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Approximate quantum error correction for generalized amplitude-damping errors
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We present analytic estimates of the performances of various approximate quantum error-correction schemes
for the generalized amplitude-damping (GAD) qubit channel. Specifically, we consider both stabilizer and
nonadditive quantum codes. The performance of such error-correcting schemes is quantified by means of the
entanglement fidelity as a function of the damping probability and the nonzero environmental temperature. The
recovery scheme employed throughout our work applies, in principle, to arbitrary quantum codes and is the analog
of the perfect Knill-Laflamme recovery scheme adapted to the approximate quantum error-correction framework
for the GAD error model. We also analytically recover and/or clarify some previously known numerical results
in the limiting case of vanishing temperature of the environment, the well-known traditional amplitude-damping
channel. In addition, our study suggests that degenerate stabilizer codes and self-complementary nonadditive
codes are especially suitable for the error correction of the GAD noise model. Finally, comparing the properly
normalized entanglement fidelities of the best performant stabilizer and nonadditive codes characterized by the
same length, we show that nonadditive codes outperform stabilizer codes not only in terms of encoded dimension
but also in terms of entanglement fidelity.
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I. INTRODUCTION

Quantum computers are especially sensitive to noise.
Therefore, any technological implementation of such a ma-
chine requires the use of suitable error-mitigation techniques.
Quantum error correction (QEC) represents one of the most
efficient available techniques capable of giving us the realistic
hope of building practical quantum computers [1]. For a
detailed overview of the basic working principles of QEC,
we refer to [2].

In general, it is a highly nontrivial task to design quantum
codes for any given noise model. In the majority of cases,
researchers have focused on the error correction of Pauli-type
errors. This type of error model certainly constitutes the worst
possible scenario to be considered and a quantum code that
can correct all Pauli errors {I,X ≡ σx,Y ≡ σy,Z ≡ σz},

I
def=
(

1 0

0 1

)
, σx

def=
(

0 1

1 0

)
,

(1)

σy
def=
(

0 −i

i 0

)
, σz

def=
(

1 0

0 −1

)
,

can also provide protection against arbitrary qubit noise, since
the Pauli operators form a basis of the 2× 2 matrices. How-
ever, the worst possible scenario is not necessarily the most
realistic one in actual experimental laboratories. Furthermore,
aiming at designing quantum codes capable of error-correcting
general noise errors may not be the most fruitful way to combat
decoherence and noise in quantum computers.

A very common type of noise that appears in realis-
tic settings is the so-called amplitude-damping (AD) noise
model [3]. For instance, the AD noise model is employed
to describe the photon loss in an optical fiber. The AD
channel is the simplest channel whose Kraus operators
cannot be described by unitary Pauli operations. The two
nonunitary Kraus operators for the qubit AD channel are given

by [3]

A0
def= 1

2
[(1+

√
1− γ )I + (1−

√
1− γ )σz] and

A1
def=
√

γ

2
(σx + iσy) = √

γ |0〉〈1|, (2)

where γ denotes the AD probability parameter. For the sake
of completeness, we point out that AD channels acting on
states characterized by higher photon numbers in combination
with a finite number of modes can also be considered. For
instance, qubits living in a two-dimensional Hilbert space can
be replaced by bosonic states of higher photon numbers in a
finite number of optical modes [4]. In general, the operator-
sum decomposition of such higher-dimensional noise models
is characterized by error operators Ak with k = 1, . . . ,N and,
in principle, N can approach infinity [3]. We observe that there
is no simple way of reducing A1 in Eq. (2) to one Pauli error
operator, since |0〉〈1| is not normal. The Pauli operators are
remarkable in that they are unitary and Hermitian at the same
time and, in addition, both unitary and Hermitian operators are
normal. Although the five-qubit code [5,6] can be successfully
used for the error correction of AD errors, since it is a universal
1-error-correcting quantum code, Leung et al. were capable
of designing a four-qubit quantum code especially suitable
for the error correction of arbitrary single-AD errors with a
higher encoding rate equal to 1/4 (greater than 1/5) [7]. A
quantum code with higher encoding rate is very welcome,
since it would require fewer resources for its implementation.
The two main points advocated in [7] were the following:
First, when dealing with specific error models, better codes
may be uncovered; second, the fulfillment of the approximate
(relaxed) QEC conditions enlarges the realm of possible useful
quantum error-correcting codes. Therefore, it can simplify the
code construction process.

Both the five-qubit and the four-qubit codes are nonde-
generate stabilizer (additive) quantum codes [3]. However,
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the scientific literature accommodates a fairly wide variety
of additional AD error-correction schemes where neither
additive nor nondegenerate quantum codes are employed.
For instance, one of the very first QEC schemes used to
combat AD errors was quite unconventional, since it used
bosonic states of higher photon numbers in a finite number
of optical modes (the so-called bosonic quantum codes, [4]).
More conventional and recent works are inspired by the
seminal work presented in [7]. In [8], using the stabilizer
formalism, generalizations of the Leung et al.’s four-qubit
code for higher rates were constructed. Specifically, a class of
[[2(m+ 1),m]] channel-adapted quantum codes for integers
m � 1 with encoding rate arbitrarily close to 1/2 are generated.
In [9], the performance of QEC schemes for the AD model
has been investigated via semidefinite programs (that is,
numerical convex optimization methods [10]). Specifically,
the optimal recovery operation to maximize the entanglement
fidelity [11] for a given encoding and noise process was
uncovered. Unfortunately, numerically computed recovery
maps are difficult to describe and understand analytically.
Furthermore, recovery operations generated through convex
optimization methods suffer two significant drawbacks. First,
the dimensions of the optimization problem grow exponen-
tially with the length of the code, limiting the technique to short
codes. Second, the optimal recovery operation may be quite
difficult to implement, despite being physically legitimate.
However, this exponential growth can be mitigated in two
manners. First, it is possible to reduce the high dimensionality
of the convex optimization procedures for generating recovery
operations in QEC by transforming the problem in a suitable
manner. Consider a quantum noisy channel � : H1 → H2

with dimHi = di for i = 1,2. By embedding the encoding
into the noise process and redefining � as a quantum spreading
channel with d1 strictly less than d2, the dimensionality of the
convex optimization decreases from d2

1d2
2 to d4

1 . For instance,
for the [[5,1,3]] five-qubit code, the dimensionality reduces
from 220 to 212 in terms of the optimization variables. For
more details, we refer to [9]. Second, if the focus is on
near-optimal rather than on optimal recovery schemes, it turns
out that it is possible to compute such recovery operations
with less computationally intensive numerical algorithms
that are more scalable than those involved in semidefinite
programs. Briefly speaking, regarding the algorithm in terms
of eigenanalysis, it is possible to significantly reduce the size
of the eigenvector problem and this has a significant effect on
the computational cost of these new algorithms. For illustrative
purposes, consider the AD channel and an [[n,k,d]] quantum
code. In this case, the dimensionality of the full optimal
semidefinite program grows as 4n. Instead, if one considers
the semidefinite programs for the first- and second-order
subspaces, the dimensionality of the approximate programs
only grows as n2 and n4, respectively. For instance, using the
[[7,1,3]] CSS seven-qubit code, the full optimal semidefinite
program requires 65 536 optimization variables. However, the
first-order semidefinite program requires 1024 variables and
the second-order semidefinite program has 7056 optimization
variables. For further details, we refer to [12]. In particular,
in [12], to mitigate such drawbacks of the optimal recovery,
a structured near-optimal channel-adapted recovery procedure
was determined and applied to the AD noise model. In [13],

an analytical approach to channel-adapted recovery based on
the pretty-good measurement and the average entanglement
fidelity appeared. Following [13], a simple analytical approach
to approximate QEC based on the transpose channel was
derived and used for the AD noise model in [14]. In particular,
it was shown in [14] that the transpose channel is a recovery
map that coincides with the perfect recovery map for codes
satisfying the perfect Knill-Laflamme QEC conditions [15].
Very recently, it was also proved that the transpose channel
works nearly as well as the optimal recovery channel, with
optimality defined in terms of worst-case fidelity over all
code states [16]. As a side remark, we underline that no
definitive choice for the best figure of merit in quantum
information processing tasks has been made yet [17] and
this fact becomes especially relevant when quantifying the
performance of quantum codes [18–22]. In [18], focusing on
the AD noise model, it was shown that fidelity alone may
be not be sufficient to compare the efficiency of different
error-correction codes. In [23], a numerical search based
upon a greedy algorithm [10] was employed to construct a
family of high-rate nonadditive quantum codes adapted to
the AD noise model that outperform (in terms of encoded
dimension) the stabilizer codes presented in [8]. In [24],
families of high-performance nonadditive quantum codes of
the codeword-stabilized (CWS [25]) type for single AD errors
that outperform, in terms of encoded dimension, the best
possible additive codes were presented. These code families
were built from nonlinear error-correcting codes for classical
asymmetric channels or classical codes over GF (3). Finally,
for the sake of completeness, we also point out that a method
for the construction of good multi-error-correcting AD codes
that are both degenerate and additive can be found in [26].

Taking into account all these above-mentioned facts, we
emphasize that there is

(i) no clear understanding of the role played by degeneracy
in the analysis of the performance of stabilizer quantum codes
for AD errors [12];

(ii) no explicit evidence of the relevance of the role played
by self-complementarity in the analysis of the performance
(quantified by means of the entanglement fidelity) of nonad-
ditive quantum codes [24];

(iii) no explicit analytical computation of the entanglement
fidelity of arbitrary quantum codes for AD errors for simple-
to-construct recovery maps [16];

(iv) no explicit performance comparison in terms of the en-
tanglement fidelity between additive and nonadditive quantum
codes for AD errors [23].

In this article, following the working methodology advo-
cated by one of the authors in [27,28], we seek to advance our
quantitative understanding via simple analytical computations
of the role played by degeneracy, self-complementarity,
additivity, and nonadditivity of quantum codes for the GAD
error model [3]. Specifically, we present the analysis of the
performance of various approximate QEC schemes for the
GAD channel. We consider both stabilizer and nonadditive
quantum codes. The performance of such error-correcting
schemes is quantified by means of the entanglement fidelity
as a function of the damping probability and the nonzero
environmental temperature. The recovery scheme employed
throughout our work applies, in principle, to arbitrary quantum

022316-2



APPROXIMATE QUANTUM ERROR CORRECTION FOR . . . PHYSICAL REVIEW A 89, 022316 (2014)

codes and is the analog of the perfect Knill-Laflamme recovery
scheme adapted to the approximate QEC framework for the
GAD error model. We also analytically recover and/or clarify
some previously known numerical results in the limiting case
of vanishing temperature of the environment. In addition,
our extended analytical investigation suggests that degenerate
stabilizer codes and self-complementary nonadditive codes
are especially suitable for the error correction of the GAD
noise model. Finally, comparing the properly normalized
entanglement fidelities of the best performant stabilizer and
nonadditive codes characterized by the same length, we show
that nonadditive codes outperform stabilizer codes not only in
terms of encoded dimension but also in terms of fidelity.

This article is organized as follows. In Sec. II, we
describe the GAD noise model. In Sec. III, we present
some preliminary material concerning exact and approximate
QEC conditions, recovery maps, and entanglement fidelity. In
Sec. IV, we analyze the performances of various stabilizer
codes, both degenerate and nondegenerate. In Sec. V, we
quantify the performances of various nonadditive codes, both
self-complementary and non-self-complementary. Finally, our
conclusions are presented in Sec. VI. A number of appendixes
with technical details of calculations are also provided.

II. THE GAD NOISE MODEL

The AD quantum operation can characterize the behavior
of different types of dissipative open quantum systems [3]:
The spontaneous emission of a single atom coupled to a single
mode of the electromagnetic radiation, the gradual loss of
energy from a principal system to the environment where both
systems are modeled by simple harmonic oscillators, or the
scattering of a photon via a beam splitter represent physical
processes modeled by an AD channel.

It can be shown that the GAD qubit channel can be realized
by considering the evolution of a two-level quantum system
(that is, a qubit) in a dissipative interaction, in the Born-Markov
rotating-wave approximation [29], with a bath of harmonic
oscillators taken to be initially in a thermal state [30,31].

The Lindblad form of the master equation that describes
the evolution that generates the GAD channel reads [31]

dρS(t)

dt
=

2∑
j=1

(2Rjρ
SR

†
j − R

†
jRjρ

S − ρSR
†
jRj ), (3)

where the operators R1, R2, and R are given by

R1
def=
[
γ0

2
(Nth + 1)

] 1
2

R, R2
def=
(

γ0Nth

2

) 1
2

R†, R
def= σ−,

(4)

with γ0, Nth, and σ− defined as

γ0
def= 4ω3|d|2

3�c3
, Nth

def= 1

e
�ω
kB T − 1

, σ−
def= σx − iσy

2
= |1〉〈0|.

(5)

In Eq. (5), γ0 denotes the spontaneous emission rate, ω is
the photonic frequency, � is the Planck constant divided by
2π , c is the speed of light, d is the transition matrix of the
atomic dipole operator describing the interaction between

the two-level quantum system with the bath of harmonic
oscillators, kB is the Boltzmann constant, σ− is the lowering
operator, Nth is the Planck distribution that gives the number
of thermal photons at frequency ω, and, finally, T denotes
the temperature of the environment. The operator ρS denotes
the reduced density matrix operator of the two-level quantum
system interacting with a thermal bath in the weak Born-
Markov rotating-wave approximation [31]. We remark that
when T = 0, then Nth = 0 and R2 = 0. Therefore, when the
temperature of the environment is zero, a single Lindblad
operator is sufficient to describe the master equation.

The evolution of the density operator ρS in Eq. (3) can be
given a Kraus operator-sum decomposition. The Kraus repre-
sentation is useful because it provides an intrinsic description
of the principal system, without explicitly considering the
detailed properties of the environment. The essential features
of the problem are contained in the Kraus error operators
Ak . This not only simplifies calculations, but often provides
theoretical insight.

Following [31], it turns out that the Kraus decomposition
of the GAD channel becomes

�GAD(ρ)
def=

3∑
k=0

AkρA
†
k, (6)

where the Kraus error operators Ak read

A0
def=
√

p

2
[(1+

√
1− γ )I + (1−

√
1− γ )σz],

A1
def=
√

p
√

γ

2
(σx + iσy),

(7)

A2
def=
√

1− p

2
[(1+

√
1− γ )I − (1−

√
1− γ )σz],

A3
def=
√

1− p
√

γ

2
(σx − iσy),

where γ is the damping parameter and 0 � p � 1 [3] . The
(2× 2)-matrix representation of the operators Ak in Eq. (7) is
given by

A0 = √
p

(
1 0

0
√

1− γ

)
, A1 = √

p

(
0

√
γ

0 0

)
,

A2 =
√

1− p

(√
1− γ 0

0 1

)
, A3 =

√
1− p

(
0 0√
γ 0

)
,

(8)

and their action on the computational basis vectors |0〉 and |1〉
of the complex Hilbert space H1

2 (the Hilbert space of 1-qubit
quantum states) reads

A0|0〉 = √
p|0〉, A0|1〉 = √

p
√

1− γ |1〉,
A1|0〉 ≡ 0, A1|1〉 = √

p
√

γ |0〉,
(9)

A2|0〉 =
√

1− p
√

1− γ |0〉, A2|1〉 =
√

1− p|1〉,
A3|0〉 =

√
1− p

√
γ |1〉, A3|1〉 ≡ 0.

Notice that for p = 1, the Kraus operator-sum decomposition
of the AD channel can be recovered. The GAD channel
generalizes the AD channel in that it allows transitions from
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|0〉 → |1〉 as well as from |1〉 →|0〉. For an alternative and
explicit derivation of the operator-sum decomposition of the
GAD channel in the context of scattering of a photon via a
beam splitter, we refer to Appendix A.

We emphasize that the GAD channel is particularly noisy
and, unlike the AD channel, is characterized by a two-
dimensional parametric region (γ,p(γ )) where it exhibits
entanglement-breaking features (for details, see Appendix B).
From [31], it also follows that the two GAD channel parame-
ters γ and p are formally given by

γ (t)
def= 1− e−γ0(2Nth+1)t and p

def= Nth + 1

2Nth + 1
. (10)

Observe that p = 1 when T = 0 and p = 1
2 when T ap-

proaches infinity. For the sake of future convenience, we also
introduce a new additional parameter ε defined as

ε(t)
def= 1− p(t) = e

− �ω
kB T

1+ e
− �ω

kB T

T�1≈ e
− �ω

kB T . (11)

Combining Eqs. (10) and (11), we get

γ (t) ≡ γε(t)
def= 1− exp

[
−
(

1

1− 2ε

)
γ0t

]
ε�1≈ 1− e−γ0(1+2ε)t . (12)

From Eq. (12), we conclude that γε is a monotonic increasing
function of ε for ε � 1 and fixed values of γ0 and t .

III. QEC CONDITIONS, RECOVERY MAPS,
AND ENTANGLEMENT FIDELITY

A. QEC conditions

1. Exact QEC

Sufficient conditions for approximate QEC were introduced
by Leung et al. in [7]. They showed that quantum codes can
be effective in the error-correction procedure even though
they violate the traditional (exact) Knill-Laflamme QEC
conditions [15]. However, these violations, characterized by
small deviations from the standard error-correction conditions
are allowed provided that they do not affect the desired fidelity
order.

For the sake of reasoning, let us consider a binary quantum
stabilizer code C with code parameters [[n,k,d]] encoding
k-logical qubits in the Hilbert space Hk

2 into n-physical qubits
in the Hilbert space Hn

2 with distance d. Assume that the
noise model after the encoding procedure is �(ρ) and can be
described by an operator-sum representation,

�(ρ)
def=
∑
k∈K

AkρA
†
k, (13)

where K is the index set of all the enlarged Kraus operators Ak

that appear in the sum. The noise channel �is a completely
positive and trace-preserving (CPTP) map. The codespace of C
is a 2k-dimensional subspace ofHn

2 where some error operators
that characterize the error model � being considered can be

reversed. Denote with Areversible ⊂ A def= {Ak} with k ∈ K the

set of reversible enlarged errors Ak on C such that Kreversible
def=

{k : Ak ∈ Areversible} is the index set of Areversible. Therefore,
the noise model �′(ρ) given by

�′(ρ)
def=

∑
k∈Kreversible

AkρA
†
k (14)

is reversible on C ⊂ Hn
2 . The noise channel �′ denotes a CP

but non-TP map. The enlarged error operators Ak in Areversible

satisfy the standard QEC conditions [3],

PCA
†
l AmPC = αlmPC, (15)

or, equivalently,

〈iL|A†
l Am|jL〉 = αlmδij , (16)

for any l, m ∈ Kreversible, PC denotes the projector on the
codespace, and αlm are entries of a positive Hermitian matrix.
It is helpful to regard the Knill-Laflamme condition in Eq. (16)
as embodying two conditions [32]: the obvious off-diagonal
condition saying that the matrix elements of A

†
l Am must

vanish when i �= j (orthogonality condition); and the diagonal
condition which, since αlm are entries of a positive Hermitian
complex matrix, is nothing but the requirement that all diagonal
elements of A

†
l Am (inside the coding space) be identical

(nondeformability condition). The fulfillment of Eq. (15) for
some subset of enlarged error operators Ak that characterize
the operator-sum representation of the noise model � implies
that there exists a new operator-sum decomposition of � such
that �′(ρ) in Eq. (14) becomes

�′(ρ)
def=

∑
k∈K′

reversible

A′
kρA

′†
k , (17)

where Eq. (15) is replaced with

PCA
′†
l A′

mPC = pmδlmPC, (18)

for any l, m ∈ K′
reversible with the error detection probabilities

pm non-negative c numbers. We remark that Eq. (18) is
equivalent to the traditional orthogonality and nondeformation
conditions [see Eq. (16)] for a nondegenerate code,

〈iL|A†
l Am|jL〉 = δij δlmpm, (19)

for any i, j labeling the logical states and l, m ∈ Kreversible.
Observe that for any linear operator A′

k on a vector space V

there exists a unitary Uk and a positive operator J
def=
√

A
′†
k A′

k

such that [3]

A′
k = UkJ = Uk

√
A
′†
k A′

k. (20)

We stress that J is the unique positive operator that satisfies
Eq. (20). As a matter of fact, multiplying A′

k = UkJ on the
left by the adjoint equation A

′†
k = JU

†
k gives

A
′†
k A′

k = JU
†
k UkJ = J 2 ⇒ J =

√
A
′†
k A′

k. (21)

Furthermore, if A′
k is invertible (that is, det A′

k �= 0), Uk is
unique and reads

Uk
def= A′

kJ
−1 = A′

k(
√

A
′†
k A′

k)−1. (22)

How do we choose the unitary Uk when A′
k is not invertible?

The operator J is a positive operator and belongs to a special

022316-4



APPROXIMATE QUANTUM ERROR CORRECTION FOR . . . PHYSICAL REVIEW A 89, 022316 (2014)

subclass of Hermitian operators such that for any vector |v〉 ∈
V , (|v〉,J |v〉) is a real and non-negative number. Therefore, J

has a spectral decomposition

J
def=
√

A
′†
k A′

k =
∑

l

λl |l〉 〈l|, (23)

where λl � 0 and {|l〉} denotes an orthonormal basis for the

vector space V . Define the vectors |ψl〉 def= A′
k|l〉 and notice

that

〈ψl|ψl〉 = 〈l|A′†
k A′

k|l〉 = 〈l|J 2|l〉 = λ2
l . (24)

For the time being, consider only those l for which λl �= 0. For
those l, consider the vectors |el〉 defined as

|el〉 def= |ψl〉
λl

= A′
k |l〉
λl

, (25)

with 〈el|el′ .〉 = δll′ . For those l for which λl = 0, extend
the orthonormal set {|el〉} in such a manner that it forms
an orthonormal basis {|El〉}. Then, a suitable choice for the
unitary operator Uk such that

A′
k |l〉 = UkJ |l〉, (26)

with {|l〉} an orthonormal basis for V , reads

Uk
def=
∑

l

|El〉 〈l|. (27)

In summary, the unitary Uk is uniquely determined by Eq. (22)
when A′

k is invertible or Eq. (27) when A′
k is not necessarily

invertible. We finally stress that the nonuniqueness of Uk when
det A′

k = 0 is due to the freedom in choosing the orthonormal
basis {|l〉} for the vector space V .

In the scenario being considered, when Eq. (18) is satisfied,
the enlarged error operators A′

m admit polar decompositions,

A′
mPC = √

pmUmPC, (28)

with m ∈ Kreversible. From Eqs. (18) and (28), we get

pmδlmPC = PCA
′†
l A′

mPC = √
plpmPCU

†
l UmPC ; (29)

that is,

PCU
†
l UmPC = δlmPC . (30)

We stress that Eq. (30) is needed for an unambiguous syndrome
detection, since, as a consequence of the orthogonality of

different R
†
m

def= UmPC , the recovery operation R is trace
preserving. This can be shown as follows.

Let V iL be the subspace of Hn
2 spanned by the corrupted

images {A′
k|iL〉} of the codewords |iL〉. Let {|viL

r 〉} be an
orthonormal basis for V iL . We define such a subspace V iL

for each of the codewords. Because of the traditional Knill-
Laflamme QEC conditions [15],

〈iL|A†
kAk′ |iL〉 = 〈jL|A†

kAk′ |jL〉, ∀ i,j,
(31)

〈iL|A†
kAk′ |jL〉 = 0, ∀ i �= j,

the subspaces V iL and VjL with i �= j are orthogonal sub-
spaces. IfV iL ⊕ VjL is a proper subset ofHn

2 withV iL ⊕ VjL �=

Hn
2 , we denote its orthogonal complement by O,

Hn
2

def= (V iL ⊕ VjL )⊕O, (32)

where

O
def= (V iL ⊕ VjL )⊥. (33)

Let {|ok〉} be an orthonormal basis for O. Then, the set of states
{|viL

r 〉,|ok〉} constitutes an orthonormal basis for Hn
2 . Notice

that, since |viL
r 〉 are mutually orthogonal, there exist unitary Vr

such that Vr |viL
r 〉 = |iL〉 (Vr is an isometry which returns |viL

r 〉
to the corresponding |iL〉). We introduce the quantum recovery
operation R with operation elements

R def= {R1, . . . ,Rr, . . . ,Ô}, (34)

with

R(ρ) =
∑

k∈K′
reversible

RkρR
†
k + ÔρÔ†, (35)

where [15]

Rr
def= Vr

∑
i

∣∣viL
r

〉〈
viL

r

∣∣ =∑
i

|iL〉
〈
viL

r

∣∣, (36)

and Ô (with Ô = Ô† = Ô†Ô) is a projector onto the subspace
O in Eq. (33),

Ô
def=
∑

k

|ok〉〈ok|. (37)

We remark that the recovery operation R is a trace-preserving
quantum operation since∑

r

R†
rRr + Ô†Ô

=
∑

r

[(∑
i

|iL〉
〈
viL

r |
)† (∑

j

|jL〉
〈
vjL

r

∣∣)]

+
(∑

k

|ok〉〈ok|
)† (∑

k′
|ok′ 〉〈ok′ |

)

=
∑
r,i,j

∣∣viL
r

〉〈iL|jL〉
〈
vjL

r

∣∣+∑
k,k′

|ok〉〈ok|ok′ 〉〈ok′ |

=
∑
r,i,j

∣∣viL
r

〉〈
vjL

r

∣∣δij +
∑
k,k′

|ok〉〈ok′ |δkk′

=
∑
r,i

∣∣viL
r

〉〈
viL

r

∣∣+∑
k

|ok〉〈ok| = I2n×2n , (38)

because BHn
2

def= {|vjL
r 〉,|ok〉} is an orthonormal basis for Hn

2 .
We emphasize that R is indeed a CPTP superoperator
(whose recovery operators Rk can be regarded as projective
measurements followed by unitary rotations), since it is a
sum of orthogonal projections followed by unitary operators
where the projections span the Hilbert space Hn

2 . Furthermore,
we point out that the recovery scheme R in Eq. (34)
applies, in principle, to any quantum code satisfying the QEC
conditions independent of the stabilizer formalism [15]. For
more technical details, we refer to [15] and [33].
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2. Approximate QEC

In general, approximate QEC becomes useful when the
operator-sum representation of the noise model is defined by
errors parametrized by a certain number of small parameters
such as the coupling strength between the environment and
the quantum system. For the sake of simplicity, suppose the
error model is characterized by a single small parameter δ and
assume the goal is to uncover a quantum code for the noise
model �′ with fidelity,

F � 1−O(δβ+1). (39)

How strong can be the violation of the traditional perfect
Knill-Laflamme QEC conditions in order to preserve the
desired fidelity order in Eq. (39)? In other words, how relaxed
can the approximate error-correction conditions be so that the
inequality in Eq. (39) is satisfied? The answer to this important
question was provided by Leung et al. in [7].

It turns out that for both exact and approximate QEC
conditions, it is necessary that

Pdetection
def=

∑
k∈K′

reversible

pk � F , (40)

where Pdetection denotes the total error detection probability.
Equation (40) requires that all the enlarged error operators
A′

l with maximum detection probability must be included in
A′

reversible,

max
|ψin〉∈C

Tr(|ψin〉〈ψin|A′†
l A′

l) ≈ O(δα) with α � β. (41)

The important point is that a good overlap between the input
and output states is needed while it is not necessary to recover
the exact input state |ψin〉〈ψin|, since we do not require
F = 1. In terms of the enlarged error operators restricted
to the codespace, this means that such errors need to be
only approximately unitary and mutually orthogonal. These
considerations lead to the relaxed sufficient QEC conditions.

In analogy to Eq. (28), assume that the polar decomposition
for A′

l is given by

A′
lPC = Ul

√
PCA

′†
l A′

lPC . (42)

Since PCA
′†
l A′

lPC restricted to the codespace C have different
eigenvalues, the exact error-correction conditions are not

fulfilled. Let us say that λ
(max)
l

def= pl and λ
(min)
l

def= λlpl are
the largest and the smallest eigenvalues, respectively, where
both pl and λl are c numbers. Furthermore, let us define the
so-called residue operator πl as [7]

πl
def=
√

PCA
′†
l A′

lPC −
√

λlplPC, (43)

where

0 � |πl| def= (π †
l πl)

1
2 � √

pl −
√

λlpl. (44)

Substituting Eq. (43) into Eq. (42), we obtain

A′
lPC = Ul(

√
λlplI + πl)PC . (45)

From Eq. (45) and imposing that PCU
†
l UmPC = δlmPC , the

analog of Eq. (18) becomes

PCA
′†
l A′

mPC = (
√

λlplI + π
†
l )(
√

λmpmI + πm)PCδlm, (46)

where

λ
(max)
l − λ

(min)
l ≡ pl(1− λl) � O(δβ+1), ∀ l ∈ K′

reversible.

(47)
We point out that when the exact QEC conditions are
satisfied, λl = 1 and πl = 0, thus, Eqs. (18) and (46) coincide.
Finally, we point out that an approximate recovery operation

R def= {R1, . . . ,Rr, . . . ,Ô} with Rk defined in Eq. (36) and Ô

formally defined just as in the exact case can be employed in
this new scenario as well. However, extra care in the explicit
computation of the unitary operators Uk is needed in view of
the fact that the polar decomposition in Eq. (28) is replaced by
the one in Eq. (42). More details can be found in [7].

B. Recovery maps

In general, numerically constructed recovery maps do
not exhibit any practical implementation structure while the
perfect Knill-Laflamme recovery map can be implemented
simply using syndrome measurements and conditional unitary
gates [15]. For these reasons, our intention here is to pursue an
analytical approach to the recovery scheme that reduces to the
perfect Knill-Laflamme recovery scheme in the limiting case
of small deviations from the exact QEC conditions.

We stress that one of the main points advocated in [15]
includes treating a code solely in terms of its subspace in
a larger Hilbert space and defining decoding operations in
terms of general recovery superoperator. Basically, the focus
is on the construction of the recovery superoperator rather
than on the encoding and decoding operators. This allows
studying the codes and their properties for arbitrary interaction
superoperator and avoids explicitly dealing with decoding and
encoding issues when studying the fidelity of a code given its
recovery operator. We also emphasize that the approximate
QEC conditions, like the perfect QEC conditions, provide a
way to check if a code is approximately correctable, without
requiring knowledge of the optimal recovery. Once again,
we emphasize here that the perfect Knill-Laflamme recovery
scheme R in Eq. (34) applies, in principle, to any quantum
code satisfying the QEC conditions and no mention to the sta-
bilizer formalism appeared in [15]. Furthermore, for the sake
of completeness, we also remark that the traditional recovery
operation for stabilizer codes can be summarized as follows.
First, measure all the eigenvalues of the stabilizer generators;
this is the so-called syndrome measurement. Second, given
the measured syndrome, compute the minimum Hamming
weight error (that is, the most probable error) that could
have caused the syndrome. Third, apply the Pauli matrices
that correct this error. For the sake of completeness, we point
out that for various codes and error models, the minimum
Hamming weight error cannot be efficiently determined. More
generally, rather than the most likely single error, the most
likely equivalence class of errors is determined.

One of the first important theoretical approaches to near-
optimal recovery schemes was presented in [13], where
reversal recovery operations that are near optimal for the
average entanglement fidelity F̄(E,�),

F̄(E,�)
def=
∑

i

piF(ρi,�), (48)
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with E
def= {pi,ρi} denoting an ensemble with states ρi that

occur with probability pi [where F denotes the entanglement
fidelity, see Eq. (58)] were constructed analytically. The near-
optimal reversal operation reads [13],

R(Barnum-Knill)
�,ρ ∼ {ρ 1

2 A
†
k�(ρ)−

1
2 }, (49)

where � ∼ {Ak}. In [34,35], generalizing the traditional
Knill-Laflamme QEC conditions [15], necessary and sufficient
conditions for approximate correctability of a quantum code
were derived. In particular, a class of near-optimal recovery
channels for the worst-case entanglement fidelity (that is,
entanglement fidelity minimized over all input states) was also
provided. Following [13] and assuming ρ = PC/d, where d is
the dimension of the codespace and PC the projector on the
codespace, a special case of the near-optimal reversal operation
in Eq. (49) was introduced in [14,16]. Such reversal operation
is the so-called transpose channel recovery map,

RTC
def= R(Barnum-Knill)

�,PC/d
∼ {PCA

†
k�(PC)−

1
2 }. (50)

The transpose channel recovery map RTC is a simple-to-
construct recovery map built from the noise channel � and
the code C. In particular it works nearly as well as the
optimal recovery channel, with optimality defined in terms
of worst-case fidelity over all input states [the fidelity between

any two states ρ and σ is given by f (ρ,σ )
def= Tr

√
ρ

1
2 σρ

1
2 ].

We point out, as mentioned in [13] and explicitly shown in
[14], that the transpose channel RTC in Eq. (50) reduces to
the perfect Knill-Laflamme recovery operation R(Knill-Laflamme)

perfect
when the traditional exact QEC conditions are satisfied.

The recovery scheme that we choose to use in this work is
formally defined in terms of recovery operators that are just
like the operators Rk in Eq. (36),

Rk
def= VkPk ≡ Vk

∑
i

∣∣viL
k

〉〈
v

iL
k

∣∣ =∑
i

|iL〉
〈
v

iL
k

∣∣

= |0L〉〈0L|A†
k√

〈0L|A†
kAk|0L〉

+ |1L〉〈1L|A†
k√

〈1L|A†
kAk|1L〉

, (51)

where, however, we must now take into account that
〈0L|A†

kAk|0L〉 may only be approximately equal to
〈1L|A†

kAk|1L〉 in the approximate QEC framework. Thus, the
set of errors {Ak} that appear in Eq. (51) has to be considered
correctable in the approximate sense specified in the previous
section. For this reason, the recovery operators Rk in Eq. (51)
cannot assume the simple expression they exhibit in the case
of exact fulfillment of the QEC conditions. In the optimal
(exact) case, the superoperator R with elements Rk in Eq. (51)
becomes

R(Knill-Laflamme)
perfect ∼

{
PCA

†
k√

pk

}
, (52)

with pk
def= 〈0L|A†

kAk|0L〉 ≡ 〈1L|A†
kAk|1L〉. Explicit analyti-

cal investigations in the framework of exact QEC where the
superoperator in Eq. (52) was employed can be found in
[19,27,28].

Before describing the concept of entanglement fidelity, we
wish to hint at what happens with our recovery scheme in the

traditional AD noise model when error correction is performed
via the Leung et al. four-qubit code [7]. For the sake of clarity,
we only consider the recovery operator for the enlarged error

A0000
def= A0 ⊗ A0 ⊗ A0 ⊗ A0 with A0 defined as in Eq. (2). In

this case, we have

RA0000A0000 |ψ〉 = α
√

1− 2γ

√
1+ 3γ 2 − 2γ 3 + 1

2γ 4

1− 2γ
|0L〉

+β
√

1− 2γ

√
1+ γ 2

1− 2γ
|1L〉

=
√

1− 2γ |ψ〉 +O(γ 2), (53)

with |ψ〉 def= α|0L〉 + β|1L〉, where α, β ∈ C and |α|2 + |β|2 =
1 and {|0L〉,|1L〉} span the codespace of the four-qubit code.
The approximate nature of Eq. (53) is in agreement with the
modified version of the Knill-Laflamme QEC conditions in
Eq. (15),

PCA
†
0000A0000PC = λ00 (γ ) PC + PCB̂00 (γ ) PC, (54)

with

λ00(γ )
def= 1− 2γ and,

B̂00(γ )
def= (3γ 2 − 2γ 3 + 1

2γ 4
) |0L〉〈0L| + γ 2|1L〉〈1L|, (55)

while PC is the projector on the codespace of the code C. For
more details on this point, we refer to [35].

C. Entanglement fidelity

Entanglement fidelity is a useful performance measure of
the efficiency of quantum error-correcting codes. It is a quan-
tity that keeps track of how well the state and entanglement of
a subsystem of a larger system are stored, without requiring
the knowledge of the complete state or dynamics of the larger
system. More precisely, the entanglement fidelity is defined
for a mixed state,

ρ
def=
∑

i

piρi = TrHR
|ψ〉〈ψ |, (56)

in terms of a purification |ψ〉 ∈ H⊗HR to a reference system
HR . The purification |ψ〉 encodes all of the information in ρ.
Entanglement fidelity is a measure of how well the channel �

preserves the entanglement of the state H with its reference
system HR . The entanglement fidelity is defined as [11]

F(ρ,�)
def= 〈ψ |(�⊗ IHR

)(|ψ〉〈ψ |)|ψ〉, (57)

where |ψ〉 is any purification of ρ, IHR
is the identity map on

M(HR) (the space of all linear operators on the Hilbert space
HR), and �⊗ IHR

is the evolution operator extended to the
space H⊗HR , the space on which ρ has been purified. If
the quantum operation � is written in terms of its Kraus error

operators {Ak} as �(ρ)
def= ∑k AkρA

†
k , then it can be shown

that [36]

F(ρ,�) =
∑

k

Tr(Akρ)Tr(A†
kρ) =

∑
k

|Tr(ρAk)|2. (58)

022316-7



CARLO CAFARO AND PETER VAN LOOCK PHYSICAL REVIEW A 89, 022316 (2014)

This expression for the entanglement fidelity is very useful for
explicit calculations. Finally, assuming that

� : M(H) � ρ �→ �(ρ) =
∑

k

AkρA
†
k ∈M(H),

dimCH = N, (59)

and choosing a purification described by a maximally entan-
gled unit vector for the mixed state ρ = IH/dimCH, we obtain

F
(

1

N
IH,�

)
= 1

N2

∑
k

|TrAk|2. (60)

The expression in Eq. (60) represents the entanglement fidelity
when no error correction is performed on the noisy channel
�defined in Eq. (59).

Finally, for the sake of completeness, we point out that there
exists a relation between the fidelity of a recovery operation
R and the worst-case error probability parameter p [37],

p
def= 1− F(R,C,E), (61)

where C and E denote the code and the noise channel, respec-
tively. The meaning of the above relation can be described as
follows. Consider a quantum state |ψ〉 encoded into the state
Uenc|ψ〉|00 · · · 0〉, then subjected to some noise (corresponding
to the Ei operators), then subjected to a recovery operation
(corresponding to the Rj operators). Finally, the ancilla work
space is discarded, giving back some state ρψ on the original
Hilbert space,

ρψ = Trancilla

[∑
j

RjU
†
enc

(∑
i

EiUenc|ψ〉|00 · · · 0〉

× 〈0 · · · 00|〈ψ |U †
encE

†
i

)
UencR

†
j

]
. (62)

We are interested in how close ρψ is to the original state
|ψ〉〈ψ |. The probability pψ = 〈ψ |ρψ |ψ〉 can be regarded as
the probability of no error on the encoded state and the fidelity
of a recovery operation R is defined as

F (R,C,E)
def= min

|ψ〉
pψ, (63)

the minimum of all such probabilities pψ over all encoded
states |ψ〉. Thus, the probability parameter p gives an upper
bound on the probability with which a generic encoded state
will end up in the wrong state.

IV. ADDITIVE CODES

We denote by [[n,k,d]] a stabilizer (or additive) code that
encodes k logical qubits into n physical qubits correcting
� d−1

2 �-qubit errors, where d is the distance of the code and
�x� denotes the largest integer less than x. Additive quantum
codes are characterized by a codespace, the space spanned by
the so-called codewords, which is a simultaneous eigenspace
of an Abelian subgroup of the Pauli group. For more details
on the stabilizer formalism, we refer to [38].

A. Nondegenerate codes

Formally speaking, quantum codes for which the positive
Hermitian matrix α in Eq. (15) is nonsingular are called
nondegenerate codes. Instead, codes for which α is singular
are called degenerate. For nondegenerate codes, each error
is individually identifiable and, for a given choice of error
operators, the quantum code is transformed into a set of distinct
orthogonal subspaces by applying the errors. In short, for
nondegenerate codes, all the errors acting on the codewords
produce linearly independent quantum states.

1. The five-qubit code

The [[5,1,3]] code is the smallest single-error-correcting
quantum code [5,6]. Of all QECCs that encode one qubit of
data and correct all single-qubit errors, the [[5,1,3]] is the most
efficient, saturating the quantum Hamming bound. It encodes
k = 1 qubit in n = 5 qubits. The cardinality of its stabilizer
group S is |S| = 2n−k = 16 and the set B[[5,1,3]]

S of n− k = 4
stabilizer group generators is given by [33]

B[[5,1,3]]
S
def= {X1Z2Z3X4,X2Z3Z4X5,X1X3Z4Z5,Z1X2X4Z5}, (64)

with X
def= σx , Y

def= σy , and Z
def= σz and {σx,σy,σz} as given

in Eq. (1). For the sake of notational clarity, we emphasize
that when describing stabilizer generators as tensor products
of Pauli operators, we may omit to use the symbol ⊗. In
addition, the superscripts on the right-hand side of Eq. (64)
label the qubits 1, . . . ,5. The distance of the code is d = 3 and
therefore the weight of the smallest enlarged error operators
of the form A

†
l Ak that cannot be detected by the code is 3.

Finally, we recall that it is a nondegenerate code, since the
smallest weight for elements of S (other than identity) is 4 and
therefore it is greater than the distance d = 3. The encoding
for the [[5,1,3]] code is given by [5]

|0L〉 def= 1√
8

[−|00000〉 + |01111〉 − |10011〉 + |11100〉

+ |00110〉 + |01001〉 + |10101〉 + |11010〉],
|1L〉 def= 1√

8
[−|11111〉 + |10000〉 + |01100〉 − |00011〉

+|11001〉 + |10110〉 − |01010〉 − |00101〉]. (65)

The enlarged GAD quantum channel after performing the
encoding defined by means of Eq. (65) reads

�
[[5,1,3]]
GAD (ρ)

def=
210−1∑
r=0

A′
rρA′†

r =
3∑

i,j,k,l,m=0

AijklmρA
†
ijklm, (66)

where to any of the 210 values of r we can associate a set of
indices (i,j,k,l,m) (and vice versa) such that

A′
r ↔ Aijklm

def= Ai ⊗ Aj ⊗ Ak ⊗ Al ⊗ Am ≡ AiAjAkAlAm.

(67)

The errors Ai with i ∈ {0,1,2,3} are defined in Eq. (8) and
ρ ∈M(C) with C ⊂ H5

2. In particular, the number of weight-q
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enlarged error operators A′
r is given by 3q(5

q) and

210 =
5∑

q=0

3q

(
5

q

)
. (68)

We point out that consistency requires that the sum of the
probabilities P (Aijklm) that an A′

r = Aijklm error occurs must
sum up to unity. For clarity of exposition, consider the limiting
case with ε = 0, where only 25 = 32 enlarged errors A′

r are
present. In this case, we have

1∑
i,j,k,l,m=0

P (Aijklm)

=
25−1∑
r=0

P (A′
r ) = 1

2

25−1∑
a=0

Tr(A′
aPCA

′†
a )

= 1

2

25−1∑
a=0

[〈0L|A′†
a A′

a|0L〉 + 〈1L|A′†
a A′

a|1L〉] = 1; (69)

that is,

1∑
i,j,k,l,m=0

P (Aijklm) = Pweight-0 + Pweight-1 + Pweight-2

+Pweight-3 + Pweight-4 + Pweight-5 = 1,

(70)

where

Pweight-0 = 1− 5
2γ + 5

2γ 2 − 5
4γ 3 + 3

8γ 4 − 1
16γ 5,

Pweight-1 = 5
2γ − 5γ 2 + 15

4 γ 3 − 3
2γ 4 + 5

16γ 5,

Pweight-2 = 5
2γ 2 − 15

4 γ 3 + 9
4γ 4 − 5

8γ 5, (71)

Pweight-3 = 5
4γ 3 − 3

2γ 4 + 5
8γ 5,

Pweight-4 = 3
8γ 4 − 5

16γ 5, Pweight-5 = 1
16γ 5.

Using the brute-force approach, it would be fairly straight-
forward, though very tedious, to check the approximate QEC
conditions for all the 210 enlarged errors. Fortunately, this is
not necessary. Indeed, we aim at finding an analytical estimate
of the entanglement fidelity of the code such that

F [[5,1,3]] (γ,ε) � 1−O (2) , (72)

where O(2) ∼ O(γ n1εn2 ); that is, the pair (n1,n2) is such that,

lim
γ,ε→0

O (2)

O (γ n1εn2 )
= constant. (73)

For instance, we may have {(n1,n2)} = {(2,0),(0,2),(1,1)}.
Observe that the codewords that span the code belong to
the 25 = 32-dimensional complex Hilbert space H5

2. Thus, a
basis of orthonormal vectors for H5

2 requires 32 elements. For
ε = 0, it turns out that none of the (5

2) = 10 weight-2 errors
is correctable. Specifically, errors A01100, A00011, A01010, and
A00101 are not compatible with A00000; A00110 and A01001 are not
compatible with A10000; A11000 is not compatible with A01000;

A10100 is not compatible with A00100; A10010 is not compatible
with A00010; and, finally, A10001 is not compatible with A00001.
For the general case, it can be shown that all weight-0 (1 error)
and weight-1 (15 errors) enlarged error operators satisfy the
approximate QEC conditions up to the sought order. However,
the action on the codewords of five weight-1 enlarged errors
(specifically, A20000, A02000, A00200, A00020, and A00002) leads
to vectors that are not orthogonal to those obtained from the
action of the weight-0 error A00000 on the codewords. Thus,
we omit them from the construction of our recovery scheme.
In view of these considerations, we construct our recovery
operation R as

R def= {R0,R1,R2,R3,R4,R5 R6,R7,R8,R9,R10,Ô}, (74)

where

Rr
def= |0L〉

〈
v0L

r

∣∣+ |1L〉
〈
v1L

r

∣∣, with
∣∣viL

r

〉 def= A′
k|iL〉√

〈iL|A′†
k Ak|iL〉

,

(75)

for i ∈ {0,1} and 〈viL
r |vjL

r ′ 〉 = δrr ′δij . To be clear, R0 is
associated with the weight-0 error A00000; Rk with k = 1, . . . ,5
are associated with the five weight-1 errors where single-qubit
errors of type A1 occur; finally, Rk with k = 6, . . . ,10 are
associated with the five weight-1 errors where single-qubit
errors of type A3 occur. The construction of these 11 recovery
operators Rk is described in terms of 22 orthonormal vectors
in H5

2. The missing 10 orthonormal vectors can be uncovered
using the rank-nullity (dimension) theorem together with the
Gram-Schmidt orthonormalization procedure (for more de-
tails, see Appendix C). They define the operator Ô in Eq. (74),

Ô =
10∑

j=1

|oj 〉〈oj |. (76)

For the sake of convenience, we put R11
def= Ô. Finally, the

estimate of the entanglement fidelity of the five-qubit code,
when the recovery operation R in Eq. (74) is employed,
becomes (for more details, see Appendix D)

F [[5,1,3]](γ,ε)
def= 1

(dimC C)2

210−1∑
k=0

11∑
l=0

|Tr(RlA
′
k)|C |2

≈ 1− 5

2
γ 2 − 10ε2

(
1+ γ

ε

)
+O(3). (77)

We point out that in the limiting case of ε = 0, the AD
noise model is recovered and our analytical estimate in
Eq. (77) reduces to the numerically obtained truncated series
expansion appeared in [9] and [39] (specifically, see page 48
in [39]). The effect of the nonzero environmental temperature
on the five-qubit code is illustrated in Fig. 1.

2. The CSS seven-qubit code

The Calderbank-Shor-Steane (CSS) codes are constructed
from two classical binary codesC andC ′ that have the following
properties [40,41]: (1) C and C ′ are [n,k,d] and [n,k′,d ′] codes,
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FIG. 1. Effect of the nonzero environmental temperature on
quantum coding. The truncated series expansion of the entanglement
fidelity F(γ ) vs the AD parameter γ with 0 � γ � 10−1 for the
five-qubit code: ε(t) = 0 (dashed line); ε(t) = 10−1γ (thin solid line);
ε(t) = 3× 10−1γ (thick solid line).

respectively; (2) C ′ ⊂ C; (3) C and C ′⊥ (the dual code of C ′)
are both t-error-correcting codes. For instance, in case of the
seven-qubit code, the two classical codes are the [7,4,3] binary
Hamming code (C) and the [7,3,4] binary simplex code (C ′).
The dual code C ′⊥ is the [7,4,3] binary Hamming code. Thus, C
and C ′⊥ are both 1-error-correcting codes. In this case, n = 7,
k = 4, k′ = 3, k − k′ = 1 so that one qubit is mapped into
seven qubits. The seven-qubit code is the simplest example

of a CSS code. Although the seven-qubit code is ostensibly
more complicated that the five-qubit code, it is actually more
useful in certain situations by virtue of being a CSS code.
The CSS codes are a particularly interesting class of codes
for two reasons. First, they are built using classical codes
which have been more heavily studied than quantum codes,
so it is fairly easy to construct useful quantum codes simply
by looking at lists of classical codes. Second, because of the
form of generators, the CSS codes are precisely those for
which a CNOT applied between every pair of corresponding
qubits in two blocks performs a valid fault-tolerant operation.
This makes them particularly good candidates in fault-tolerant
computation.

The CSS seven-qubit code encodes k = 1 qubit in n = 7
qubits. The cardinality of its stabilizer groupS is |S| = 2n−k =
64 and the setB[[7,1,3]]

S of n− k = 6 stabilizer group generators
reads [33]

B[[7,1,3]]
S

def= {X4X5X6X7,X2X3X6X7,X1X3X5X7,

Z4Z5Z6Z7,Z2Z3Z6Z7,Z1Z3Z5Z7}. (78)

The distance of the code is d = 3 and therefore the weight of
the smallest error A

′†
l A′

k that cannot be detected by the code is
3. Finally, we recall that it is a nondegenerate code, since the
smallest weight for elements of S (other than identity) is 4 and
therefore it is greater than the distance d = 3. The encoding
for the [[7,1,3]] code is given by [33]

|0〉 → |0L〉 def= 1

(
√

2)3
[|0000000〉 + |0110011〉 + |1010101〉 + |1100110〉

+ |0001111〉 + |0111100〉 + |1011010〉 + |1101001〉], (79)

and

|1〉 → |1L〉 def= 1

(
√

2)3
[|1111111〉 + |1001100〉 + |0101010〉 + |0011001〉

+ |1110000〉 + |1000011〉 + |0100101〉 + |0010110〉]. (80)

The enlarged GAD quantum channel after performing the
encoding defined by means of Eqs. (79) and (80) reads

�
[[7,1,3]]
GAD (ρ)

def=
214−1∑
r=0

A′
rρA′†

r =
3∑

i,j,k,l,m,n,s=0

AijklmnsρA
†
ijklmns,

(81)

where to any of the 214 values of r we can associate a set of
indices (i,j,k,l,m,n,s) (and vice versa) such that

A′
r ↔ Aijklmns

def= Ai ⊗ Aj ⊗ Ak ⊗ Al ⊗ Am ⊗ An ⊗ As

≡ AiAjAkAlAmAnAs. (82)

The errors Ai with i ∈ {0,1,2,3} are defined in Eq. (8) and
ρ ∈M(C) with C ⊂ H7

2. In particular, the number of weight-q

enlarged error operators A′
r is given by 3q(7

q) and

214 =
7∑

q=0

3q

(
7
q

)
. (83)

For ε = 0, it can be shown that for any of the (7
2) = 21

weight-2 errors, there exists at least one of the seven weight-1
errors for which the correctability conditions are not satisfied.
For the general case, it can be shown that all weight-0
(1 error) and weight-1 (21 errors) enlarged error operators
satisfy the approximate QEC conditions up to the sought
order. In this case, the recovery scheme R that we use can
be described as follows: R0 is associated with the weight-0
error A0000000; Rk with k = 1, . . . ,7 are associated with the
seven weight-1 errors where single-qubit errors of type A1

occur; finally, Rk with k = 8, . . . ,14 are associated with the
five weight-1 errors where single-qubit errors of type A3
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occur. The construction of these 15 recovery operators Rk

is described in terms of 30 orthonormal vectors in H7
2. In

analogy to the case of the five-qubit code, the action on the
codewords of seven weight-1 enlarged errors (specifically,
A2000000, A0200000, A0020000, A0002000, A0000200, A0000020, and
A0000002) leads to vectors that are not orthogonal to those
obtained from the action of the weight-0 error A0000000 on
the codewords. Thus, we omit them from the construction
of our recovery scheme. The missing 98 orthonormal vectors
(needed to obtain an orthonormal basis of H7

2 and to construct

R15
def= Ô) can be formally computed by using the rank-nullity

theorem together with the Gram-Schmidt orthonormalization
procedure. Omitting further technical details (for more details,
see Appendix D) but using the very same line of reasoning
presented for the five-qubit code, our analytical estimate of
the entanglement fidelity of the CSS seven-qubit code reads

F [[7,1,3]](γ,ε)
def= 1

(dimC C)2

214−1∑
k=0

15∑
l=0

|Tr(RlA
′
k)|C |2

≈ 1− 21

4
γ 2 − 21ε2

(
1+ γ

ε

)
+O(3). (84)

To the best of our knowledge and unlike the case of the five-
qubit code, no truncated series expansion ofF [[7,1,3]](γ,ε) with
ε = 0 is available in the literature. However, we emphasize
that in the special case of ε = 0, our analytical estimate in
Eq. (84) appears to exhibit a fairly good agreement with the
numerical plot presented in [12] (specifically, see Fig. 9 in
[12]). For ε = 0, we compared our nontruncated analytical
estimate in Eq. (84) to the single-qubit baseline performance
(entanglement fidelity when no QEC is performed) given by

F1-qubit
baseline (γ )

def= 2−2(1+
√

1− γ )2. (85)

Then, we checked the good overlap between our results
(nontruncated fidelity expressions with and without error
correction) and those plotted in [12]. For some more details, see
Appendix E. The robustness against nonzero environmental
temperature of the CSS seven-qubit code is compared to that
of the Shor nine-qubit code in Fig. 2.

3. The eight-qubit concatenated code

The notion of correctability depends on all the errors in
the error set that one is considering and, unlike detectability,
cannot be applied to individual errors. However, for a given
code C, both sets of detectable and correctable errors are closed
under linear combinations. Within the stabilizer formalism, the
error-correction conditions can be described as follows [3,38]:
An [[n,k,d]] quantum code with stabilizer S and generators
gj where j = 1, . . . ,n− k, corrects an error set A if every
error pair A

†
l Am ∈ A either anticommutes with at least one

stabilizer generator,

∃ gj ∈ S : {gj ,A
†
l Am} = 0,

or is in the stabilizer, A
†
l Am ∈ S.

The two Kraus operators for the AD noise model are given
by A0 = I −O(γ ) and A1 ∝ σx + iσy . In the GAD noise
model, the error A3 ∝ σx − iσy appears as well. The linear
span of A1 and A3 equals the linear span of σx and σy . Thus, if
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FIG. 2. Robustness against nonzero environmental temperature
of degenerate and nondegenerate codes. The truncated series ex-
pansions of the entanglement fidelity F(t) vs the environmental
temperature T for � = ω = kB = 1 and γ = 10ε: the Shor nine-qubit
code (dashed line) and the CSS seven-qubit code (thin solid line).

a code is capable of correcting tσx and t σy errors, it can also
correct t A1 and t A3 errors. The stabilizer of the Leung et al.
four-qubit code,

|0L〉 def= |0000〉 + |1111〉√
2

, |1L〉 def= |0011〉 + |1100〉√
2

, (86)

is given by S def= 〈σ 1
x σ 2

x σ 3
x σ 4

x ,σ 1
z σ 2

z ,σ 3
z σ 4

z 〉. According to the
above-mentioned considerations, it follows that the error set
{I,σ i

x,σ
i
y} with i = 1, 2, 3, 4 is not correctable. For instance,

the set {σ 1
x ,σ 2

x } is not correctable because σ 1
x σ 2

x commutes
with all the stabilizer generators.

To construct a quantum code capable of error correcting the
set {I,σ i

x,σ
i
y} with i = 1,2,3,4, we concatenate the quantum

dual rail code CQDR (inner code) with the perfect 1-erasure
correcting code Cerasure (outer code) given by

|0L〉 def= |01〉, |1L〉 def= |10〉, (87)

and [42]

|0L〉 def= |0000〉 + |1111〉√
2

, |1L〉 def= |0110〉 + |1001〉√
2

, (88)

respectively. Both CQDR and Cerasure are stabilizer codes with
stabilizer groups given by

S def= 〈−σ 1
z σ 2

z

〉
, (89)

and

S def= 〈σ 1
x σ 2

x σ 3
x σ 4

x ,σ 1
z σ 4

z ,σ 2
z σ 3

z

〉
, (90)

respectively. We recall that, as pointed out in [43], minus signs
do not really matter when the stabilizers are specified. Erasures
are errors at known positions and a t-error-correcting code is
a 2t-erasure correcting code. It can be shown that the perfect
1-erasure correcting code is also a single AD-error-correcting
codes and is local permutation equivalent to the Leung et al.
four-qubit code. Using Eqs. (87) and (88), the concatenated

code Cconc.
def= CQDR ◦ Cerasure is spanned by the following
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codewords:

|0L〉 def= |00000110〉 + |00001001〉 + |11110110〉 + |11111001〉√
4

,

(91)

|1L〉 def= |01100000〉 + |01101111〉 + |10010000〉 + |10011111〉√
4

.

The stabilizer generators of the concatenated code can be
obtained as follows. The concatenated code uses eight qubits
that parse two blocks, each containing four qubits. Qubits 1–4
belong to block 1; qubits 5–8 belong to block 2. To each block
we associate a copy of the generators of Cerasure. This gives the
following six generators,

g1
def= σ 1

x σ 2
x σ 3

x σ 4
x , g2

def= σ 5
x σ 6

x σ 7
x σ 8

x , g3
def= σ 1

z σ 4
z ,

g4
def= σ 5

z σ 8
z , g5

def= σ 2
z σ 3

z , g6
def= σ 6

z σ 7
z . (92)

The remaining generator g7 is the encoded version of −σ 1
z σ 2

z ,

that is g7
def= −σ 1

z σ 2
z σ 5

z σ 6
z . Summing up, the stabilizer group

for the concatenated code reads

SCconc.

def= 〈σ 1
x σ 2

x σ 3
x σ 4

x ,σ 5
x σ 6

x σ 7
x σ 8

x ,σ 1
z σ 4

z ,σ 5
z σ 8

z ,σ 2
z σ 3

z ,σ 6
z σ 7

z ,

− σ 1
z σ 2

z σ 5
z σ 6

z

〉
. (93)

It turns out that the concatenated code with stabilizer structure
defined in Eq. (93) is a nondegenerate code of distance 2.
Furthermore, it can be explicitly checked that the error set
{I,σ i

x,σ
i
y} with i = 1, . . . ,8 is a set of linearly independent

errors with unequal error syndromes, a property of correctable
errors by means of nondegenerate codes [33]. We recall that
the syndrome s(E) for an error E in the Pauli group PHn

2
is

the bit string l = l1, . . . ,ln−k , where the component bits li are
given by

li
def=
{

0, if [E,gi] = 0,

1, if {E,gi} = 0,
(94)

with i = 1, . . . ,n− k and S def= 〈gi〉 the stabilizer group of the
quantum code.

Before discussing the computation of the entanglement
fidelity, recall that the quantum Hamming bound places an
upper bound on the number of errors t that an [[n,k,d]]
nondegenerate code can correct for given n and k,

2k

t∑
j=0

3j

(
n

j

)
� 2n. (95)

Since the code distance d equals 2t + 1, it also places an upper
bound on the code distance. At present it is unknown whether
a degenerate code might allow a violation of the Hamming
bound [44]. For the sake of completeness, we also point out
that the Hamming bound for q-dimensional systems reads

K

t∑
j=0

(q2 − 1)j
(

n

j

)
� qn, (96)

where k = logq K and dimCH = qn with H = (Cq)⊗n.

The enlarged GAD quantum channel after performing the
encoding defined by means of Eq. (91) reads

�
[[8,1]]
GAD (ρ)

def=
216−1∑
r=0

A′
rρA′†

r =
3∑

i,j,k,l,m,n,s,t=0

AijklmnstρA
†
ijklmnst ,

(97)
where to any of the 216 values of r we can associate a set of
indices (i,j,k,l,m,n,s,t) (and vice versa) such that

A′
r ↔ Aijklmnst

def=Ai ⊗ Aj⊗ Ak⊗ Al ⊗Am ⊗ An ⊗ As ⊗ At

≡ AiAjAkAlAmAnAsAt . (98)

The errors Ai with i ∈ {0,1,2,3} are defined in Eq. (8) and
ρ ∈M(C), with C ⊂ H8

2. In particular, the number of weight-q
enlarged error operators A′

r is given by 3q(8
q) and

216 =
8∑

q=0

3q

(
8
q

)
. (99)

In this case, the recovery scheme R that we use can be
described as follows: R0 is associated with the weight-0 error
A00000000; Rk with k = 1, . . . ,8 are associated with the eight
weight-1 errors where single-qubit errors of type A1 occur;
Rk with k = 9, . . . ,16 are associated with the eight weight-1
errors where single-qubit errors of type A3 occur. In analogy
to the case of the CSS seven-qubit code, the action on the
codewords of seven weight-1 enlarged errors (specifically,
A20000000, A02000000, A00200000, A00020000, A00002000, A00000200,
A00000020, and A00000002) leads to vectors that are not orthogonal
to those obtained from the action of the weight-0 error A00000000

on the codewords. Thus, we omit them from the construction of
our recovery scheme. We also choose to recover the weight-2
errors that are more likely to occur where the likelihood can
be expressed in terms of the perturbation parameters γ and ε.
For instance, in the limiting case of ε = 0, it can be shown that
the sum of all the probabilities for errors of weight-k to occur
reads

Pweight-k
def= 1

2

[(
2
k

)
γ k (1− γ )2−k +

(
6
k

)
γ k (1− γ )6−k

]
,

(100)

with the normalization constraint

8∑
k=0

Pweight-k = 1. (101)

Therefore, to the 17 recovery operators Rk constructed so far,
we add the additional 20 of the possible 28 = (8

2) recovery
operators constructed by means of weight-2 errors where errors
of type A1 occur. We point out that we only consider 20
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recovery operators, since the following eight errors are not
correctable:

A11000000, A10100000, A01010000, A00110000, A00001100,

A00001010, A00000101, A00000011. (102)

We finally arrive at the construction of 37 recovery operators
Rk with k = 0, . . . ,36 described in terms of 74 orthonormal
vectors in H8

2. The missing 182 orthonormal vectors (needed
to obtain an orthonormal basis of H8

2 and to construct

R37
def= Ô) can be formally computed using the rank-nullity

theorem together with the Gram-Schmidt orthonormalization.
Omitting further technical details but using the very same
line of reasoning presented for the CSS seven-qubit code,
our analytical estimate of the entanglement fidelity of the
eight-qubit concatenated code reads

F [[8,1]](γ,ε)
def= 1

(dimC C)2

216−1∑
k=0

37∑
l=0

|Tr(RlA
′
k)|C |2

≈ 1− 2γ 2 − 28ε2

(
1+ γ

ε

)
+O(3). (103)

We remark that in the limiting case of ε = 0, the GAD
noise model reduces to the traditional AD model and the
concatenated codeCconc. applied to AD errors works as follows:
The inner code CQDR transforms AD errors into erasures which
are then corrected by the outer code Cerasure [26]. We also point
out that in the limit of ε = 0 our estimated series expansion of
the entanglement fidelity of the eight-qubit concatenated code
coincides with that obtained by means of the traditional Leung
et al. four-qubit code applied to AD errors,

F [[8,1]](γ,ε = 0) ≈ 1− 2γ 2 +O(3) ≈ F [[4,1]]
Leung (γ ), (104)

where we assume to use recovery schemes with the same
structure as in Eq. (36). This finding is not unexpected and is
in agreement with the fact that, as pointed out earlier, Cerasure

and CLeung are local permutation equivalent quantum codes.
Finally, we compare the performances of the additive codes

employed in our error-correction schemes in Fig. 3.

B. Degenerate codes

Degeneracy is a property of quantum codes which has
no analog for classical error-correcting codes and it arises
from the fact that two different error patterns can have
indistinguishable effects on a coded quantum state [45]. A
degenerate code has linearly independent matrices that act
in a linearly dependent way on the codewords, while in a
nondegenerate code, all the errors acting on the codewords
produce linearly independent quantum states. For instance, the
Shor nine-qubit code is a degenerate code, since phase errors
within a group of three qubits act the same way. A striking
feature of degenerate quantum codes is that they can be used
to correct more errors than they can uniquely identify [46].
Also, strictly speaking, degeneracy is not a property of a code,
but a property of a code together with a family of errors it is
designed to correct [33,46].
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FIG. 3. Ranking additive codes. The truncated series expansions
of the entanglement fidelity F(γ ) vs the AD parameter γ for
ε = 0 and 0 � γ � 10−1: the Shor nine-qubit code (dotted line),
the degenerate six-qubit code (dashed line), the five-qubit code (thin
solid line), and the CSS seven-qubit code (thick solid line).

1. The six-qubit code

Calderbank et al. discovered two distinct six-qubit de-
generate quantum codes encoding one logical qubit into six
physical qubits [47]. The first of these codes was discovered by
trivially extending the five-qubit code while the other one was
discovered through an exhaustive search of the encoding space.
In particular, in [47] it was argued that this second example
is unique up to equivalence. The example that we consider
here was originally introduced by Bilal et al. in [48]. They
argue that, since their example is not reducible to the trivial
six-qubit code because every one of its qubits is entangled with
the others, their code is equivalent to the second nontrivial
six-qubit code according to the arguments of Calderbank et al.
The codespace of this nontrivial [[6,1,3]] six-qubit code is
spanned by the codewords |0L〉 and |1L〉 defined as [48],

|0L〉 def= 1√
8

[|000000〉 − |100111〉 + |001111〉 − |101000〉

− |010010〉 + |110101〉 + |011101〉 − |111010〉],
(105)

and

|1L〉 def= 1√
8

[|001010〉 + |101101〉 + |000101〉 + |1000010〉

− |011000〉 − |111111〉 + |010111〉 + |110000〉],
(106)

respectively. The five stabilizer generators for this code can be
written as

g1
def= Y 1Z3X4X5Y 6, g2

def= Z1X2X5Z6,

g3
def= Z2X3X4X5X6, g4

def= Z4Z6, g5
def= Z1Z2Z3Z5.

(107)

Within the quantum stabilizer formalism, an [[n,k,d]] code
is degenerate if the stabilizer group contains elements of
weight less than d (other than the identity) [33]. Thus, it
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appears evident from Eq. (107) that this distance d = 3 code
is degenerate.

The enlarged GAD quantum channel after performing the
encoding defined by means of Eqs. (105) and (106) reads

�
[[6,1,3]]
GAD (ρ)

def=
212−1∑
r=0

A′
rρA′†

r =
3∑

i,j,k,l,m,n=0

AijklmnρA
†
ijklmn,

(108)

where to any of the 212 values of r we can associate a set of
indices (i,j,k,l,m,n) (and vice versa) such that

A′
r ↔ Aijklmn

def= Ai ⊗ Aj ⊗ Ak ⊗ Al ⊗ Am ⊗ An

≡ AiAjAkAlAmAn. (109)

The errors Ai with i ∈ {0,1,2,3} are defined in Eq. (8) and
ρ ∈M(C) with C ⊂ H6

2. In particular, the number of weight-q
enlarged error operators A′

r is given by 3q(6
q) and

212 =
6∑

q=0

3q

(
6
q

)
. (110)

For ε = 0, it can be shown that among the (6
2) = 15

weight-2 errors, the set of five weight-2 errors given by
{A110000,A100010,A011000,A001010,A000101} is not correctable,
since they are not compatible with A000000. In addition, the
action of the two weight-2 errors A101000 and A010010 on the
codewords leads to state vectors that are not orthogonal to
A000000|iL〉with i ∈ {0,1}. All weight-1 errors are correctable,
of course. In view of these considerations, we construct
the recovery scheme R for the general case as follows:
R0 is associated with the weight-0 error A000000; Rk with
k = 1, . . . ,6 are associated with the six weight-1 errors where
single-qubit errors of type A1 occur; Rk with k = 7, . . . ,12
are associated with the six weight-1 errors where single-qubit
errors of type A3 occur; finally, Rk with k = 13, . . . ,20 are
associated with the eight correctable weight-2 errors where
errors of type A1 occur. The construction of these 21 recovery
operators Rk is described in terms of 42 orthonormal vectors in
H6

2. As pointed out earlier, the missing 22 orthonormal vectors
(needed to obtain an orthonormal basis of H6

2 and to construct

R21
def= Ô) can be formally computed by using the rank-nullity

theorem together with the Gram-Schmidt orthonormalization
procedure. Our analytical estimate of the entanglement fidelity
of the nontrivial six-qubit degenerate code reads

F [[6,1,3]](γ,ε)
def= 1

(dimC C)2

212−1∑
k=0

21∑
l=0

|Tr(RlA
′
k)|C |2

≈ 1− 2γ 2 − 15ε2

(
1+ γ

ε

)
+O(3). (111)

Comparing Eqs. (77), (84), and (103) to Eq. (111), we observe
that the six-qubit degenerate code outperforms the five-, CSS
seven-, and eight-qubit concatenated nondegenerate codes.
Our findings show that despite the fact that the CSS seven-
and eight-qubit concatenated codes have larger Hilbert spaces
for encoding than that allowed for the six-qubit code, their
error-correcting capability is smaller, given the noise model

considered and the recovery schemes employed. Our finding
in Eq. (111) strengthens the suspect advanced in [12] where
it was conjectured that, thanks to their degenerate structure,
such codes can outperform nondegenerate codes despite their
shorter length.

2. The Shor nine-qubit code

We consider here the [[9,1,3]] Shor nine-qubit code [1],
the code that gave birth to the subject of quantum error
correcting codes. The codespace of such a code is spanned
by the following two codewords [33]:

|0L〉 def= 1√
8

[|000〉 + |111〉][|000〉 + |111〉][|000〉 + |111〉]

(112)

and

|1L〉 def= 1√
8

[|000〉 − |111〉][|000〉 − |111〉][|000〉 − |111〉].

(113)

This degenerate code can be constructed by concatenating
two nondegenerate [[3,1,1]] codes and its eight stabilizer
generators can be written as

g1
def= Z1Z2, g2

def= Z1Z3, g3
def= Z4Z5, g4

def= Z4Z6,

g5
def= Z7Z8, g6

def= Z7Z9, g7
def= X1X2X3X4X5X6,

g8
def= X1X2X3X7X8X9. (114)

The enlarged GAD quantum channel after performing the
encoding defined by means of Eqs. (112) and (113) reads

�
[[9,1,3]]
GAD (ρ)

def=
218−1∑
r=0

A′
rρA′†

r

=
3∑

i,j,k,l,m,n,s,t,u=0

AijklmnstuρA
†
ijklmnstu, (115)

where to any of the 218 values of r we can associate a set of
indices (i,j,k,l,m,n,s,t,u) (and vice versa) such that

A′
r ↔ Aijklmnstu

def= Ai ⊗ Aj ⊗ Ak ⊗ Al ⊗ Am ⊗ An ⊗ As ⊗ At ⊗ Au

≡ AiAjAkAlAmAnAsAtAu. (116)

The errors Ai with i ∈ {0,1,2,3} are defined in Eq. (8) and
ρ ∈M(C) with C ⊂ H9

2. In particular, the number of weight-q
enlarged error operators A′

r is given by 3q(9
q) and

218 =
9∑

q=0

3q

(
9
q

)
. (117)

As a side remark, we recall that a quantum code has distance
d if all errors of weight less than d satisfy the QEC conditions
〈iL|A†

l Am|jL〉 = αlmδij and at least one error of weight d exists
that violates it. Otherwise stated, the distance of a code is the
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weight of the smallest error A
†
l Am that cannot be detected by

the code. For instance, using the three-qubit bit-flip repetition
code [[3,1,1]] to correct bit-flip errors, it turns out that the
weight-1 error σ 1

z cannot be detected. However, this code of
distance d = 1 also detects errors of weight-2 such as, for
instance, σ 1

x σ 2
x .

For ε = 0, it turns out that all the 9 weight-1 and 36 weight-2
errors are correctable. In addition, all weight-3 errors can
be recovered as well, except for A111000000, A000111000, and
A000000111. These three errors could be potentially recovered
by means of the recovery operator constructed with the
weight-0 error A000000000. However, it can be checked that their
contribution is null. For the general case, the recovery scheme
R that we use can be described as follows: R0 is associated
with the weight-0 error A000000000; Rk with k = 1, . . . ,9 are
associated with the 9 weight-1 errors where single-qubit errors
of type A1 occur; Rk with k = 10, . . . ,18 are associated with
the 9 weight-1 errors where single-qubit errors of type A3

occur; Rk with k = 19, . . . ,54 are associated with the 36
weight-2 errors where errors of type A1 occur; finally, Rk

with k = 55, . . . ,135 are associated with the 81 weight-3
errors where errors of type A1 occur. The construction of
these 136 recovery operators Rk is described in terms of
272 orthonormal vectors in H9

2. The missing 240 orthonormal
vectors, needed to obtain an orthonormal basis of H9

2 and

to construct R136
def= Ô, can be formally computed by using

the rank-nullity theorem together with the Gram-Schmidt
orthonormalization procedure. Our analytical estimate of the
entanglement fidelity of the Shor nine-qubit code reads

F [[9,1,3]](γ,ε)
def= 1

(dimC C)2

218−1∑
k=0

136∑
l=0

|Tr(RlA
′
k)|C |2

≈ 1− 3

2
γ 3 − 36ε2

(
1+ γ

ε

)
+O(3). (118)

To the best of our knowledge, and unlike the case of the five-
qubit code, no truncated series expansion ofF [[9,1,3]](γ,ε) with
ε = 0 is available in the literature. However, we emphasize
that in the special case of ε = 0, our analytical estimate in
Eq. (118) appears to exhibit a fairly good agreement with the
numerical plot presented in [8] (specifically, see Fig. 12 in [8]).
For ε = 0, we compared our nontruncated analytical estimate
in Eq. (118) to the baseline performance of a single qubit
given by Eq. (85). Then we checked the good overlap between
our results (nontruncated fidelity expressions with and without
error correction) and the ones plotted in [8]. For some more
details, see Appendix F.

V. NONADDITIVE CODES

There are codes that do not exhibit stabilizer structures.
Such codes are known as nonadditive quantum codes. A
quantum code is nonadditive if it is not additive, that is, if
it cannot be constructed within the stabilizer framework.

Examples of nonstabilizer codes can be found when one of
the two following requirements are satisfied [32].

(i) A state |ψ〉 /∈ C exists such that g|ψ〉 = |ψ〉 for any
operator g that belongs to the group stabilizer SC of the code
C. This happens when C is not maximal.

(ii) A state g /∈ SC exists such that g|ψ〉 = |ψ〉 for any state
in the codespace of C. This happens when SC is not maximal.

We point out it can also occur that the code C does not allow
any stabilizer group SC at all, neither maximal nor minimal.
For instance, consider the code C defined as

C def= Span

{
|0L〉 def= |01〉 + |10〉√

2
,|1L〉 def= |11〉

}
. (119)

The code C in Eq. (119) is not the joint +1 eigenspace of any
operator in the Pauli group PH2

1
. Therefore, this code is not a

stabilizer code, since it does not have the standard stabilizer
structure.

A nonadditive ((n,K,d)) code is a K-dimensional subspace
of a n-qubit Hilbert space correcting � d−1

2 �-qubit errors and d

is the distance of the code. The first example of nonadditive
code was a ((5,6,2)) code presented in [49]. This code was
constructed numerically by building a projector operator with a
given weight distribution. It encodes six logical qubits into five
physical qubits and can correct single-qubit erasure. This code
outperforms any known stabilizer code in terms of encoded
dimension (log2 6/5). In [50], a family of nonadditive codes
of distance d = 2 capable of detecting any single-qubit error
(or, equivalently, correct any single-qubit erasure) with high
encoded dimensions was introduced. The simplest example
of a nonadditive code in such a family is represented by a
self-complementary ((5,5,2)) nonadditive quantum code that
is not a subcode of the ((5,6,2)) code in [49]. Necessary
and sufficient conditions for the error correction of AD
errors with self-complementary nonadditive quantum codes
were presented in [23,24]. In particular, in [23] a numerical
investigation of a ((8,12)) self-complementary nonadditive
quantum code with a high encoding rate (log2 12/8) was
presented for the correction of AD errors. The performance
of this code was quantified by means of the entanglement
fidelity and evaluated numerically for a maximum likelihood
recovery scheme that corrects all the first-order AD errors. We
stress that for nonadditive codes, the decoding procedure does
not have the syndrome diagnosis and the recovery structure of
the stabilizer codes. However, like the additive case, recovery
schemes for nonadditive codes may exhibit a projection nature
as well. Furthermore, thanks to the graph-state formalism
[51], many nonadditive codes can be characterized by a
stabilizerlike structure [25]. The stabilizerlike structure of
some classes of nonadditive codes simplify significantly the
encoding and decoding procedures for these codes [52].
Nonadditive codes of distance d = 2 can detect but cannot
correct arbitrary single-qubit errors. To achieve this task,
codes of distance d = 3 are needed. In [53], sufficient
general conditions for the existence of nonadditive codes were
given. In particular, an example of a strongly nonadditive
((11,2,3)) quantum code was presented. However, the question
of whether the nonadditive codes correcting errors beyond
erasures are more efficient (in terms of the encoded dimen-
sion) than the corresponding stabilizer codes remained open.
The very first example of a 1-error-correcting nonaddi-
tive code capable of outperforming the optimal stabilizer
code (the [[9,3,3]] code) of the same length was the non-
degenerate ((9,12,3)) code in [54].
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A. Non-self-complementary codes

1. The ((11,2,3)) code

According to [53], two quantum codes C1 and C2 in C2n

are

locally equivalent if there is a transversal operator U
def= u1 ⊗

· · · ⊗ un with uj ∈ SU (2,C), mapping C1 into C2. Instead, two
codes are globally equivalent, or simply equivalent, if C1 is
locally equivalent to a code obtained from C2 by a permutation
on qubits. A quantum code C ⊂ C2n

is called nonadditive if it
is not equivalent to any additive code; moreover, C is strongly
nonadditive if the only additive code that contains any code
equivalent toC is the trivial codeC2n

(in other words, if±XαZβ

with α, β ∈ {0,1}n is in the stabilizer of any code equivalent
to a supercode of C, then α = β = 0). Also, the generalized
stabilizer GSC of a code C ⊂ C2n

is the set of all unitary
operators V on C2n

such that V |c〉 = |c〉 for every |c〉 ∈ C.
Then, the stabilizer SC of a code C is SC = PC2n ∩ GSC , where
PC2n is the n-qubit Pauli group.

The strong nonadditivity is guaranteed by the fulfillment
of two conditions [53]: (i) the identity operator is the only
operator in the stabilizer of the code; (ii) there is no element
in GSC of the form XαT with {0,1}n � α �= 0, where T is a
Z-type unitary operator of the form

T
def=

n⊗
j=1

(
eiθj 0

0 ±e−iθj

)
, (120)

where i is the complex imaginary unit.
The first example of a 1-error-correcting strongly nonad-

ditive code was a ((11,2,3)) code with codespace spanned by
the following two codewords [53]:

|0L〉 def= 1√
12

12∑
i=1

|ri〉 (121)

and

|1L〉 def= 1√
12

12∑
i=1

|1+ ri〉. (122)

The quantity 1 is the all-1 vector of length 11 and ri denotes
the ith row of the following (12× 11)-matrix H defined as

H
def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 1 0 0 0 1
1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(123)

The enlarged GAD quantum channel after performing the
encoding defined by means of Eqs. (121) and (122) reads

�
((11,2,3))
GAD (ρ)

def=
222−1∑
r=0

A′
rρA′†

r

=
3∑

a1,...,a11=0

Aa1a2···a10a11ρA†
a1a2···a10a11

, (124)

where to any of the 222 values of r we can associate a set of
indices (a1, . . . ,a11) (and vice versa) such that

A′
r ↔ Aa1a2···a10a11

def= Aa1 ⊗ Aa2 ⊗ · · · ⊗ Aa10 ⊗ Aa11

≡ Aa1Aa2 · · ·Aa10Aa11 . (125)

The errors Ai with i ∈ {0,1,2,3} are defined in Eq. (8) and
ρ ∈M(C) with C ⊂ H11

2 . In particular, the number of weight-
q enlarged error operators A′

r is given by 3q(11
q ) and,

222 =
11∑

q=0

3q

(
11
q

)
. (126)

We assume to focus on the recovery of weight-1 errors only
and pay no attention to the possible recovery of higher-order
enlarged errors. For instance, this working hypothesis is
especially plausible for values of the perturbation parameters γ

and ε with 0 � ε � γ � 1. In this case, the recovery scheme
R that we use can be described as follows: R0 is associated with
the weight-0 error; Rk with k = 1, . . . ,11 are associated with
the 11 weight-1 errors where single-qubit errors of type A1

occur; finally, Rk with k = 12, . . . ,22 are associated with the
11 weight-1 errors where single-qubit errors of type A3 occur.
The construction of these 23 recovery operators Rk is described
in terms of 46 orthonormal vectors in H11

2 . The missing
orthonormal vectors needed to obtain an orthonormal basis
of H11

2 and to construct R23
def= Ô can be formally computed

by using the rank-nullity theorem together with the Gram-
Schmidt orthonormalization procedure. Finally, our analytical
estimate of the entanglement fidelity of the ((11,2,3)) code
reads

F ((11,2,3))
first-order (γ,ε)

def= 1

(dimC C)2

214−1∑
k=0

22∑
l=0

|Tr(RlA
′
k)|C |2

≈ 1− 55

4
γ 2 − 55ε2

(
1+ γ

ε

)
+O(3),

(127)

with

F ((11,2,3))(γ,ε)
def= 1

(dimC C)2

214−1∑
k=0

23∑
l=0

|Tr(RlA
′
k)|C |2. (128)

From Eq. (127), we conclude that the performance of this
strongly nonadditive code whose encoding rate equals 1/11
is not especially good for GAD errors. After all, this code
was originally introduced in [53] for conceptual reasons
without any claim about its error-correcting capabilities
against any specific noise model. This code lacks two essential
features: high encoding rate and self-complementarity [50].
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The nonadditive code we consider next, although not self-
complementary, has a very high encoding rate.

2. The ((9,12,3)) code

We consider next the nondegenerate ((9,12,3)) code [54],
the first example of a 1-error-correcting nonadditive code
capable of outperforming (in terms of encoded dimension)
the optimal stabilizer code with the same length, namely, the
[[9,3,3]] code. This is trivially a nonadditive code, since it
encodes a fractional number of qubits, k = log2 12 ≈ 3.6.
This code was constructed by means of the graph-state
formalism [51]. Therefore, in order to justify the structure of
the codewords spanning this K = 12-dimensional codespace
of this code, a subspace of the 29-dimensional complex Hilbert
space H9

2, we introduce first the basic ingredients of the
graph-state formalism and we refer to [51] and [55] for more
details on this specific point.

The starting point in the graph-state formalism is the notion

of graph. A unidirected simple graph G
def= G(V,�) with n =

|V | vertices is characterized by the so-called adjacency matrix
�. This is a n× n symmetric matrix with vanishing diagonal
elements such that �ij = 1 if vertices i and j are connected
and �ij = 0 otherwise. The graph state |G〉 associated with
the graph G reads

|G〉 def= 1√
2n

1∑
�μ=0

(−1)
1
2 �μ·�· �μ| �μ〉z, (129)

where | �μ〉z are the simultaneous eigenstates of {Zj }j∈V with
(−1)μj as eigenvalues and Zj the Pauli operator acting on
qubit j ∈ V .

The ((9,12,3)) code is associated with the so-called loop
graph L9 whose 9× 9 adjacency matrix reads

�L9

def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (130)

and its corresponding graph state is denoted as |L9〉. In terms
of |L9〉, the codespace of the code is spanned by the states

|iL〉 def= ZVi
|L9〉, (131)

where i = 1, . . . ,12 and

ZVi

def=
∏
a∈Vi

Za, (132)

with the set of vertices Vi defined as

V1
def= {∅}, V2

def= {2,6,7}, V3
def= {4,5,9}, V4

def= {2,3,6,8}, V5
def= {3,5,8,9}, V6

def= {2,3,4,5,6,7,8,9},
V7

def= {1,4,7}, V8
def= {1,2,4,6}, V9

def= {1,5,7,9}, V10
def= {1,2,3,4,6,7,8}, V11

def= {1,3,4,5,7,8,9}, (133)

V12
def= {1,2,3,5,6,8,9}.

To be explicit, the 12 codewords are given by

|1L〉 def= |L9〉, |2L〉 def= Z2Z6Z7|L9〉, |3L〉 def= Z4Z5Z9|L9〉, |4L〉 def= Z2Z3Z6Z8|L9〉, |5L〉 def= Z3Z5Z8Z9|L9〉,
|6L〉 def= Z2Z3Z4Z5Z6Z7Z8Z9|L9〉, |7L〉 def= Z1Z4Z7|L9〉, |8L〉 def= Z1Z2Z4Z6|L9〉, |9L〉 def= Z1Z5Z7Z9|L9〉, (134)

|10L〉 def= Z1Z2Z3Z4Z6Z7Z8|L9〉, |11L〉 def= Z1Z3Z4Z5Z7Z8Z9|L9〉, |12L〉 def= Z1Z2Z3Z5Z6Z8Z9|L9〉.

We stress that each codeword is the sum of 512 state vectors,

9∑
k=0

(
9
k

)
= 29 = 512,

where (9
k) denotes the number of state vectors of length 9 in

this sum with k-1s in their definition. For each codeword, the
sign distribution of these 512 state vectors changes according
to the action of ZVk

with k ∈ {1, . . . ,12}.
The enlarged GAD quantum channel after performing the

encoding defined by means of Eq. (131) reads

�
((9,12,3))
GAD (ρ)

def=
218−1∑
r=0

A′
rρA′†

r =
3∑

a1,...,a9=0

Aa1a2···a8a9ρA†
a1a2···a8a9

,

(135)

where to any of the 218 values of r we can associate a set of
indices (a1, . . . ,a9) (and vice versa) such that

A′
r ↔ Aa1a2···a8a9

def= Aa1 ⊗ Aa2 ⊗ · · · ⊗ Aa8 ⊗ Aa9

≡ Aa1Aa2 · · ·Aa8Aa9 . (136)

The errors Ai with i ∈ {0,1,2,3} are defined in Eq. (8) and
ρ ∈M(C) with C ⊂ H9

2. In particular, the number of weight-q
enlarged error operators A′

r is given by 3q(9
q) and

9∑
q=0

3q

(
9
q

)
= 218. (137)

Before describing our recovery scheme, let us make two
remarks. First, the codespace of this nonadditive code is
a 12-dimensional subspace of H9

2 spanned by 12 code-
words. Each codeword is the sum-decomposition of 512
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vector states in H9
2. The number of vector states in such

decomposition with m nonzero components is given by (9
m).

This binomial factor can be regarded as the cardinality of
vector states of Hamming weight m that appear in the sum-
decomposition of the codewords. The normalization condition
requires

29 =
9∑

q=0

(
9
q

)
= 29 = 512. (138)

Second, after some thinking, it can be shown that the action
of any weight-1 enlarged error operator (where single-qubit
errors of type A1 or A3 may occur) on each of these codewords
with the above-mentioned structure leads to quantum states
in H9

2 described in terms of a sum-decomposition of 162
vector states which give rise to the following Hamming weight
distribution: 1 vector with Hamming weight m = 1, 8 vectors
with m = 2, 28 vectors with m = 3, 56 vectors with m = 4,
35 vectors with m = 5, 20 vectors with m = 6, 10 vectors
with m = 7, 3 vectors with m = 8 and, finally, 1 vector with
m = 9.

As stated earlier, we assume to focus on the recovery of
weight-1 errors only and pay no attention to the possible
recovery of higher-order enlarged errors. In this case, the
recovery scheme R that we use can be described as follows:
R0 is associated with the weight-0 error; Rk with k = 1, . . . ,9
are associated with the 11 weight-1 errors where single-qubit
errors of type A1 occur; finally, Rk with k = 10, . . . ,18
are associated with the 11 weight-1 errors where single-
qubit errors of type A3 occur. The construction of these 19
recovery operators Rk is described in terms of 19× 12 = 228
orthonormal vectors in H9

2. The missing orthonormal vectors
needed to obtain an orthonormal basis of H9

2 and to construct

R19
def= Ô can be formally computed by using the rank-nullity

theorem together with the Gram-Schmidt orthonormalization
procedure. Finally, our analytical estimate of the entanglement
fidelity of the ((9,12,3)) code reads

F ((9,12,3))
first-order (γ,ε)

def= 1

(dimC C)2

218−1∑
k=0

18∑
l=0

|Tr(RlA
′
k)|C |2

≈ 1− 9γ 2 − 36ε2

(
1+ γ

ε

)
+O(3), (139)

with

F ((9,12,3))(γ,ε)
def= 1

(dimC C)2

218−1∑
k=0

19∑
l=0

|Tr(RlA
′
k)|C |2. (140)

From Eqs. (127) and (139), we conclude that the nondegen-
erate ((9,12,3)) code not only outperforms the ((11,2,3)) in
terms of encoded dimension but also in terms of entanglement
fidelity with recovery schemes limited to first-order recovery.
Furthermore, from Eq. (118), it can be shown that

F [[9,1,3]]
first-order(γ,ε = 0)

≈ 1− 45

4
γ 2 +O(γ 3) � 1− 9

log2 12
γ 2 +O(γ 3)

≈ F̃ ((9,12,3))
first-order (γ,ε = 0), (141)

0.00 0.02 0.04 0.06 0.08 0.10

0.95

0.96

0.97

0.98

0.99

1.00

γ , damping parameter

γ
,e
nt
an
gl
em
en
tf
id
el
ity

FIG. 4. Additive vs nonadditive codes of length nine. The
truncated series expansions of the normalized entanglement fidelity
F(γ ) vs the AD parameter γ for ε = 0 and 0 � γ � 10−1: the Shor
nine-qubit code (thin solid line) and the ((9,12,3)) code (dashed line).

where F̃ denotes the entanglement fidelity normalized with

exponentiation by 1/k, where k
def= log2 K is the number of

encoded logical qubits (k = 1 for the Shor nine-qubit code)
[8]. From the comparison of the first-order entanglement-based
performances of these two codes in Eq. (141), we are lead
to the conclusion that the nondegenerate and nonadditive
code ((9,12,3)) outperforms the degenerate and additive
code [[9,1,3]] not only in terms of encoded dimension. The
comparison between these two codes is shown in Fig. 4.

B. Self-complementary codes

In what follows, we consider single-AD error-correcting
codes. For this reason, we set ε = 0 and limit our considera-
tions to the approximate QEC of AD errors by means of self-
complementary nonadditive quantum codes. An ((n,K,d))
code is called self-complementary if its codespace is spanned
by codewords {|ca〉} defined as [50],

|ca〉 def= |a〉 + |ā〉√
2

, (142)

where a is a binary string of length n and ā
def= 1⊕a is

the complement of a. The suitability of self-complemetary
nonadditive codes for the error correction of AD errors was
first proposed in [23,24]. However, no explicit comparison
of the performances quantified by means of analytical es-
timates of the entanglement fidelity of self-complementary
and non-self-complementary nonadditive codes for AD errors
was presented. Furthermore, no similar comparison between
nonadditive self-complementary and stabilizer codes for AD
errors exists as well. In view of these considerations, we seek
to provide some useful insights into these unexplored issues.

1. The ((6,5)) code

The first self-complementary single-AD error-correcting
code that we consider is the ((6,5)) code whose codespace
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is spanned by the following five codewords in H6
2:

|0L〉 def= |000000〉 + |111111〉√
2

,

|1L〉 def= |110000〉 + |001111〉√
2

,

|2L〉 def= |001100〉 + |110011〉√
2

, (143)

|3L〉 def= |000011〉 + |111100〉√
2

,

|4L〉 def= |010101〉 + |101010〉√
2

.

We point out that the existence of such a code was originally
proposed in [23], although it was neither explicitly shown nor
used for error correction of single-AD errors.

The enlarged AD quantum channel after performing the
encoding defined by means of Eq. (143) reads

�
((6,5))
AD (ρ)

def=
26−1∑
r=0

A′
rρA′†

r =
1∑

a1,...,a6=0

Aa1a2···a5a6ρA†
a1a2···a5a6

,

(144)

where to any of the 26 values of r we can associate a set of
indices (a1, . . . ,a6) (and vice versa) such that

A′
r ↔ Aa1a2···a5a6

def= Aa1 ⊗ Aa2 ⊗ · · · ⊗ Aa5 ⊗ Aa6

≡ Aa1Aa2 · · ·Aa5Aa6 . (145)

The errors Ai with i ∈ {0,1} are defined in Eq. (8) and ρ ∈
M(C) with C ⊂ H6

2. In particular, the number of weight-q
enlarged error operators A′

r is given by (6
q) and

6∑
q=0

(
6
q

)
= 26. (146)

The recovery scheme R that we use can be described as
follows: R0 is associated with the weight-0 error; Rk with

k = 1, . . . ,6 are associated with the six weight-1 errors where
single-qubit errors of type A1 occur. The construction of these
seven recovery operators Rk is described in terms of 7× 5 =
35 orthonormal vectors in H6

2. The missing orthonormal
vectors needed to obtain an orthonormal basis of H6

2 and

to construct R7
def= Ô can be formally computed by using

the rank-nullity theorem together with the Gram-Schmidt
orthonormalization procedure. Finally, our analytical estimate
of the entanglement fidelity of the ((6,5)) code reads

F ((6,5))
first-order(γ )

def= 1

(dimC C)2

26−1∑
k=0

6∑
l=0

|Tr(RlA
′
k)|C.|2

≈ 1− 21

5
γ 2 +O(γ 3), (147)

with

F ((6,5))(γ )
def= 1

(dimC C)2

26−1∑
k=0

7∑
l=0

|Tr(RlA
′
k)|C |2. (148)

From Eqs. (111) and (147), it follows that

F̃ ((6,5))
first-order(γ ) ≈ 1− 21

5 log2 5
γ 2 +O(γ 3) � 1− 2γ 2 +O(γ 3)

≈ F [[6,1,3]](γ,ε = 0) � F [[6,1,3]]
first-order(γ,ε = 0).

(149)

Equation (149) is an explicit manifestation of the superiority,
in terms of both encoded dimension and entanglement fidelity,
of nonadditive over additive codes.

2. The ((8,12)) code

The second self-complementary single-AD error-
correcting code that we consider is the ((8,12)) code whose
codespace is spanned by the following 12 codewords in H8

2
[23]:

|0L〉 def= |00000000〉 + |11111111〉√
2

, |1L〉 def= |00000011〉 + |11111100〉√
2

, |2L〉 def= |00001100〉 + |11110011〉√
2

,

|3L〉 def= |00110000〉 + |11001111〉√
2

, |4L〉 def= |11000000〉 + |00111111〉√
2

, |5L〉 def= |10101000〉 + |01010111〉√
2

,

(150)

|6L〉 def= |01011000〉 + |10100111〉√
2

, |7L〉 def= |01100100〉 + |10011011〉√
2

, |8L〉 def= |10010100〉 + |01101011〉√
2

,

|9L〉 def= |11110000〉 + |00001111〉√
2

, |10L〉 def= |11001100〉 + |00110011〉√
2

, |11L〉 def= |00111100〉 + |11000011〉√
2

.

The enlarged AD quantum channel after performing the
encoding defined by means of Eq. (150) reads

�
((8,12))
AD (ρ)

def=
28−1∑
r=0

A′
rρA′†

r =
1∑

a1,...,a8=0

Aa1a2···a7a8ρA†
a1a2···a7a8

,

(151)

where to any of the 28 values of r we can associate a set of
indices (a1, . . . ,a8) (and vice versa) such that

A′
r ↔ Aa1a2···a7a8

def= Aa1 ⊗ Aa2 ⊗ · · · ⊗ Aa7 ⊗ Aa8

≡ Aa1Aa2 · · ·Aa7Aa8 . (152)
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The errors Ai with i ∈ {0,1} are defined in Eq. (8) and ρ ∈
M(C) with C ⊂ H8

2. In particular, the number of weight-q
enlarged error operators A′

r is given by (8
q) and

8∑
q=0

(
8
q

)
= 28. (153)

The recovery scheme R that we use can be described as
follows: R0 is associated with the weight-0 error; Rk with
k = 1, . . . ,8 are associated with the eight weight-1 errors
where single-qubit errors of type A1 occur. The construction
of these nine recovery operators Rk is described in terms
of 9× 12 = 108 orthonormal vectors in H8

2. The missing
orthonormal vectors needed to obtain an orthonormal basis of
H8

2 and to construct R9
def= Ô can be formally computed

by using the rank-nullity theorem together with the Gram-
Schmidt orthonormalization procedure. Finally, our analytical
estimate of the entanglement fidelity of the ((8,12)) code reads

F ((8,12))
first-order(γ )

def= 1

(dimC C)2

28−1∑
k=0

8∑
l=0

|Tr(RlA
′
k)|C.|2

≈ 1− 15

2
γ 2 +O(γ 3), (154)

with

F ((8,12))(γ )
def= 1

(dimC C)2

28−1∑
k=0

9∑
l=0

|Tr(RlA
′
k)|C |2. (155)

It is convenient to compare the performance of this code with
that of a multiqubit encoding stabilizer code with the same
length. For instance, the [[8,3,3]] code is a special case of a
class of [[2j ,2j − j − 2,3]] codes [56]. It encodes three logical
qubits into eight physical qubits and corrects all single-qubit
errors. The five stabilizer generators are given by [33]

g1
def= X1X2X3X4X5X6X7X8, g2

def= Z1Z2Z3Z4Z5Z6Z7Z8,

g3
def= X2X4Y 5Z6Y 7Z8, g4

def= X2Z3Y 4X6Z7Y 8,

g5
def= Y 2X3Z4X5Z6Y 8, (156)

and a suitable choice for the logical operations X̄i and Z̄i with
i ∈ {1,2,3} reads

X̄1
def= X1X2Z6Z8, X̄2

def= X1X3Z4Z7, X̄3
def= X1Z4X5Z6,

Z̄1
def= Z2Z4Z6Z8, Z̄2

def= Z3Z4Z7Z8, Z̄3
def= Z5Z6Z7Z8.

(157)

A convenient choice for the basis codewords reads

|ijk〉 def= (X̄1)ı̄(X̄2)j̄ (X̄3)k̄
∑
g∈S

g|00000000〉. (158)

For an explicit representation of the codewords of the [[8,3,3]]
code, we refer to [56] (specifically, see Table III in [56]).
Following our line of reasoning presented for the error
correction of AD errors by means of stabilizer codes and
omitting technical details, it turns out that the entanglement
fidelity of the [[8,3,3]] with our recovery up to first-order
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FIG. 5. Additive vs nonadditive codes of length eight. The trun-
cated series expansions of the normalized entanglement fidelityF (γ )
vs the AD parameter γ for ε = 0 and 0 � γ � 10−1: Gottesman’s
[[8,3,3]] code (thin solid line) and the ((8,12)) code (dashed line).

errors becomes

F [[8,3,3]]
first-order(γ ) ≈ 1− 7γ 2 +O(γ 3). (159)

Unlike the case of single-qubit encoding, in this case the en-
tanglement fidelity when no QEC is performed is represented
by the three-qubit baseline performance given by

F3-qubit
baseline(γ )

def= 8−2[1+ 3
√

1− γ + 3(1− γ )+ (1− γ )
3
2 ]2.

(160)

In addition, from Eqs. (154) and (159), we get

F̃ ((8,12))
first-order(γ ) ≈ 1− 15

2 log2 12
γ 2 +O(γ 3) � 1− 7

3
γ 2+O(γ 3)

≈ F̃ [[8,3,3]]
first-order(γ ). (161)

Equation (161) is yet another clear fingerprint of the superi-
ority, in terms of both encoded dimension and entanglement
fidelity, of nonadditive over additive codes. The comparison
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FIG. 6. Ranking nonadditive codes. The truncated series expan-
sions of the normalized entanglement fidelity F (γ ) vs the AD
parameter γ for ε = 0 and 0 � γ � 10−1: the ((6,5))-code (dotted
line), the ((8,12)) code (dashed line), the ((9,12,3)) code (thin solid
line), and the ((11,2,3)) code (thick solid line).
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between these two codes is shown in Fig. 5. Finally, we
compare the performances of the nonadditive codes employed
in our error-correction schemes in Fig. 6.

VI. FINAL REMARKS

In this article, we presented an analytic analysis of the per-
formance of various approximate QEC codes for GAD errors.
Specifically, we considered both stabilizer and nonadditive
quantum codes. The performance of such codes was quantified
by means of the entanglement fidelity as a function of the
damping probability and the nonzero environmental tempera-
ture. We analytically recovered and clarified some previously
known numerical results in the limiting case of the AD channel
(zero environmental temperature). In addition, our extended
investigation suggested that degenerate stabilizer codes and
self-complementary nonadditive codes are especially suitable
for the error correction of GAD errors. Finally, comparing
the properly normalized entanglement fidelities of the best
performant stabilizer and nonadditive codes characterized by
the same length, we showed that, in general, nonadditive codes
outperform stabilizer codes not only in terms of encoded
dimension but also in terms of entanglement fidelity.

Our main findings may be summarized as follows.
(1) We have explicitly shown that in the presence of

nonzero environmental temperature, the performance of both
additive and nonadditive quantum codes decreases (with
respect to zero environmental temperature case). In particular,
degenerate stabilizer codes seem to be more robust than
the nondegenerate ones against this effect, as evident from
Eqs. (111) and (118).

(2) In the limiting case of ε = 0 and considering the
[[5,1,3]] code, our analytic estimate in Eq. (77) reduces to
the numeric ones in [9] and [39]; in the same limiting case,
considering the CSS [[7,1,3]] code, our estimate in Eq. (84)
reduces to the numeric one in [12]; finally, considering the
Shor [[9,1,3]] code, our estimate in Eq. (118) reduces to that
numerically obtained in [8].

(3) We have constructed a nondegenerate eight-qubit con-
catenated stabilizer code [see Eq. (91)], a natural generaliza-
tion of the Leung et al. four-qubit code, suitable for the QEC
of GAD errors. We have also checked that in the limit of ε = 0,
our estimated performance for such a code reduces to that of
the four-qubit code applied to AD errors [see Eq. (104)].

(4) We have provided further evidence (see Eq. (111) for
the [[6,1,3]] code) in support of the suspect advanced in
[12], where it was conjectured that, thanks to their degenerate
structure, such codes can outperform nondegenerate codes
despite their shorter length.

(5) From Eqs. (127) and (139), we have explicitly shown
that the nonadditive ((9,12,3)) code not only outperforms the
((11,2,3)) code in terms of encoded dimension but also in
terms of entanglement fidelity with recovery schemes limited
to first-order recovery.

(6) We have shown that, to first-order recovery, self-
complementary nonadditive codes can outperform non-self-
complementary nonadditive codes despite exhibiting smaller
encoded dimension [see Eqs. (139) and (147) for the ((6,5))
and ((9,12,3)) codes, respectively].

(7) From the comparison of the first-order entanglement-
based performances between additive and nonadditive quan-
tum codes with identical lengths [see Eqs. (141), (149), and
(161)], we concluded that nonadditive codes outperform,
in general, additive codes not only in terms of encoded
dimension. In particular, nonadditivity seems to matter more
than degeneracy in the approximate QEC of both GAD and
AD errors [see Eq. (141)].

We wish to emphasize three aspects of our analysis.
(i) First, despite the great variety of quantum codes

employed in this work, we have limited our attention to qubit
channels only. The AD and GAD channels can, of course, be
extended to quantum systems of dimension greater than two,
leading to the so-called qudit channels. For instance, a qutrit
is a three-state quantum system. In such higher-dimensional
cases, the physical processes that we may consider are
described by the modeling of atoms as having more than
two states (multilevel atoms) interacting with environments
modeled by a bath of harmonic oscillators which can be
initially in the vacuum state or, more generally, in a thermal
state with temperature greater than zero. The study of the
effectiveness of QEC schemes suitable for such additional
realistic scenarios will be the object of our attention in future
efforts.

(ii) Second, the QEC strategy that we have employed for
our analytic estimates may be considered mildly conservative,
since we might have slightly underestimated the quantum
codes performances to avoid false overestimations. However,
we have tried to maintain the same degree of conservativeness
in all our estimates in order to preserve the fairness of the com-
parisons between pairs of different quantum codes. After all,
exact analytical calculations of the entanglement fidelities can
be quite intimidating. They are conceptually straightforward
but computationally extremely tedious if performed by hands
to avoid the drawbacks of numerical results [12,14]. We also
emphasize that conservative estimates are not uncommon in
QEC since, after all, we are led to deal with approximations.
For instance, conservativeness appears in analytic estimates of
error thresholds in topological QEC when crude combinatorics
arguments are employed [57] as well as in the numerical
estimation of the error threshold to depolarization of toric
codes by means of Monte Carlo simulations [58].

(iii) Third, despite the variety of quantum codes employed
in the approximate QEC of GAD errors presented in this work,
we emphasize that we cannot state without a doubt that for any
given arbitrary noise model, nonadditive and degenerate codes
are more efficient, in general, than additive and nondegenerate
codes. In all honesty, we feel uncomfortable in extrapolating
a general statement from a large, but yet limited, number of
special cases. Perhaps this is the reason why QEC is an art:
General statements cannot be made a priori; each scenario
has to be taken into consideration separately. It is a matter
of finding a good matching between the noise model and
the quantum code. Furthermore, we are not able to quantify
exactly the effect on the code performances provided by
fractional encoding, a feature of nonadditive codes, or by the
possibility of correcting a number of errors greater than the
one that is uniquely identified, a feature of degenerate codes.
Also, we cannot rule out the possibility that the mathematical
structure behind the sign pattern that characterizes the various
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codewords spanning the codespaces may play a relevant role in
determining the performance of the error correction schemes.
In conclusion, the merit of achieving higher performances
cannot be ascribed to specific properties of a code, but rather
to the properties of a code together with a family of errors
it is designed to correct. This final remark is in excellent
agreement with the fact that, for instance, degeneracy must
not be regarded as a property of a quantum code alone, but
rather a property of a code together with a class of errors it is
designed to recover.

In conclusion, we feel we have tried to advance our
understanding of approximate QEC of GAD errors for various
qubit codes, both additive and nonadditive, from an analytical
standpoint. However, in all fairness, it is very likely that
quantitative results in QEC will always require the help of
numerical investigations. In future efforts, we wish to further
sharpen our analytic estimations by using, if possible, both
additional analytical and numerical scrutiny.
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APPENDIX A: THE KRAUS OPERATOR-SUM
DECOMPOSITION OF THE GAD CHANNEL

In this Appendix, we provide an explicit derivation of the
(2× 2)-matrix representation of the Kraus error operators for
the GAD channel in Eq. (8).

Let us consider AD from the scattering of a photon via a
beam splitter [3]. Consider a single optical mode that contains

the quantum state |ψ〉 def= α|0〉 + β|1〉, where |0〉 is the vacuum
state while |1〉 denotes the single photon state. The scattering
of a photon from this mode can be modeled by inserting a beam
splitter in the path of the photon. The beam splitter acts on two

modes: It performs the unitary operation U
def= eχ(a†b−b†a) and

allows the photon to couple to another single optical mode
that represents the environment. The operators a, a† and b,
b† are the annihilation and creation operators, respectively, for
photons in the two modes. Assuming the environment starts
out with no photons,

ρenv.
def= |0〉〈0|, (A1)

it can be shown that the quantum operation that describes this
process reads

�AD(ρ)
def= A0ρA

†
0 + A1ρA

†
1, (A2)

with Ak
def= 〈k |U | 0〉 and

A0 =
(

1 0
0

√
1− γ

)
, A1 =

(
0

√
γ

0 0

)
, (A3)

where γ
def= sin2 χ denotes the probability of losing a photon.

If we assume that the environment starts out in a linear

superposition of zero and one photons,

ρenv.
def=

1∑
j=0

qj |j 〉〈j |, (A4)

where q0
def= p, q1 = 1− p, and 0 � p � 1, it turns out that

the quantum operation that describes this process reads

�GAD(ρ)
def= A00ρA

†
00 + A01ρA

†
01 + A11ρA

†
11 + A10ρA

†
10,

(A5)

with Ajk
def= √

qj 〈k|U |j 〉. Observe that A0k
def= √

p〈k|U |0〉 and

A1k
def= √

1− p〈k|U |1〉, with k = 0, 1. Let us first focus on
A1k , which can be written as

A1k
def=
∑
m,n

(A1k)mn|m〉〈n|, (A6)

where the coefficients (A1k)mn are defined as

(A1k)mn
def=
√

1− p〈m,k|U |n,1〉 =
√

1− p(〈m,k|)(U |n,1〉).
(A7)

Before computing an explicit expression for U |n,1〉 in
Eq. (A7), observe that using the Baker-Campbell-Hausdorff
formula,

eχABe−χA = B + χ [A,B]+ χ2

2!
[A,[A,B]]

+ χ3

3!
[A,[A,[A,B]]]+O(3), (A8)

we obtain

UaU †

def= eχ(a†b−b†a)ae−χ(a†b−b†a)

= a + χ [a†b − b†a,a]+ χ2

2!
[a†b − b†a,[a†b − b†a,a]]

+ χ3

3!
[a†b − b†a,[a†b − b†a,[a†b − b†a,a]]]+O(3).

(A9)

Notice that the commutator [a†b − b†a,a] in Eq. (A9) can be
written as

[a†b − b†a,a]

= −b,[a†b − b†a,[a†b − b†a,a]]

= a,[a†b − b†a,[a†b − b†a,[a†b − b†a,a]]] = −a;

(A10)

therefore, UaU † becomes

UaU † = a − χb − χ2

2!
a + χ3

3!
b + · · ·

= a

(
1− χ2

2!
+ · · ·

)
− b

(
χ − χ3

3!
+ · · ·

)
= (cos χ )a − (sin χ )b. (A11)
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Following this line of reasoning, we can also show that UbU † equals

UbU † = (cos χ )b − (sin χ )a. (A12)

Finally, recalling that (n+m)l can be written as

(n+m)l =
l∑

p=0

(
l

p

)
npml−p, (A13)

we have that U |n,1〉 in Eq. (A7) becomes

U |n,1〉 = U
(a†)n√

n!
b†|00〉 =

[
U

(a†)n√
n!

U †
]

[Ub†U †]|00〉

= 1√
n!

[(cos χ )a† − (sin χ )b†]n[(cos χ )b† − (sin χ )a†]|00〉

= 1√
n!

⎡
⎣ n∑

p=0

(
n

p

)
(cos χ )p(− sin χ )n−p(a†)p(b†)n−p

⎤
⎦ [(cos χ )|01〉 − (sin χ )|10〉]

= 1√
n!

n∑
p=0

(
n

p

)
[(cos χ )1+p(− sin χ )n−p(a†)p(b†)n−p|01〉 + (cos χ )p(− sin χ )n−p+1(a†)p(b†)n−p|10〉]

= 1√
n!

n∑
p=0

(
n

p

)
[(cos χ )1+p(− sin χ )n−p(a†)p|0〉(b†)n−p|1〉 + (cos χ )p(− sin χ )n−p+1(a†)p|1〉(b†)n−p|0〉]

= 1√
n!

n∑
p=0

(
n

p

)
[(cos χ )1+p(− sin χ )n−p

√
p!|p〉(b†)n−p+1|0〉 + (cos χ )p(− sin χ )n−p+1(a†)1+p|0〉

√
(n− p)!|n− p〉];

(A14)

that is, after some more algebra,

U |n,1〉 = 1√
n!

n∑
p=0

(
n

p

)
[(cos χ )1+p (− sin χ )n−p

√
p!
√

(n− p + 1)! |p,n− p + 1〉

+ (cos χ )p (− sin χ )n−p+1
√

(1+ p)!
√

(n− p)! |1+ p,n− p〉]

=
n∑

p=0

[
1√
n!

(
n

p

)√
p!
√

(n− p + 1)! (cos χ )1+p (− sin χ )n−p |p,n− p + 1〉

+ 1√
n!

(
n

p

)√
(1+ p)!

√
(n− p)! (cos χ )p (− sin χ )n−p+1 |1+ p,n− p〉

]

=
n∑

p=0

[√(
n

p

)√
(n− p + 1) (cos χ )1+p (− sin χ )n−p |p,n− p + 1〉

+
√(

n

p

)√
(1+ p) (cos χ )p (− sin χ )n−p+1 |1+ p,n− p〉

]
. (A15)

Therefore, substituting Eq. (A15) into Eq. (A7), we obtain

(A1k)mn√
1− p

def= 〈m,k|U |n,1〉 =
n∑

p=0

[√(
n

p

)√
(n− p + 1) (cos χ )1+p (− sin χ )n−p 〈m,k|p,n− p + 1〉

+
√(

n

p

)√
(1+ p) (cos χ )p (− sin χ )n−p+1 〈m,k|1+ p,n− p〉

]
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=
n∑

p=0

[√(
n

p

)√
(n− p + 1) (cos χ )1+p (− sin χ )n−p δm,pδk,n−p+1

+
√(

n

p

)√
(1+ p) (cos χ )p (− sin χ )n−p+1 δm,1+pδk,n−p

]

=
[√(

n

n− k + 1

)√
k (cos χ )n−k+2 (− sin χ )k−1 δm,n−k+1 +

√(
n

n− k

)√
n− k + 1 (cos χ )n−k (− sin χ )1+k δm,n−k+1

]
.

(A16)

Using Eq. (A16), the Kraus operators A1k in Eq. (A6) become

A1k =
∑
m,n

(A1k)mn |m〉〈n| =
√

1− p

[√(
n

n− k + 1

)√
k (cos χ )n−k+2 (− sin χ )k−1 |n− k + 1〉〈n|

+
√(

n

n− k

)√
n− k + 1 (cos χ )n−k (− sin χ )1+k |n− k + 1〉〈n|

]
. (A17)

Therefore, the error operators A11 and A10 read

A11 =
√

1− p

1∑
n=0

[√(
n

n

)
(cos χ )1+n +

√(
n

n

)√
n (cos χ )n−1 (− sin χ )2

]
|n〉〈n|

=
√

1− p{(cos χ )|0〉〈0| + [(cos χ )2 + (− sin χ )2]|1〉〈1|} =
√

1− p [|1〉〈1| + (cos χ ) |0〉〈0|] =
√

1− p

(√
1− γ 0

0 1

)
,

(A18)

where γ
def= sin2 χ ≡ 1− cos2 χ and

A10 =
√

1− p(− sin χ )|1〉〈0| =
√

1− p

(
0 0√
γ 0

)
,

(A19)

respectively. Following the same line of reasoning employed
for computing A11 and A10 and noticing that

U |00〉 =
[
I + χ (a†b − b†a)+ χ2

2!
(a†b − b†a)2 + · · ·

]
|00〉

= |00〉, (A20)

we can also compute the Kraus errors A0k , where

A0k
def=
∑
m,n

(A0k)mn|m〉〈n|, (A21)

and the coefficients (A0k)mn read

(A0k)mn
def= √

p〈m,k|U |n,0〉 = √
p (〈m,k|) (U |n,0〉) .

(A22)

It turns out that the errors A00 and A01 become

A00
def= √

p[|0〉〈0| +
√

1− γ |1〉〈1|] = √
p

(
1 0

0
√

1− γ

)
(A23)

and

A01
def= √

p〈1|U |0〉 = √
p[
√

γ |0〉〈1|] = √
p

(
0

√
γ

0 0

)
,

(A24)

respectively. In conclusion, the GAD channel �GAD is given
by

�GAD(ρ)
def= A00ρA

†
00 + A01ρA

†
10 + A10ρA

†
10 + A11ρA

†
11,

(A25)

where

A00
def=√

p 〈0 |U | 0〉 = √
p[|0〉〈0| +

√
1− γ |1〉〈1|]

=√p

(
1 0
0

√
1− γ

)
,

A01
def=√

p〈1|U |0〉 = √
p[
√

γ |0〉〈1|] = √
p

(
0

√
γ

0 0

)
,

A10
def=
√

1− p〈0|U |1〉 =
√

1− p[
√

γ |1〉〈0|] (A26)

=
√

1− p

(
0 0√
γ 0

)
,

A11
def=
√

1− p〈1|U |1〉 =
√

1− p[
√

1− γ |0〉〈0| + |1〉〈1|]

=
√

1− p

(√
1− γ 0

0 1

)
.

Finally, provided that we relabel A0
def= A00, A1

def= A01, A2
def=

A11, A3
def= A10, the Kraus operators in Eq. (8) are obtained.

For the sake of completeness, we also observe that the
analysis provided for this model is formally equivalent to
that for the model employed in the main text. For instance,

the Hamiltonian of the beam splitter,H (bs)
int

def= iχ (ab† − a†b),
should be replaced by the interaction Hamiltonian between

022316-24



APPROXIMATE QUANTUM ERROR CORRECTION FOR . . . PHYSICAL REVIEW A 89, 022316 (2014)

the two-level atom and the bath of harmonic oscillators,
H

(atom-HO)
int

def= g(a†σ− + aσ+). In the definition of H
(atom-HO)
int ,

the Pauli raising (σ+) and lowering (σ−) operators act on
the two-level atom. The creation (a†) and annihilation (a)
operators are associated with the harmonic oscillator instead.
Finally, g is the coupling constant for the interaction between
the atom and the oscillator.

APPENDIX B: QUBIT ENTANGLEMENT BREAKING
AND THE GAD CHANNEL

A quantum channel � is called entanglement breaking if
(�⊗ I )(ρ) is always separable, i.e., any entangled density
matrix ρ is mapped to a separable one [59]. In order to check if
a channel is entanglement breaking, it is sufficient to look at the
separability of the output state corresponding just to an input
maximally entangled state. In other words, � is entanglement
breaking if and only if (�⊗ I ) (|β〉〈β|) is separable for |β〉
defined as

|β〉 def= 1√
d

d−1∑
j=0

|j 〉 ⊗ |j 〉 , (B1)

d being the dimension of the Hilbert space. A simple way
to check the separability of density matrices is by means of
the Peres-Horodecki positive partial transpose (PPT) criterion
[60,61], which provides a necessary and sufficient condition
for the joint density matrix ρ of two d = 2-dimensional sys-
tems A and B to be separable. Alternatively, the entanglement
of a mixed state ρ described by a probabilistic mixture of
an ensemble of pure states of quantum systems of dimension
2× 2 can be quantified by means of the so-called concurrence
[62]. For systems with this dimensionality, the concurrence
C(ρ) of ρ reads

C(ρ)
def= max{0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (B2)

where λi are the non-negative real eigenvalues of the non-

Hermitian matrix ρρ̃
def= ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), where ρ̃ is

the spin-flipped state, λ1 is the largest eigenvalue, and the
complex conjugation is taken with respect to the product basis
of eigenvectors of σz given by {|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉}.

For the GAD channel, it can be shown that the concurrence
of ρ

def= (�GAD ⊗ I ) (|β〉〈β|) with |β〉 def= |00〉+|11〉√
2

reads

CGAD (γ,p)
def= 1

2

⎡
⎢⎢⎢⎢⎣

√[
(2 (1− γ )+ pγ 2 (1− p))+ 2

√
(1− γ ) ((1− γ )+ pγ 2 (1− p))

]
−
√[

(2 (1− γ )+ pγ 2 (1− p))− 2
√

(1− γ ) ((1− γ )+ pγ 2 (1− p))
]

−2
√

p (1− p) γ 2

⎤
⎥⎥⎥⎥⎦ . (B3)

Furthermore, the eigenvalues of the partial transpose of ρ

are given by

λ1 (γ,p) = 1

2
γp + 1

2
(1− γ ) , λ2 (γ,p) = 1

2
(1− pγ ) ,

λ3 (γ,p) = 1

4
γ − 1

2

√
1

4
γ 2 − γ − pγ 2 + p2γ 2 + 1, (B4)

λ4 (γ,p) = 1

4
γ + 1

2

√
1

4
γ 2 − γ − pγ 2 + p2γ 2 + 1.

The eigenvalues λ1, λ2, and λ4 are positive. The eigenvalue λ3

is positive provided that

p2γ 2 − pγ 2 + 1− γ � 0. (B5)

The inequality in Eq. (B5) is fulfilled in the two-
dimensional parametric region (γ,p (γ )), where pmin (γ ) �
p (γ ) � pmax (γ ), with

pmin (γ )
def= 1

γ 2

(
1

2
γ 2 − 1

2

√
γ 4 + 4γ 3 − 4γ 2

)
and

pmax (γ )
def= 1

γ 2

(
1

2
γ 2 + 1

2

√
γ 4 + 4γ 3 − 4γ 2

)
. (B6)

It turns out that for pairs (γ,p (γ )) within this two-dimensional
parametric region, CGAD (γ,p) equals zero and the GAD
channel becomes entanglement breaking.

APPENDIX C: EXPLICIT CONSTRUCTION
OF AN ORTHONORMAL BASIS

In general, we can proceed as follows. The rank-nullity
theorem allows us, with an algorithmic procedure for enlarging
a set of m linearly independent vectors in Cn with m � n, to
obtain a set of n linearly independent vectors in Cn [63]. The
Gram-Schmidt orthonormalization procedure, instead, can be
used to construct an orthonormal basis from this set of n

linearly independent vectors.
The rank-nullity theorem states that, given a (m× n) matrix

A, it turns out that n = rank (A)+ nullity (A). The nullity of a
(m× n) matrix A representing a linear map Â : Cn → Cm is
the dimension of its null space (or kernel),

ker A
def= {�x ∈ Cn : A�x = �0}. (C1)

The rank of a matrix is the maximum number of linearly
independent columns (or rows).

Let us suppose we wish to construct an orthonormal basis
{|ek〉} with k = 1, . . . ,32 for the 32-dimensional complex
Hilbert space H5

2. The first two orthonormal basis vectors can
be constructed from the action of the weight-0 error operators
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A00000 on the codewords |0L〉 and |1L〉. They read

|e1〉 def= N1 (γ ) [− |00000〉 + (1− γ )2 |01111〉 − (1− γ )
3
2 |10011〉 + (1− γ )

3
2 |11100〉

+ (1− γ ) |00110〉 + (1− γ ) |01001〉 + (1− γ )
3
2 |10101〉 + (1− γ )

3
2 |11010〉] (C2)

and

|e2〉 def= N2 (γ ) [− (1− γ )
5
2 |11111〉 + √

1− γ |10000〉 + (1− γ ) |01100〉 − (1− γ ) |00011〉
+ (1− γ )

3
2 |11001〉 + (1− γ )

3
2 |10110〉 − (1− γ ) |01010〉 − (1− γ ) |00101〉], (C3)

respectively. The normalization factors N1 (γ ) and N2 (γ ) are given by

N1 (γ )
def= 1√

1+ (1− γ )4 + 4 (1− γ )3 + 2 (1− γ )2
and N2 (γ )

def= 1√
(1− γ )5 + 2 (1− γ )3 + 4 (1− γ )2 + (1− γ )

. (C4)

The next ten orthonormal vectors can be constructed by taking into consideration the action of the five weight-1 error operators
A10000, A01000, A00100, A00010, A00001 on the codewords. The action of A10000 on the codewords |0L〉 and |1L〉 leads to

|e3〉 def= − |00011〉 + |01100〉 + |00101〉 + |01010〉√
4

(C5)

and

|e4〉 def= − (1− γ )2 |01111〉 + |00000〉 + (1− γ ) |01001〉 + (1− γ ) |00110〉√
1+ (1− γ )4 + 2 (1− γ )2

, (C6)

respectively. The action of A01000 on the codewords |0L〉 and |1L〉 yields

|e5〉 def= (1− γ )
3
2 |00111〉 + (1− γ ) |10100〉 + √1− γ |00001〉 + (1− γ ) |10010〉√

(1− γ )3 + 2 (1− γ )2 + (1− γ )
(C7)

and

|e6〉 def= − (1− γ )2 |10111〉 + √
1− γ |00100〉 + (1− γ ) |10001〉 − √1− γ |00010〉√

(1− γ )4 + (1− γ )2 + 2 (1− γ )
, (C8)

respectively. The action of A00100 on the codewords |0L〉 and |1L〉 leads to

|e7〉 def= (1− γ )
3
2 |01011〉 + (1− γ ) |11000〉 + (1− γ ) |10001〉 + √1− γ |00010〉√

(1− γ )3 + 2 (1− γ )2 + (1− γ )
(C9)

and

|e8〉 def= − (1− γ )2 |11011〉 + √
1− γ |01000〉 + (1− γ ) |10010〉 − √1− γ |00001〉√

(1− γ )4 + (1− γ )2 + 2 (1− γ )
, (C10)

respectively. The action of A00010 on the codewords |0L〉 and |1L〉 yields

|e9〉 def= (1− γ )
3
2 |01101〉 − (1− γ ) |10001〉 + √1− γ |00100〉 + (1− γ ) |11000〉√

(1− γ )3 + 2 (1− γ )2 + (1− γ )
(C11)

and

|e10〉 def= − (1− γ )2 |11101〉 − √1− γ |00001〉 + (1− γ ) |10100〉 − √
1− γ |01000〉√

(1− γ )4 + (1− γ )2 + 2 (1− γ )
, (C12)

respectively. Finally, the action of A00001 on the codewords |0L〉 and |1L〉 gives

|e11〉 def= (1− γ )
3
2 |01110〉 − (1− γ ) |10010〉 + √

1− γ |01000〉 + (1− γ ) |10100〉√
(1− γ )3 + 2 (1− γ )2 + (1− γ )

(C13)

and

|e12〉 def= − (1− γ )2 |11110〉 − √1− γ |00010〉 + (1− γ ) |11000〉 − √
1− γ |00100〉√

(1− γ )4 + (1− γ )2 + 2 (1− γ )
, (C14)
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respectively. The next ten orthonormal vectors can be constructed by considering the action of the five weight-1 error operators
A30000, A03000, A00300, A00030, A00003 on the codewords. The action of A30000 on the codewords |0L〉 and |1L〉 leads to

|e13〉 def= − |10000〉 + (1− γ )2 |11111〉 + (1− γ ) |10110〉 + (1− γ ) |11001〉√
1+ (1− γ )4 + 2 (1− γ )2

(C15)

and

|e14〉 def= |11100〉 − |10011〉 − |11010〉 − |10101〉√
4

, (C16)

respectively. The action of A03000 on the codewords |0L〉 and |1L〉 yields

|e15〉 def= − |01000〉 − (1− γ )
3
2 |11011〉 + (1− γ ) |01110〉 + (1− γ )

3
2 |11101〉√

1+ 2 (1− γ )3 + (1− γ )2
(C17)

and

|e16〉 def=
√

1− γ |11000〉 − (1− γ ) |01011〉 + (1− γ )
3
2 |11110〉 − (1− γ ) |01101〉√

(1− γ )3 + 2 (1− γ )2 + (1− γ )
, (C18)

respectively. The action of A00300 on the codewords |0L〉 and |1L〉 leads to

|e17〉 def= − |00100〉 − (1− γ )
3
2 |10111〉 + (1− γ ) |01101〉 + (1− γ )

3
2 |11110〉√

1+ 2 (1− γ )3 + (1− γ )2
(C19)

and

|e18〉 def=
√

1− γ |10100〉 − (1− γ ) |00111〉 + (1− γ )
3
2 |11101〉 − (1− γ ) |01110〉√

(1− γ )3 + 2 (1− γ )2 + (1− γ )
, (C20)

respectively. The action of A00030 on the codewords |0L〉 and |1L〉 yields

|e19〉 def= − |00010〉 + (1− γ )
3
2 |11110〉 + (1− γ ) |01011〉 + (1− γ )

3
2 |10111〉√

1+ 2 (1− γ )3 + (1− γ )2
(C21)

and

|e20〉 def=
√

1− γ |10010〉 + (1− γ ) |01110〉 + (1− γ )
3
2 |11011〉 − (1− γ ) |00111〉√

(1− γ )3 + 2 (1− γ )2 + (1− γ )
, (C22)

respectively. Finally, The action of A00003 on the codewords |0L〉 and |1L〉 leads to

|e21〉 def= − |00001〉 + (1− γ )
3
2 |11101〉 + (1− γ ) |00111〉 + (1− γ )

3
2 |11011〉√

1+ 2 (1− γ )3 + (1− γ )2
(C23)

and

|e22〉 def=
√

1− γ |10001〉 + (1− γ ) |01101〉 + (1− γ )
3
2 |10111〉 − (1− γ ) |01011〉√

(1− γ )3 + 2 (1− γ )2 + (1− γ )
, (C24)

respectively. We have 22 orthonormal vectors and we need 10 more. From Eqs. (C2) and (C3), it turns out that the following six
linearly independent orthonormal vectors are orthogonal to both |e1〉 and |e2〉:

|e23〉 def= |10110〉 − |11001〉√
2

, |e24〉 def= |11100〉 + |10011〉√
2

, |e25〉 def= |11010〉 − |10101〉√
2

,

(C25)

|e26〉 def= |00011〉 + |01100〉√
2

, |e27〉 def= |00101〉 − |01010〉√
2

, |e28〉 def= |01001〉 − |00110〉√
2

.

Indeed, it can be explicitly checked that 〈ekek′ 〉 = δkk′ for any k and k′ in {1, . . . ,28}. The last four vectors are uncovered
as follows. First, we add four linearly independent vectors in such a manner to have a basis for H5

2 and then we apply the
Gram-Schmidt orthonormalization procedure to obtain an orthogonal basis. It finally turns out that the remaining four vectors
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needed are given by

|e29〉 def= |11000〉 − (1− γ ) |e7〉 − (1− γ ) |e9〉 − (1− γ ) |e12〉 −
√

1− γ |e16〉√
1− 3 (1− γ )2 − (1− γ )

,

|e30〉 def= |10100〉 − (1− γ ) |e5〉 − (1− γ ) |e10〉 − (1− γ ) |e11〉 −
√

1− γ |e18〉√
1− 3 (1− γ )2 − (1− γ )

,

|e31〉 def= |10010〉 − (1− γ ) |e5〉 − (1− γ ) |e8〉 + (1− γ ) |e11〉 −
√

1− γ |e20〉√
1− 3 (1− γ )2 − (1− γ )

,

|e32〉 def= |10001〉 − (1− γ ) |e6〉 − (1− γ ) |e7〉 + (1− γ ) |e9〉 −
√

1− γ |e22〉√
1− 3 (1− γ )2 − (1− γ )

. (C26)

In conclusion, {|ek〉} with k ∈ {1, . . . ,32} is a suitable orthonormal basis for H5
2.

APPENDIX D: ESTIMATING THE ENTANGLEMENT
FIDELITY

The entanglement fidelity F (γ,ε) of a ((n,K,d)) quantum
code C for enlarged GAD errors A′

a with a ∈ {0, . . . ,22n − 1}
and recovery operation R def= {R1, . . . ,Rr, . . . ,Rs,Rs+1

def= Ô}
reads

F(γ,ε)
def= 1

K2

⎡
⎣22n−1∑

a=0

s∑
r=1

|Tr(RrA
′
a)C |2 +

22n−1∑
a=0

|Tr(ÔA′
a)C |2

⎤
⎦,

(D1)

where the recovery operator Ô is defined as

Ô
def=

2n−2s∑
b=1

|ob〉〈ob|. (D2)

The 2s orthonormal vectors employed to construct the recovery
operators Rr in R\{Ô} together with the 2n − 2s orthonormal
vectors used to define the recovery operator Ô form a
orthonormal basis of the complex Hilbert space H2n

2 . We
observe that the entanglement fidelity F (γ,ε) in Eq. (D1)
can be regarded as the sum of two contributions,

F (γ,ε)
def= FR\{Ô} (γ,ε)+ FÔ (γ,ε) , (D3)

where

FR\{Ô} (γ,ε)
def= 1

K2

22n−1∑
a=0

s∑
r=1

|Tr(RrA
′
a)C |2 and

FÔ (γ,ε)
def= 1

K2

22n−1∑
a=0

|Tr(ÔA′
a)C |2. (D4)

In what follows, we describe our reasoning for the analytic
estimates of entanglement fidelities.

1. Part A

Let us first consider FR\{Ô} (γ,ε) in Eq. (D4). Recall that
for r ∈ {1, . . . ,s}, the recovery operators Rr read

Rr
def=

K−1∑
j=0

|jL〉〈jL|A′†
r√

〈jL|A′†
r A′

r |jL〉
. (D5)

Using Eq. (D5), FR\{Ô} (γ,ε) becomes

FR\{Ô}(γ,ε)
def= 1

K2

22n−1∑
a=0

s∑
r=1

∣∣∣∣∣∣
K−1∑
i=0

〈iL|A′†
r A′

a|iL〉√
〈iL|A′†

r A′
r |iL〉

∣∣∣∣∣∣
2

. (D6)

Let us denote withK the index set of all the enlarged GAD error
operators. This set has cardinality 22n and can be decomposed
in two parts,

K def= KR\{Ô} ⊕K′. (D7)

The set KR\{Ô} is the index set of all the enlarged GAD
errors {A′

a} recovered by means of the recovery operators
{Rr} in R\{Ô} and it has cardinality s. The cardinality of
the index set K′ is 22n − s and denotes the number of all the
remaining potentially contributing enlarged error operators.
Since we only aim at finding estimates of F (γ,ε) with
F (γ,ε) � 1−O (2) and assuming as working hypothesis
0 � ε � γ � 1, we only need to consider a subset of K′
for the estimation of FR\{Ô} (γ,ε). In the worst scenario, we

have to consider the subset Kweight-2 ⊂ K′ of cardinality 32(n2)
of all the weight-2 enlarged GAD errors and

FR\{Ô} (γ,ε) ≈ 1

K2

∑
a∈K′′

s∑
r=1

∣∣∣∣∣∣
K−1∑
i=0

〈iL|A′†
r A′

a|iL〉√
〈iL|A′†

r A′
r |iL〉

∣∣∣∣∣∣
2

, (D8)

with K′′ def= KR\{Ô} ∪Kweight-2. In addition, among these 32(n2)
errors, some of them are more likely to occur than others.
Denote with [ik] the set of cardinality (n2) with weight-2
enlarged error operators acting on n-qubit quantum states
defined by means of single-qubit errors of type Ai and Ak ,

[ik]
def= {Aik0···0,Ai0k0···0, . . . ,A00···0ik}. (D9)

It turns out that the probabilities of occurrence Pr([ik])
def=

Prik (γ,ε) of errors in the set [ik] scale in terms of the
perturbation parameters γ and ε as follows:⎛
⎜⎝

Pr11 Pr12 Pr13

Pr21 Pr22 Pr23

Pr31 Pr32 Pr33

⎞
⎟⎠ ≈

⎛
⎜⎝

γ 2 εγ εγ 2

εγ ε2 ε2γ

εγ 2 ε2γ ε2γ 2

⎞
⎟⎠ . (D10)
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Therefore, in addition, to limit our attention to these 32(n2)
weight-2 errors in Kweight-2, we also rank the relevance of each
of these nine possible subsets [ik] of cardinality (n2) according
to the γ and ε dependencies of the probabilities of occurrence
of their errors.

2. Part B

Let us now take into consideration FÔ (γ,ε) in Eq. (D4).
We notice that

FÔ (γ,ε)
def= 1

K2

22n−1∑
a=0

|Tr(ÔA′
a)C |2

= 1

K2

22n−1∑
a=0

∣∣∣∣∣
K−1∑
i=0

〈iL|ÔA′
a|iL〉

∣∣∣∣∣
2

� 22n

K
|〈ı̄L|ÔA′

ā|ı̄L〉|2, (D11)

with

〈ı̄L|ÔA′
ā|ı̄L〉 def= max

i,a
{〈iL|ÔA′

a|iL〉}. (D12)

If the index ā labels an enlarged GAD error recovered by a
recovery operation Rr in R\{Ô}, then FÔ (γ,ε) is identically
zero by construction. Therefore, let us assume that ā is not
such an index. Using Eq. (D2), 〈ı̄L|ÔA′

ā|ı̄L〉 becomes

〈ı̄L|ÔA′
ā|ı̄L〉 =

2n−2s∑
b=1

〈ı̄L|ob〉〈ob|A′
ā|ı̄L〉. (D13)

We observe that 〈ı̄L|ob〉 would be identically zero for any
b ∈ {1, . . . ,2n − 2s} if the enlarged identity error operator
belonged to the error model. Unfortunately, this is not our
case. Nevertheless, it turns out that

〈ı̄L|ob〉 ≈ γ 〈ı̄L|T ′|ob〉, (D14)

where the operator T ′ acting on n-qubit quantum states is
defined as

T ′ def= T 1 ⊗ I 2 ⊗ · · · ⊗ I n−1 ⊗ I n

+ I 1 ⊗ T 2 ⊗ · · · ⊗ I n−1 ⊗ I n

+ I 1 ⊗ I 2 ⊗ · · · ⊗ I n−1 ⊗ T n, (D15)

with

T k def= 1
4

(
I k − σ k

z

)
. (D16)

Substituting Eq. (D14) into Eq. (D13), we get

〈ı̄L|ÔA′
ā|ı̄L〉 ≈ γ

2n−2s∑
b=1

〈ı̄L|T ′|ob〉〈ob|A′
ā|ı̄L〉. (D17)

We remark that both |ı̄L〉 and T ′ are γ -independent quantities
while the states |ob〉 are the sum-decomposition of n-qubit
quantum states where γ -dependent expansion coefficients
may appear. However, as we have noticed from our explicit
construction in the previous Appendix, these coefficients
do not exhibit nontrivial γ dependence in the limit of γ

approaching zero. Therefore, terms like 〈ı̄L|T ′|ob〉 do not

possess relevant scaling laws in the damping probability
parameter γ approaching zero. On the contrary, terms like
〈ob|A′

ā|ı̄L〉 do exhibit important γ -scaling laws,

〈ob|A′
ā|ı̄L〉 ≈ γ

wt(A′̄a )
2 〈ob|Ã′

ā|ı̄L〉, (D18)

where wt(A′
ā) denotes the weight of the operator A′

ā and
〈ob|Ã′

ā|ı̄L〉 is redefined in such a manner to have no relevant γ

dependence. Substituting Eqs. (D17) and (D18) into Eq. (D11),
we finally obtain

FÔ (γ,ε) � 22n

K
γ 2+wt(A′

ā)

∣∣∣∣∣
2n−2s∑
b=1

〈ı̄L|T ′|ob〉〈ob|Ã′
ā|ı̄L〉

∣∣∣∣∣
2

.

(D19)

From Eq. (D19), we conclude that while FÔ(γ,ε) could be, in
principle, nonvanishing and contribute to the computation of
the entanglement fidelity F (γ,ε), its contribution is negligible
given the order of approximations chosen for our analytic
estimates.

In what follows, we report a more explicit example. For
the sake of reasoning, consider the CSS seven-qubit code
and AD errors. Does any weight-2 enlarged error operator
contribute to the computation of the entanglement fidelity?
In general, errors Al for which no corresponding recovery
operator RAl

is constructed can contribute to the computation
of the entanglement fidelity via the expression given by

F [[7,1,3]]
Ô

(γ )
def= 1

4

∑
l,k

[〈0L|vk〉〈vk|Al|0L〉

+ 〈1L|vk〉〈vk|Al|1L〉]2, (D20)

where the operator Ô reads

Ô
def=
∑

k

|vk〉〈vk|. (D21)

We notice that state vectors {|vk〉} in Eq. (D20) lead to
nonvanishing contributions provided that (i) |vk〉 has some
nonzero component along |0L〉 and/or |1L〉; (ii) |vk〉 has
some nonzero component along Al |0L〉 and/or Al |1L〉;
(iii) {|vk〉,Acorrectable

l |iL〉} forms an orthonormal basis of H7
2.

Before proceeding along this line of reasoning, we would
like to emphasize that we could have proceeded along a

alternative route. Observe that D
def= dimCH7

2 = 27 = 128.
Furthermore, the cardinality c′ of the set S ′ of linearly
independent and orthogonal vectors in the sum decomposition
of the correctable weight-0 and weight-1 enlarged errors is
given by

c′ def= 2×
(

7
0

)
× 8+ 2×

(
7
1

)
× 4 = 72. (D22)

Therefore, there also exists a new set S ′′ that consists of c′′ def=
D − c′ = 56 linearly independent and orthogonal vectors such
that vectors in S ′ and S ′′ form an orthonormal basis of H7

2. If
any of these 56 vectors is in the vector sum-decomposition
of any of the (7

2) = 21 weight-2 errors, then some weight-2
error could contribute to the entanglement fidelity provided
that the selected vector in S ′′ has some nonzero component
along |0L〉 and/or |1L〉 [see Eq. (D20)]. We checked that all
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the 2× (7
2)× 2 = 84 state vectors in the sum decomposition

of Al |iL〉 with Al any weight-2 error operator are orthogonal
to |iL〉 with i ∈ {0,1}. Therefore, we cannot take this shortcut
and are forced to proceed in a more general manner. As a
consequence, constructing these vectors |vk〉 is going to be
more involved, since we wish to provide a constructive expla-
nation avoiding numerics that could obscure the construction
itself.

Let us then return to the more general approach. For the
sake of clarity, fucus on the possible partial recovery of the
weight-2 error A1100000. This error is not correctable because
it is incompatible with the weight-1 error A0010000. Having
observed this and recalling the three conditions for good state
vectors {|vk〉}, it turns out that a suitable vector |vk̄〉 in the
definition of Ô so that |vk̄〉〈vk̄| can partially recover A1100000

reads

|vk̄〉 def= |0000110〉 − |1100000〉 + |0110011〉 − (1− γ )2 |0000000〉√
3+ (1− γ )4

. (D23)

This contribution of A1100000 to the computation of the entanglement fidelity becomes

F [[7,1,3]]
|vk̄〉〈vk̄ | (γ )

def= 1

4
(〈0L|vk̄〉〈vk̄|A1100000|0L〉)2 = 1

32

[
1− (1− γ )2√
3+ (1− γ )4

× γ (1− γ )√
3+ (1− γ )4

]2

≈ γ 4. (D24)

From Eq. (D24), we conclude that although A1100000 contributes to the computation of the entanglement fidelity, its contribution
is negligible given our chosen order of approximation. Analogously, for each weight-2 enlarged error operator, a similar line of
reasoning can be carried out.

APPENDIX E: ON THE CSS SEVEN-QUBIT CODE

For ε = 0, the nontruncated expression for the entangle-
ment fidelity reads

F [[7,1,3]]
nontruncated (γ )

def= 1

4

⎡
⎣
√

1+ 7 (1− γ )4

8
+
√

(1− γ )7 + 7 (1− γ )3

8

⎤
⎦

2

+7

4

⎡
⎣
√

4γ (1− γ )3

8
+
√

γ (1− γ )6 + 3γ (1− γ )2

8

⎤
⎦

2

.

(E1)
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FIG. 7. Performance of the CSS seven-qubit code. The non-
truncated expression of the entanglement fidelity F (γ ) vs the AD
parameter γ in the presence (thin solid line) and absence (dashed
line) of QEC.

The Taylor expansion of F [[7,1,3]] (γ ) up to the tenth order is
given by

F [[7,1,3]]
nontruncated (γ ) ≈ 1− 21

4 γ 2 + 35
4 γ 3 − 63

8 γ 4 + 609
128γ 5 − 315

256γ 6

− 51
256γ 7 − 63

256γ 8 + 1701
8192γ 9 +O(γ 10),

(E2)

while the 1-qubit baseline performance is given by

F1-qubit
baseline (γ )

def= 2−2(1+
√

1− γ )2. (E3)

We checked the good overlap between our results (nontrun-
cated fidelity expressions with and without error correction)
and the ones plotted in [12]. See also Fig. 7.
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FIG. 8. Performance of the Shor nine-qubit code. The nontrun-
cated expression of the entanglement fidelity F (γ ) vs the AD
parameter γ in the presence (thin solid line) and absence (dashed
line) of QEC.
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APPENDIX F: ON THE SHOR NINE-QUBIT CODE

For ε = 0, the nontruncated expression for the entangle-
ment fidelity reads

F [[9,1,3]]
nontruncated (γ )

def= 1− 3
2γ 3 − 135

8 γ 4 + 513
8 γ 5 − 201

2 γ 6

+ 675
8 γ 7 − 297

8 γ 8 + 53
8 γ 9, (F1)

while the 1-qubit baseline performance is given by

F1-qubit
baseline (γ )

def= 2−2(1+
√

1− γ )2. (F2)

We checked the good overlap between our results (nontrun-
cated fidelity expressions with and without error correction)
and the ones plotted in [8]. See also Fig. 8.
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