tolerant
cluster state computation is thus constant. The operational
overhead for fault tolerance in the latter is poly-logarithmic
[71], as described in detail in Ref. [72].

B. Analysis of fault tolerance for slow entangling gates

The above construction fails for τE/τD � 1, where decoher-
ence occurs while waiting for Bell-pair entanglement. How-
ever, scalable fault-tolerant computing can still be achieved in
the MUSIQC architecture for any ratio τE/τD , even for ELUs
of only three qubits. Compared to the case of τE � τD , the
operational cost of fault tolerance is increased by a factor that
depends strongly on τE/τD but is independent of the size of
the computation. Thus, while quantum computation becomes
more costly when τE � τD , it remains scalable. This surprising
result shows that there is no hard threshold for the ratio
τE/τD , and opens up the possibility for efficient fault-tolerant
constructions with slow entangling gates. Here we show that
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FIG. 8. (Color online) Hypercell construction I. (a) Snowflake
design of Refs. [74,75]. (b) Connecting two hypercells. If the surface
area is large, with high probability one or more Bell pairs are created
between the surface areas via the photonic link. By Bell measurements
within individual ELUs (indicated by ovals) one such Bell pair is
teleported to the roots A and B. (c) Boundary of the fault-tolerance
region for gate error ε and ratio τE/τD , for various ELU sizes. The
threshold for the gate error ε depends only weakly on τE/τD .

scalable quantum computation can be achieved for arbitrarily
slow entangling gates.

The main idea is to construct a “hypercell” out of several
ELUs. A hypercell has the same storage capacity for quantum
information as a single ELU, but with the ability to become
(close to) deterministically entangled with four other hyper-
cells. Fault-tolerant universal quantum computation can then
be achieved by mapping to a four-valent, three-dimensional
cluster state [71]. First, we show that arbitrarily large ratios
τE/τD can be tolerated in the limiting case where the gate error
rate ε = 0 (construction I). Then, we show how to tolerate
arbitrarily large ratios τE/τD with finite gate errors ε > 0
(construction II).

Hypercell construction I is based on the snowflake design
[74,75], as shown in Fig. 8(a). The difference is that in the
present case, each node in the connectivity tree represents
an entire ELU, not a single qubit as in Refs. [74,75]. At the
root of the tree is an ELU that contains the qubit used in
the computation, while multiple layers of bifurcating branches
lead to a large “surface area” with many ports from which
entanglement generation between two trees can be attempted.
Once a Bell pair is created, it can be converted to a Bell pair

between the root qubits A and B via teleportation as shown in
Fig. 8(b).

The links (each representing a Bell pair) within a snowflake
structure are created probabilistically, each with a probability p

of heralded success. The success probability of each hypercell
is small, but if the surface area between two neighboring
hypercells is large enough, the probability of creating a
Bell pair between them via a probabilistic photonic link
approaches unity. Thus, the cost of entangling an entire grid
of hypercells is linear in the size of the computation, as
opposed to the exponential dependence that would be expected
if the hypercells could not be entangled deterministically.
Correspondingly, the operational cost of creating a hypercell
is large, but the cost of linking this qubit into the grid is
independent of the size of the computation. The hypercell
offers a qubit which can be near-deterministically entangled
with a constant number of other qubits on demand. A quantum
computer made up of such hypercells can create a four-valent,
3D cluster state with few missing qubits, and is thus fault
tolerant [71,76].1 Hypercells can readily be implemented in
the modular ion trap quantum computer since the probability
of entanglement generation does not depend on the physical
distance between the ELUs.

We call the part of the hypercell needed to connect to
a neighboring hypercell a “tree.” For ELUs of coordination
number 3, the number m of ports that are available to connect
two hypercells is twice the number of ELUs in the top layer
of the tree. The probability for all m attempts to generate
entanglement between two trees to fail is Pfail = (1 − p)m ≈
exp(−mp). (In practice, we will allow a constant probability
of failure which is tolerable in 3D cluster states [76]). In
addition, the number of ELUs in the top layer is 2# layers,
and the path length l (number of Bell pairs between the
roots) is l = 2 log2 m + 1. Combining the above, we find
that l = 2 log2

c
p

+ 1, for c = − ln Pfail. For simplification we
assume that the time t for attempting entanglement generation
is the same when creating the trees and when connecting the
trees. Then, p = t/τE in both cases. From the beginning of
the creation of the trees to completion of entangling two trees,
a time 2t has passed. The Bell pairs within the trees have
been around, on average, for a time 3t/2, and the Bell pairs
between the two trees for an average time of t/2. If overall
error probabilities remain small, the total probability of error
for creating a Bell pair is proportional to l. The memory error
alone is

εmem = t

τD

[
3 log2

(
c
τE

t

)
+ 1

2

]
. (4)

This function is monotonically increasing with t , and εmem(t =
0) = 0. The task now is to suppress the memory error rate εmem

below the error threshold εcrit that applies to fault-tolerant
quantum computation with 3D cluster states. From Eq. (2) we
know that εcrit > 0.

From Eq. (4) we find that, for any ratio τE/τD , we can
make t small enough such that εmem < εcrit. The operational

1If ELUs of size Nq = 3 are used, resulting in hypercells of valency
3, then two such hypercells can be combined into one of valency 4.
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cost for creating a hypercell with sufficiently many ports is

O(hypercell) ∼ ( 1
p

)
9/2 c

p . This cost is high for small p = t/τE ,
but independent of the size of the computation. Thus, whenever
decoherence on waiting qubits is the only source of error,
scalable fault-tolerant QC is possible for arbitrarily slow
entangling gates.

We now discuss how the above hypercell construction I
fares in the presence of additional gate error ε. We model
every noisy one- (two-)qubit operation by the perfect operation
followed by a SU(2)- [SU(4)-] invariant partial depolarizing
channel with strength ε, the same as that used in Sec. IV A.
If ε > 0 then every entanglement swap adds error to the
computation. We must swap entanglement in every ELU on
the path between the roots A and B, and because there are
2 log2 m of them (m � 2), for ε � 1 the total error is

εtotal = t

τD

[
3 log2

(
c
τE

t

)
+ 1

2

]
+ 2ε log2

(
c
τE

t

)
. (5)

Now it is no longer true that for any choice of τE/τD we can
realize εcrit > εtotal. A nonvanishing gate error sets an upper
limit to the tree depth, because the accumulated gate error
is proportional to the tree depth [Fig. 8(b)]. This implies an
upper bound on the size of the top layer of the tree, which
further implies a lower bound on the time t needed to attempt
entangling the two trees [see Eq. (6) below] and thus a lower
bound on the memory error caused by decoherence during the
time interval t . The accumulated memory error alone may be
above or below the error threshold, depending on the ratio
τE/τD .

In more detail, suppose that εcrit > εtotal holds. Considering
only gate errors, εcrit > 2ε log2(c τE

t
), and hence,

t > cτE2− εcrit
2ε . (6)

Now, recalling that c τE

t
= m � 2, with Eq. (5) we find that

εcrit > 3t/τD + 2ε, or

t < 1
3 (εcrit − 2ε)τD. (7)

The two conditions Eqs. (6) and (7) can be simultaneously
obeyed only if

τE

τD

<
εcrit − 2ε

3c
2

εcrit
2ε . (8)

We see that there is now an upper bound to the ratio τE/τD .
Equation (8) is a necessary but not sufficient condition for
fault-tolerant quantum computation using the hypercells of
Fig. 8(b).

We have numerically simulated the process of constructing
these hypercells for various values of the decoherence pa-
rameters ε and τE/τD . The boundary of the fault-tolerance
region in the τE/τD,ε plane is shown in Fig. 8(c). In the
above, for simplicity, we have considered hypercells in which
all constituent ELUs are entangled in a single time step t .
However, there are various possible refinements. (1) The
computational overhead can be significantly decreased by
creating the hypercell in stages, starting with the leaves of
the trees and iteratively combining them to create the next
layers [74]. (2) Using numerical simulations it was found that
if each of the four trees making up a hypercell has coordination
number 4 or 5 rather then 3 (i.e., a ternary tree instead of

a binary tree), the overhead can be further reduced. These
optimizations were used to produce Fig. 8(c).

Hypercell construction II allows fault tolerance for finite
gate errors ε > 0. In construction I, the accumulated error for
creating a Bell pair between the roots A and B is linear in the
path length l between A and B. This limits the path length l, and
thereby the surface area of the hypercell. This limitation can
be overcome by invoking 3D cluster states already at the level
of creating the hypercell. Three-dimensional cluster states
have an intrinsic capability for fault tolerance [71] related
to quantum error correction with surface codes [77,78]. For
hypercell construction II, we employ a 3D cluster state nested
within another 3D cluster state. Therein, the “outer” cluster
state is created near-deterministically from the hypercells. Its
purpose is to ensure fault tolerance of the construction. The
“inner” 3D cluster state is created probabilistically. Its purpose
is to provide a means to connect distant qubits in such a way
that the error of the operation does not grow with distance.
Specifically, if the local error level is below the threshold for
error correction with 3D cluster states, the error of (quasi-)
deterministically creating a Bell pair between two root qubits
A and B in distinct 3D cluster states is independent of the path
length between A and B.

The construction is as follows. We start from a three-
dimensional grid with ELUs on the edges and on the faces.
Each ELU contains four qubits and can be linked to four
neighboring ELUs. Such a grid of ELUs (of suitable size)
is used to probabilistically create a 4-valent cluster state
by probabilistic generation of Bell pairs between the ELUs,
postselection and local operations within the ELUs.

After such cluster states have been successfully created,
in each ELU three qubits are freed up, and can now be
used for near-deterministic links between different 3D cluster
states, as shown in Fig. 7(b). After four probabilistic links
to other clusters have succeeded (the size of the cluster
states is chosen such that this is a likely event), the cluster
state is transformed into a star-shaped graph state via X and
Z measurements [Fig. 7(c)]. This graph state contains five
qubits, shared between the four ELUs at which the successful
links start, and an additional ELU. Due to the topological
error-correction capability of 3D cluster states, the conversion
from the 3D cluster state to the star-shaped graph state is fault
tolerant [71]. By further measurement in the ELUs, the graph
states created in different hypercells can now be linked, e.g.,
to form again a 4-valent 3D cluster state which is a resource
for fault-tolerant quantum computation [71], as shown in
Fig. 7(d). This final linking step is prone to error. However, the
error level is independent of the size of the hypercell, which
was not the case for hypercell construction I.

The only error sources remaining after error correction in
the 3D cluster stem from (i) the (two) ports per link, and (ii) the
two root qubits A and B, which are not protected topologically.
The total error εtotal of a Bell pair created between A and B

in this case is given by εtotal = c1t/τD + c2 ε, where t is the
time spent attempting Bell pair generation, and c1 and c2 are
algebraic constants which do not depend on the time scales τE

and τD , and not on the distance between the root qubits A and
B. Then, if the threshold error rate εcrit for fault tolerance of
the outer 3D cluster state is larger than c2 ε, we can reach an
overall error εtotal below the threshold value εcrit by making t
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sufficiently small. Smaller t requires larger inner 3D cluster
states, but does not limit the success probability for linking
construction II hypercells. Thus, fault tolerance is possible for
all ratios τE/τD , even in the presence of small gate errors.

V. OUTLOOK

The success of silicon-based information processors in the
past five decades hinged upon the scalability of integrated
circuits (IC) technology characterized by Moore’s law [79].
IC technology integrated all the components necessary to
construct a functional circuit, using the same conceptual
approach over many orders of magnitude in integration
levels. The hierarchical modular ion trap quantum-computer
architecture discussed here promises scalability, not only in
the number of physical systems (trapped ions) that represent
the qubits, but also in the entire control structure to manipulate
each qubit at such integration levels.

The technology necessary to realize each and every com-
ponent of the MUSIQC architecture described in Sec. II
is already available, although the performance is still
far from being able to realize the features discussed in
Secs. III and IV. The recognition that ion traps can be mapped
onto a two-dimensional surface that can be fabricated using
standard silicon microfabrication technologies [17,20] has led
to a rapid development in complex surface trap technology
[21,22]. Present-day trap development exploits extensive
electromagnetic simulation codes to design optimized trap
structures and control voltages, allowing sufficient control and
stability of ion positioning. Integration of optical components
into such microfabricated traps will enable stronger interaction
between the ions and photons for better photon collection
and qubit detection [23] through the use of high numerical
aperture optics or integration of an optical cavity with the
ion trap [45]. Moreover, electro-optic and MEMS-based beam
steering systems allows the addressing of individual atoms
in a chain with tightly focused laser beams [80,81] and an
optical interconnect network can be constructed using large-
scale all-optical cross-connect switches [47]. While technical
challenges such as the operation of narrow-band (typically
ultraviolet) lasers or the presence of residual heating of ion
motion [14] still remain, they do not appear to be fundamental
roadblocks to scalability. Within the MUSIQC architecture we
have access to a full suite of technologies to realize the ELU
in a scalable manner, where the detailed parameters of the
architecture such as the number of ions per ELU, the number
of ELUs, or the number of photonic interfaces per ELU can be
adapted to optimize performance of the quantum computer.
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APPENDIX A: UNIVERSAL FAULT-TOLERANT QC
USING STEANE CODE

We utilize the basic operational primitives of universal
quantum computation using Steane [7,1,3] code [82] fully
outlined in Ref. [24], summarized below.

(1) The preparation of logical qubit |0〉L is performed by
measuring the six stabilizers of the code using four-qubit cat
state |cat〉4 ≡ (|0000〉 + |1111〉)/√2, following the procedure
that minimizes the use of ancilla qubits as outlined in Ref. [83].
The stabilizer measurement is performed up to three times to
ensure that the error arising from the measurement process
itself can be corrected. We perform a sequential measurement
of the six stabilizers re-using the four ancilla qubits for each
logical qubit, which reduces the number of physical qubits
and parallel operations necessary for the state preparation at
the expense of the execution time. Once all the stabilizers
are measured, a three-qubit cat state is used to measure the
logical ZL operator to finalize qubit initialization process. This
procedure requires 11 physical qubits to complete preparation
of logical qubit |0〉L.

(2) In Steane [7,1,3] code considered here, all operations
in the Pauli group {XL,YL,ZL} and the Clifford group {HL,SL,

CNOTL} can be performed transversally (i.e., in a bitwise
fashion). We assume seven parallel operations are available,
so that these logical operations can be executed in one time
step corresponding to the single- or two-qubit operation. The
transversal CNOTL considered here is between two qubits that
are close by, so the operation can be performed locally without
further need for qubit communication.

(3) In order to construct effective arithmetic circuits, we
need Toffoli gate (a.k.a. CCNOTL) which is not in the Clifford
group. Since a transversal implementation of this gate is not
possible in Steane code, fault-tolerant implementation requires
preparation of a special three (logical)-qubit state,

|φ+〉L = 1
2 (|000〉L + |010〉L + |100〉L + |111〉L), (A1)

and “teleport” the gate into this state [84]. This state can be
prepared by measuring its stabilizer operator using a seven-
qubit cat state on three logical qubits |0〉L, as shown in Fig. 9(a).
Successful preparation of this state requires a bitwise Toffoli
gate (at the physical level), which we assume can only be
performed locally among qubits that are close to one another.
Once this state is prepared, the three qubits |x〉L, |y〉L, and |z〉L
participating in the Toffoli gate can be teleported to execute the
gate, as shown in Fig. 9(b). Therefore, a successful Toffoli gate
operation requires three logical qubits (which in turn require
extra ancilla qubits to initialize) and seven physical qubits as
ancillary qubits, in addition to the three logical qubits on which
the gate operates.

(4) When a CNOT gate is necessary between two qubits
that are separated by large distances, we take the approach
where the two qubits of a maximally entangled state is each
distributed to the vicinity of the two qubits, and then the gate is
teleported using the protocol proposed in Ref. [85]. Efficient
distribution of the entangled states makes this approach
much more effective than where the qubits themselves are
transported directly.
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(a) |cat 7 / • •
|0 L / Z

|0 L / H • |φ+ L

|0 L /

(b) / • • • X |x L

|φ+ L / • Z X • |y L

/ Z |z ⊕ xy L

|x L / •
|y L / •
|z L / • H

FIG. 9. Circuit diagram for realizing fault-tolerant Toffoli gate
using Steane code. (a) The initial state |φ+〉L is prepared by measuring
the X1 and CNOT12 of three-qubit state |0〉1(|0〉2 + |1〉2)|0〉3/

√
2. Note

that the Toffoli gate shown here is a bitwise Toffoli between the
seven-qubit cat state and the two logical qubit states. (b) Using the
state prepared in (a), the Toffoli gate can be realized using only
measurement, Clifford group gates, and classical communication, all
of which can be implemented fault tolerantly in the Steane code.

APPENDIX B: ERROR PROBABILITY FOR 3D CLUSTER
STATES WITH FAST ENTANGLING GATES

Here we calculate the total error probability of the stabilizer
measurement process for the model considered in Sec. IV A,
assuming independent strengths for the local errors and 2-local
gate errors. We have local errors with strength T/τD , and
2-local gate errors with strength ε. The expectation value of
the stabilizer operator K∂q in Eq. (2) is

〈K∂q〉 =
∏

E∈error sources

1 − 2pE. (B1)

Therein, pE is the total probability of those Pauli errors in
the error source E which, after (forward) propagation to the
endpoint of the cluster state creation procedure, anticommute
with the stabilizer operator K∂q . The right-hand side of
Eq. (B1) is simply a product due to the statistical independence
of the individual error sources. Since the cluster state creation
procedure is of bounded temporal depth and built of local
and nearest-neighbor gates only, errors can only propagate a
finite distance. Therefore, only a finite number of error sources
contribute in Eq. (B1).

To simplify the bookkeeping, we make the following
observations. (a) A Bell state preparation, two CNOT gates (one
on either side), and two local measurements on the qubits of the
former Bell pair (one in the Z and one in the X basis) amount to
a CNOT gate between remaining participating qubits. Therein,
the qubit on the edge of the underlying lattice is the target; the
qubit on the face is the control. We call this a teleported CNOT

link. (b) Errors can only propagate once from face qubit to an
edge qubit or vice versa, but never farther than that. To see
this, consider, e.g., a face qubit. There, an X or Y error can get
propagated (face = control of CNOTs). In either case it causes
an X error on a neighboring edge qubit. But X errors are not

propagated from edge qubits (edge = target of all CNOTs).
(c) The stabilizer K∂q has only support on face qubits, and is
not affected by X errors.

Based on these observations, we subdivide the error sources
affecting 〈K∂q〉 into three categories, namely, type 1, first Bell
pair created on each face (according to the five-step schedule);
type 2, the CNOT links, consuming the remaining Bell pairs;
and type 3, the final measurements of the cluster qubits (1 per
ELU).

Type-2 contributions. For every CNOT link we only need to
count Z errors (and Y ∼= Z) on both the control (= face) and
target (= edge), because on the face qubit the Z errors are the
ones that matter [with (c)], and on the edge qubit, such errors
may still propagate to a neighboring face qubit [with (b)] and
matter there. With these simplifications, the effective error of
each CNOT link between two neighboring ELUs is described
by the probabilities pZI for a Z error on the face qubit, pIZ for
a Z error on the edge qubit, and pZZ for the combined error;
and

pZI = 2ε + 10

3

T

τD

, pIZ = pZZ = 4

15
ε + 2

3

T

τD

. (B2)

Herein, we have only kept contributions up to linear order in
ε, T/τD . The contributions to the error come from (1) the Bell
pair, (2) a first round of memory error on all qubits, (3) the
CNOT gates, (4) a second round of memory error on all qubits,
and (5) the two local measurements per link.

Now we need to discuss the effect of each of the above
gates on 〈K∂q〉, taking into account propagation effects. For
example, consider the link established between the face qubit
of a front face f with its left neighboring edge qubit. (The Bell
pair for this link is created in step 1, the required CNOTs are
performed in step 2, and the local measurements in step 3).
The Z error on f does not propagate further. The Z error on e is
propagated in later steps to a neighboring face [see Fig. 6(b)].
Thus, the errors Zf and Ze of this gate affect 〈K∂q〉, and ZeZf

doesn’t. With Eq. (B1), the gate in question reduces 〈K∂q〉 by
a factor of 1 − 68/15 ε − 8T/τD .

The following links contribute: three for every face in ∂q

from within the cell, and three more per face of ∂q from
the neighboring cells (links ending in an edge belonging to
the cell q can affect 〈K∂q〉 by propagation). (i) Contributions
from within the cell. If a Ze error of the link propagates to an
even (odd) number of neighboring faces in q, the total error
probability affecting 〈K∂q〉 is pZZ + pZI (pIZ + pZI ). But
since p1Z = pZZ , all 18 contributions from within the cell q are
the same, irrespective of propagation. (ii) Contributions from
neighboring cells. Each of the 18 links in question contributes
an effective error probability pIZ + pZZ if an error on the edge
qubit of the link propagates to an odd number of face qubits in
∂q. By inspection of Fig. 6(b), this happens for six links. With
Eq. (B2), all the type-2 errors reduce 〈K∂q〉 by a factor of

1 − 160
T

τD

− 88ε. (B3)

Type-1 contributions. Each of the initial Bell pair creations
carries a two-qubit gate error of strength ε, and memory error
of strength T/τD on either qubit. Similar to the above case,
we can group the 15 possible Pauli errors into the equivalence
classes I , Zf (ZeZf ≡ I and Ze ≡ Zf for Bell states). The
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single remaining error probability, for Zf , is

pZI = 8

15
ε + 4

3

T

τD

. (B4)

For each face of ∂q, there is one Bell pair within the face
that reduces 〈K∂q〉 by a factor of 1 − 2pZI . Bell pairs from
neighboring cells do not contribute an error here. Thus, all the
type-1 errors reduce 〈K∂q〉 by a factor of

1 − 8
T

τD

− 16

5
ε. (B5)

Again, only the contributions to linear order in ε, T/τD were
kept.

Type-3 contributions. The only remaining error source is
in the measurement of the one qubit per ELU which is part
of the 3D cluster state. The strength of the effective error on
each face qubit is pZ = 2/3 ε. Each of the six faces in ∂q is
affected by this error. Thus, all the type-3 errors reduce 〈K∂q〉
by a factor of

1 − 8ε. (B6)

Combining the contributions Eq. (B3), (B5), and (B6) of
error types 1–3 yields

〈K∂q〉 = 1 − 512

5
ε − 176

T

τD

(B7)

for the expectation value 〈K∂q〉.
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