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Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation
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We propose a scheme for continuous-variable quantum key distribution (CV-QKD) using the subcarrier
multiplexing technique which was employed in microwave photonics. This scheme allows distribution of N

channels with independent Gaussian-modulated CV-QKD in parallel with one laser source and several phase
modulators. We analyze the influence of nonlinear signal mixing and security in the asymptotic limit. Results
indicate that by using this multiplexing technique, each channel will have a non-Gaussian extra source noise,
resulting in slight shortening of the maximum transmission distance, while the total secret key rate can be
considerably increased. This scheme could also be used for key distribution for multiple users, and combined
with wavelength division multiplexing devices it has potential to be used for construction of a CV-QKD network.
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I. INTRODUCTION

Quantum key distribution (QKD), a major practical appli-
cation of quantum information, allows two distant parties to
share a common secret key for cryptography in an untrusted
environment [1–3]. Its security is guaranteed by the laws of
quantum mechanics. Continuous-variable QKD, an alternative
to single-photon-based discrete-variable quantum key distri-
bution (DV-QKD), encodes information on the quadratures
of a Gaussian state [4]. Any eavesdropping will introduce
extra noise between two legal communication parties, who
can realize Eve’s existence by detecting the excess noise.

The Gaussian-modulated CV-QKD protocols, which have
been experimentally demonstrated both in laboratory [5–8]
and field [9] tests, are proven to be secure against collec-
tive attacks [10,11] and coherent attacks [12,13]. They use
homodyne detectors instead of the single-photon counters
employed in DV-QKD systems, and are more attractive from
a practical point of view. By using multidimensional reverse
reconciliation [14,15], the secure transmission distance can be
extended to as long as 80 km [8].

Most of the existing CV-QKD systems are pulsed systems
and the secret key bit rate R can be expressed as R = frepK ,
where frep denotes the pulse repetition rate and K is the
secret key rate (bit per pulse). Compared with classical
communication systems, the secret key bit rate of CV-QKD is
still low, ranging from several bits/s to hundreds of kbits/s at
the distance of more than 25 km [6–9]. There are three possible
approaches to solve this problem. The first one is to improve
the secret key rate K , which is a diminishing function of the
transmission distance and sensitive to the excess noise, so at
long transmission distance the secret key rate is much smaller
than 10−3 bit per pulse. The second approach is to increase the
frequency of pulse repetition rate, which requires faster data
acquisition cards, wider bandwidth of quantum detectors, and
higher postprocessing speed.

The third approach is to use the multiplexing technique,
which allows delivery of N independent secret keys in a single
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fiber. This method was initially realized by using wavelength
division multiplexing (WDM) devices, which need N coherent
laser sources with different central frequencies, and each
channel needs individual amplitude and phase modulators. The
WDM scheme can be deemed as just a combination of sev-
eral independent QKD systems. Interestingly, the subcarrier
multiplexing technique, which was employed in the field of
microwave photonics and the radio-on-fiber (ROF) systems,
has been proven useful in the BB84 protocol recently [16–18].
In their scheme, the sender Alice randomly encodes one of the
discrete phases {0,π/2,π,3π/2} on several radio-frequency
(rf) oscillators and the receiver Bob decodes them by using
oscillators of frequencies identical to Alice’s. This method
requires a frequency-locking module between two distant
parties, which may increase the complexity of the whole
system.

Inspired by this method, we propose a scheme to employ the
subcarrier multiplexing technique in the Gaussian-modulated
CV-QKD protocol. Unlike in Ref. [18], each rf oscillator is
modulated with continuous phase and amplitude information,
while the system does not require frequency locking. In our
proposal, the subcarrier frequencies are evenly separated.
We consider the influence of nonlinear signal mixing and
analyze the security against collective attacks. The results
are attractive. The Gaussian modulation of each channel will
introduce non-Gaussian extra noise, which is generated from
the continuous information modulated on other channels. This
extra noise is proportional to Alice’s modulation variance and
cannot be neglected.

We evaluate the secret key bit rate in the asymptotic limit for
both each channel and the whole system. Results indicate that
the extra source noise will slightly reduce of the maximum
transmission distance, while the total secret key rate can be
considerably increased. Also each channel could generate
independent secret keys at the same time, meaning the key
distribution in the multichannel system is parallel. This scheme
could be used to distribute keys to multiple users. Combined
with current WDM technique, the multichannel scheme has
the potential to be used to construct a CV-QKD network.

This paper is structured as follows. In Sec. II, a brief review
of the Gaussian protocol is given. In Sec. III, we describes the
principle of the multichannel scheme. In Sec. IV, the effect of
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nonlinear signal mixing is studied to derive the expression of
the extra source noise due to intermodulaton. We construct the
entanglement-based scheme in Sec. V and use it to analyze
the security under collective attacks. The results of numerical
simulation are discussed in Sec.VI and conclusions are drawn
in Sec.VIII.

II. BRIEF REVIEW OF THE GAUSSIAN PROTOCOL

The Gaussian CV-QKD protocols are based on the Gaussian
modulation of a Gaussian state of light, which could be
coherent state [4], squeezed state [19], or thermal state [20].
From a practical point of view, the most suitable protocol
for experimental demonstration is the Gaussian-modulated
coherent state (GMCS) quantum cryptography protocol, which
was proposed by Grosshans and Grangier in 2002 [4].
The GMCS protocol requires two independent Gaussian-
distributed modulations with the identical variance VA on
the x and p quadratures of a coherent state. Expressed in
terms of phase and amplitude, the distribution corresponds to
a uniform modulation of the phase in [0,2π ] and a Rayleigh
distribution of amplitude with the probability density function
Ra(σ = √

VA), where

z ∼ Ra(σ ) = z

σ 2
e
− z2

2σ2 . (1)

Alice’s modulated states are sent to Bob through the
quantum channel. The quantum channel is described by the
transmission efficiency T and excess noise ε, resulting in a
noise variance of 1 + T ε at Bob’s input. Unlike the DV-QKD

protocol, the GMCS protocol requires a strong local oscillator
(LO). In order to ensure that the LO and signal light have
identical modes, both the LO and signal light are generated by
Alice using an unbalanced beam splitter (BS) from the same
pulsed coherent laser. Then Alice applies time multiplexing
and polarization multiplexing techniques to let the LO and
signal propagate in the same fiber.

When Bob receives the states, he first uses the demultiplex-
ing devices to separate the LO and quantum signal. Then he
performs homodyne detection, randomly measuring the x or p

quadrature. To measure the quadrature p, he dephases the local
oscillator by π/2. Then Alice and Bob perform classical data
processing, including reconciliation and privacy amplification,
and finally share the common secret keys from the accumulated
data.

III. DESCRIPTION OF THE MULTICHANNEL SCHEME

The operation principle of the multichannel scheme is
shown in Fig. 1. Alice uses a beam splitter (BS) to separate the
coherent pulsed laser source centered at ω0 into two beams:
One is weaker and the other is stronger. The weaker beam is
prepared for generating quantum signals while the stronger
beams is used for local oscillators (LO). The optical field is
assumed to be quasimonochrimatic; i.e., the spectral width �ω

of the pulse spectrum is much smaller than its central frequency
ω0. This assumption is always satisfied when the pulse width is
larger than 0.4 ps [21]. The quantized single-mode electric field
Ê(t) of the signal light before modulation can be expressed as
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FIG. 1. (Color online) System layout of the multichannel parallel CV-QKD scheme. The signal light is in red (gray) solid line and the local
oscillator light is in red (gray) dashed line.
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Ê(t) = Ê+(t) + Ê−(t), where

Ê+(t) = i

√
�ω0

2ε0V0
â(0)e−iω0t (2)

and Ê−(t) = [Ê+(t)]†. ε0 is the dielectric permittivity and V0

denotes the mode volume. i is the imaginary unit. E+(t) and
E−(t) denote the positive-frequency and negative-frequency
components of the quantized electric field, respectively. â(0)
is the dimensionless complex amplitude operator, which can
decomposed by two quadratures as â(0) = X̂ + iP̂ . Since
Ê+(t) and Ê−(t) are conjugated, we need to consider only
the positive-frequency component in following discussions,
while the identical results could be obtained from the negative
one by similar methods.

Signal light is externally modulated through a phase
modulator (PM1) by N radio-frequency (rf) subcarriers. Each
subcarrier, which is generated from a voltage control oscillator
(VCO) of frequency �k,k ∈ {1,2, . . . ,N}, is independently
amplitude modulated by a Rayleigh distributed random
number Vk and phase modulated by a uniform distributed
random number φk ∈ [0,2π ]. All the modulated rf signals are
combined together with a bias voltage Vb. Then the voltage
applied on PM1 is expressed as

VS(t) = −
N∑

k=1

Vk cos(�kt + φk) − Vb. (3)

After Alice’s phase modulation, the positive-frequency com-
ponent turns to

Ê+
S (t) = Ê+(t) exp

[
− iπV (t)

Vπ

]

= Ê+(t)eiθb exp

[
i

N∑
k=1

mk cos(�kt + φk)

]
, (4)

where mk = Vkπ/Vπ , θb = Vbπ/Vπ . Vπ is the half-wave
voltage of the phase modulator. This equation can be written
as Taylor expansion with following form:

Ê+
S (t) = Ê+(t)eiθb

+∞∑
n=0

in

n!

[
N∑

k=1

mk cos(�kt + φk)

]n

∼= Ê+(t)eiθb

⎡⎢⎢⎢⎣1 + i

2

N∑
k = −N

k �= 0

mke
−i(�kt+φk )

+ i2

8

N∑
r,s = −N

r,s �= 0

mrmse
−i[(�r+�s )t+φr+φs ]

⎤⎥⎥⎥⎦ , (5)

where we define m−k = mk , �−k = −�k and φ−k = −φk for
any integer |k| ∈ {1, . . . ,N}. Here we use the second-order
Taylor expansion because when mk is small enough, e.g., mk �
0.02, the effect of higher-order terms is negligible [17]. Then
the signal field at frequency ω0 + �k is

Ê+
S |ω0+�k

(t) = 1
2 Ê+(t)e−i�kt+iθbCk, (6)

where

Ck = imke
−iφk + i2

4

N∑
r,s = −N

r,s �= 0
�r + �s = �k

mrmse
−i(φr+φs ). (7)

We can rewrite the expression of Ê+
S |ω0+�k

in a form similar
to that of Eq. (2):

Ê+
S |ω0+�k

(t) =
√

�(ω0 + �k)

2ε0V
âk(0)e−i(ω0+�k ), (8)

where âk(0) = XS(k) + iPS(k) is a new dimensionless complex
amplitude operator of mode ω0 + �k and can be expressed as

âk(0) = 1

2

√
ω0 + �k

ω0
Cke

iθb â(0) ∼= 1

2
Cke

−iθb â(0). (9)

If we adjust the bias phase θb to − arg[α̂(0)] − π/2, then
the X quadrature of âk(0) becomes

XS(k) = α0

2
mk cos(−φk) + α0

8

N∑
r,s = −N

r,s �= 0
�r + �s = �k

mrms sin(φr + φs),

(10)

where α0 denotes the norm of â(0). The expression of PS(k) can
be obtained by interchanging the sin(·) and cos(·) functions
in Eq. (10). The compound signal then passes through an
optical filter, which blocks all the subcarriers below the
frequency ω0. This is because the subcarrier phase modulation
in PM1 encodes the same information (mk and φk) on both
the subcarriers centered at ω0 + �k and ω0 − �k , while we
use only the positive-frequency components for quantum key
distribution.

The local oscillator (LO) light can also be generated in a
way similar to the signal light. The difference is that the voltage
applied on the LO’s modulator does not contain randomly
modulated information. Therefore the modulation voltage of
LO can be written as

VLO(t) = −VL

N∑
k=1

cos(�kt) − V ′
b, (11)

where VL is the amplitude voltage of each RF component
and V ′

b is the bias voltage. Since LO is usually much larger
(typically 106–108 times) than the quantum signal, it can be
deemed as a classical optical field El(t) = E0e

−iω0t . So the
LO light after modulator PM2 is

ELO(t) ∼= El(t)e
iψb

⎡⎢⎢⎢⎣1 + imL

2

N∑
k = −N

k �= 0

e−i�kt

+ i2m2
L

8

N∑
r,s = −N

r,s �= 0

e−i(�r+�s )t

⎤⎥⎥⎥⎦ , (12)
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where mL = VLπ/Vπ and ψb = V ′
bπ/Vπ . If bias phase ψb is

adjust to −π/2, then the local oscillator light at frequency
ω0 + �k is

ELO|ω0+�k
(t) = 1

2E0e
−i(ω0+�k)tDk, (13)

in which the parameter Dk is

Dk = mL + i

4
M2(N,k)m2

L, (14)

where M2(N,k) is the numbers of terms satisfying �r +
�s = �k,(|r|,|s| ∈ {1, . . . ,N}). The values of M2(N,k) can
be calculated by enumeration method. We also derive the
analytical expression of M2(N,k) as

M2(N,k) = 2N − k − 3
2 − 1

2 (−1)k. (15)

For given total channel numbers N , M2(N,k) satisfies the
following inequation:

N − 2 � M2(N,k) � 2N − 2. (16)

When mL � 0.01 and N � 40, the impact introduced by
nonlinear signal mixing on |Dk| is less than 1.5%, which
could be neglected. Therefore the LO field of each channel has
the constant value ELO|ω0+�k

= 1
2E0mLe−i(ω0+�k )t as shown

in Fig. 1. In order to reduce the effect of scattering and
nonlinearity in the fiber, the LO power should not be high
enough. As the signal light, the LO is also filtered the
subcarriers below ω0. Then the compound signal light and LO
light are polarization multiplexed into the quantum channel
and transmitted to Bob.

After receiving the states sent by Alice, Bob first separates
the compound signal and LO by using a polarization beam
splitter (PBS). Then he uses an erbium-doped optical fiber
amplifier (EDFA) to amplify the LO to a considerable power
and randomly phases the LO by {0,π/2} to select the
measurement basis. The random basis choosing procedure is
determined by a binary random number generator, and Bob
holds its result as RB . He then uses two arrayed-waveguide
gratings (AWG) to filter out each subcarrier and performs
balanced homodyne detection on each pairs of signal and
LO (both are centered at frequency ω0 + �k). Finally, Alice
and Bob perform classical data processing, including reverse
reconciliation and privacy amplification. After these stages,
they share N channel-independent secret keys and the key
distribution is completed.

In this paper, we consider three different frequency spacing
plans: the low plan (N = 5) with evenly spaced (e.g., �k =
k�1) channels from 5 to 25 GHz, the medium plan (N = 15)
with evenly spaced channels from 2 to 30 GHz, and the high
plan (N = 40) with evenly spaced channels from 1 to 40 GHz.
From a practical point of view, 40-GHz phase modulators are
currently commercially available and ultra-narrow-band AWG
devices with 1-GHz channel spacing have been experimentally
demonstrated [22]. So it is reasonable for us to consider these
cases.

IV. EXTRA SOURCE NOISE DUE TO INTERMODULATION

According to Eq. (10), the expression of XS(k) can be written
as two parts:

XS(k) = XA(k) + �X(k), (17)

where

XA(k) = α0

2
mk cos(−φk),

(18)

�X(k) = α0

8

N∑
r,s = −N

r,s �= 0
�r + �s = �k

mrms sin(φr + φs).

Since mk follows a Rayleigh distribution R(σ ) and φk follows
a uniform distribution in [0,2π ], XA(k) follows the Gaussian
distribution N (0,σα0/2), which is identical to the modulation
in Gaussian CV-QKD protocol. The second part, �X(k), can
be seen as a modulation noise. Notice that

mrms sin(φr + φs) = xrps + prxs, (19)

where xr = mr cos φr , pr = mr sin φr , xs = ms cos φs , and
ps = ms sin φs . For different r and s, the random variables xr ,
pr , xs , and ps are mutually independent and follow the same
Gaussian distribution N (0,σ ). Hence the probability density
function of xrps (also for xspr ) is given by [23]

f (z) =
∫ +∞

−∞

∫ +∞

−∞

e
− x2

2σ2

σ
√

2π

e
− y2

2σ2

σ
√

2π
δ(xy − z)dxdy

= 1

πσ 2
K0

( |z|
σ 2

)
, (20)

where K0(·) is the zero-order modified Bessel function of
the second kind and δ(·) is the δ function. The mean values
of the products are 〈xrps〉 = 〈xspr〉 = 0 while the variances
are 〈(xrps)2〉 = 〈(xspr )2〉 = σ 4. So the variance of the term
mrms sin(φr + φs) is

〈(mrms sin(φr + φs))
2〉 =

{
2σ 2 for r �= s,

4σ 2 for r = s.
(21)

As shown in Sec. II, the total number of combinations
satisfying �s + �r = �k is M2(N,k). For an odd integer k,
the combination 2�s = �k does not exist, so �k can only be
decomposed by the combinations of �r + �s,r �= s. Since �r

and �s are commutable, the term mrms sin(φr + φs) exists
twice. Therefore 〈�X(k)〉 = 0 and the variance of �X can be
expressed as〈

�X2
(k)

〉 = α2
0

64

[
M2(N,k)

2
× 4 × 2σ 4

]
= α2

0

16
M2(N,k)σ 4.

(22)

When k is an even integer, there is one combination 2�s = �k .
So in this case 〈�X2

S(k)〉 becomes

〈
�X2

(k)

〉 = α2
0

64

[
M2(N,k) − 1

2
× 4 × 2σ 4 + 4σ 4

]
= α2

0

16
M2(N,k)σ 4, (23)

which is identical with the case of odd k. The variance of
�P(k) can be derived in a similar way. We assign the variance
of XA(k) as VA = α2

0σ
2/4. Since mk ∼ Ra(σ ), the mean value

of mk should be mk = σ
√

π/2. Then the variance of �X(k)
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FIG. 2. (Color online) Source noise to modulation variance ratio
εS(k)/VA in terms of the channel index k. The total channel number is
N = 40 and the mean value of mk is 0.01.

and �P(k) can be expressed in terms of mk and VA as

εS(k) �
〈
�X2

(k)

〉 = 〈
�P 2

(k)

〉 = 1

2π
M2(N,k)m2

kVA, (24)

and finally we get〈
X2

S(k)

〉 = 〈
P 2

S(k)

〉 = VA + εS(k), (25)

where εS(k) is the noise variance due to intermodulation defined
in Eq. (24). From a physical point of view, the generation of
εS(k) is the result of the nonlinear mixing between different
modulated rf signals. As shown in Eqs. (3) and (4), although
the rf voltages are combined linearly, phase modulation is not
a linear process. Therefore the quadratures of a certain channel
will be affected by the nonlinear mixing from other channels.
In addition, since the modulated information of each channel
is independent, the extra source noise is also independent of
the Gaussian modulation of each channel. Hence it could be
treated as a noise term in our analysis.

Figure 2 shows the ratio εS(k)/VA in terms of the channel
index k when N = 40. We find that the first channel (k = 1) has
the maximum value of 0.001 24 while the last channel (k = N )
has the minimum one of 0.0006. Other channels are placed
between the first and last cases. When N is large, e.g., N = 40,
the maximal value of εS(k)/VA is approximately double that of
the minimal one.

Notice that although each quadrature of VA follows a
Gaussian distribution, εS(k) is not a Gaussian noise. This
situation is different from previous studies about the source
noise, which was assuming to be Gaussian [24,25]. According
to Eq. (24), since the extra source noise is proportional to
VA, it cannot be suppressed by increasing the variance of the
modulation and then attenuating the state, so this noise must
be taken into account in both theoretical analysis and actual
experiments.

V. SECURITY OF THE MULTICHANNEL SCHEME

A. Entanglement-based scheme

In the preparation and measurement scheme of the kth
channel,

X(k) = XA(k) + �X(k) + δX(k),
(26)

P(k) = PA(k) + �P(k) + δP(k),
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FIG. 3. (Color online) The entanglement-based scheme of the
kth channel. Fred is assumed to be a neutral party and Eve cannot
benefit from either Fred’s information or the imperfections of Bob’s
homodyne detector.

where δX(k) and δP(k) originate from shot noise and satisfy the
relation 〈δX2

(k)〉 = 〈δP 2
(k)〉 = 1 (in shot noise unit). XA(k) and

PA(k) are Alice’s modulated random numbers and satisfy the
Gaussian distribution that N (0,VA). �X(k) and �P(k) are the
added non-Gaussian noise with variance εS(k). The variances
of X(k) and P(k) are〈

X2
(k)

〉 = 〈
P 2

(k)

〉 = VA + 1 + εS(k), (27)

and the conditional variances VX(k)|XA(k) and VP(k)|PA(k) are [26]

VX(k)|XA(k) = 〈
X2

(k)

〉 − 〈X(k)XA(k)〉2〈
X2

A(k)

〉 = 1 + εS(k)

(28)

VP(k)|PA(k) = 〈
P 2

(k)

〉 − 〈P(k)PA(k)〉2〈
P 2

A(k)

〉 = 1 + εS(k).

In the equivalent entanglement-based scheme, which is
shown in Fig. 3(b), Fred generates a pure three-mode entan-
glement state |
ABF (k)〉 satisfying trF (|
ABF (k)〉〈
ABF (k)|) =
ρAB0(k). The quadratures (X(k),P(k)) denote the state sent to
Bob, and (X′

(k),P
′
(k)) denote the state kept by Alice. Here we

assume that (X(k),P(k)) and (X′
(k),P

′
(k)) satisfy the following

relations:〈
X′2

(k)

〉 = 〈
P ′2

(k)

〉 = V,
〈
X2

(k)

〉 = 〈
P 2

(k)

〉 = V + εS(k), (29)

where V = VA + 1. According to the uncertainty relation [26],
we have

|〈X(k)X
′
(k)〉2| � V (V + εS(k)) − V

V + εS(k)
. (30)

Since the three-party system Alice-Bob-Fred (ABF) may not
be maximally entangled, the correlation between modes A and
B0 may not saturate the limit in Eq. (30), so it can be reasonably
assumed that

〈X(k)X
′
(k)〉 =

√
V 2 − 1, 〈P(k)P

′
(k)〉 = −

√
V 2 − 1. (31)
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In the entanglement-based (E-B) scheme, when Alice takes a
heterodyne detection on X′

(k) and P ′
(k) simultaneously, the

measurement values can be expressed as X′
A(k) = X′

(k) −
δX′

A(k) and P ′
A(k) = P ′

(k) − δP ′
A(k), where 〈(δX′

A(k))2〉 =
〈(δP ′

A(k))2〉 = 1. Alice’s best estimation of (X′
(k),P

′
(k)) is

denoted by (XA(k),PA(k)), which satisfies [26]

XA(k) =
√

V − 1

V + 1
X′

A(k), PA(k) = −
√

V − 1

V + 1
P ′

A(k), (32)

and finally we have 〈X2
A(k)〉 = 〈P 2

A(k)〉 = VA and VX(k)|XA(k) =
VP(k)|PA(k) = 1 + εS(k), which has the identical results as in
the prepare-and-measurement (P-M) scheme. If we hide the
entanglement source and Alice’s detection in a black box, the
eavesdropper cannot distinguish which scheme is applied, so
we can conclude that this E-B scheme is equivalent to the P-M
scheme.

In the P-M scheme, Bob’s imperfect detector is featured
by a detection efficiency η and the electric noise variance vel .
We could define an added noise χh that refers to Bob’s input
as χh = (1 − η + vel)/η. In the E-B scheme, it is modeled
by a beam splitter with transmission of η coupled with an
Einstein-Podolsky-Rosen (EPR) state of variance v. So in the
E-B scheme, the added noise referred to as Bob’s input is (1 −
η)v/η. To make the detection-added noise equal, the variance
v should be chosen as v = (1 − η + vel)/(1 − η).

B. Security against collective attacks

In this section, we consider the security of the multichannel
CV-QKD protocol with reverse reconciliation. According
to the fact that coherent attacks are the most powerful
eavesdropping attacks and are not more efficient than collective
attacks [10,11], we will analyze the security against collective
attacks.

Since the quadrature information of each channel is
independent, we assume Eve’s attacks of every channel are
also independent of others. Fred is supposed to be a neutral
party which can not be controlled by the eavesdropper [27].
This situation implies that both Alice and Eve cannot benefit
from the information kept by Fred. Then the secret key rate
(bit/pulse) of the kth channel is expressed as

K(k) = βIAB − SBE, (33)

where β is the efficiency of reverse reconciliation assumed
to be constant for each channel. IAB, which represents the
Shannon mutual information between Alice and Bob, can be
derived from Bob’s measured variance VB2 and the conditional
variance VB2|A as

IAB = 1

2
log2

VB2(k)

VB2|A
= 1

2
log2

V + εS(k) + χtot

1 + εS(k) + χtot
, (34)

where χtot = χline + χh/T and χline = 1/T − 1. T is the
transmission efficiency of the quantum channel and can be
evaluated by the transmission distance L by T = 10−0.02L.
Eve’s information on Bob’s measurement is given by the
Holevo bound [28]:

SBE = S(ρE) − S(ρE|B=b), (35)

where S(·) denotes the von Neumann entropy and b represents
the measurement result of Bob. Here we consider Alice and

Fred together as a larger state A′. Since the fact that Eve has the
ability to purify the system A′B, we have S(ρE) = S(ρA′B).
After Bob’s measurement, the global pure state collapses to
ρA′EGH|b, so S(ρE|b) = S(ρA′GH|b). Notice that the state ρA′GH|b
is determined by state ρA′B [24]. According to the optimality of
Gaussian attacks [10,11], SBE reaches its maximum when the
state ρA′B(i.e. ρFAB) is Gaussian. Then the Eve’s information
can be bounded by

SBE � SG
BE = S

(
ρG

FAB

) − S
(
ρG

FAGH|b
)
, (36)

where ρG
FAB is a Gaussian state with the covariance matrix [27]

γ G
FAB =

⎡⎢⎣F11 F12 F13

F21 V I2

√
T (V 2 − 1)σz

F31

√
T (V 2 − 1)σz T (V + εS(k) + χline)I2

⎤⎥⎦ ,

(37)

which is identical to the covariance matrix of ρFAB. I2 = [1 0
0 1]

and σz = [1 0
0 −1]. Fm,n represents the unknown 2 × 2 matrix

describing either F or its correlations with AB. Although the
entropy of ρG

FAB can not be calculated directly, there exists
another Gaussian state ρ ′G

FAB with the covariance matrix γ ′G
FAB

γ ′G
FAB =

⎡⎢⎣I2 0 0

0 V ′I2

√
T (V ′2 − 1)σz

0
√

T (V ′2 − 1)σz T (V ′ + χline)I2

⎤⎥⎦ ,

(38)

where V ′ = V + εS(k). The reduced state ρ ′G
B = trFA(ρ ′G

FAB) is
identical to the reduced state ρG

B = trFA(ρG
FAB); therefore ρG

FAB
can be changed to ρ ′G

FAB through a unitary transformation
UFA [29]. Then we have S(ρ ′G

FAB) = S(ρG
FAB). Similarly, the

conditional state ρG
FAGH|b can be transformed into the ρ ′G

FAGH|b
through UFA, then S(ρ ′G

FAGH|b) = S(ρG
FAGH|b). Therefore we have

SBE � SG
BE = S

(
ρ ′G

FAB

) − S
(
ρ ′G

FAGH|b
)
, (39)

and the lower bound K̃(k) of the secret key rate can be expressed
as

K̃(k) = βIAB − SG
BE,

= βIAB −
3∑

j=1

G

(
λj − 1

2

)
+

7∑
j=4

G

(
λj − 1

2

)
, (40)

where G(x) = (x + 1) log2(x + 1) − x log2 x. The first three
sympletic eigenvalues λ1,2,3 � 1, which are derived from the
covariance matrix γ ′G

FAB, can be expressed as

λ2
1,2 = 1

2 (A ±
√

A2 − 4B), λ3 = 1, (41)

where

A = (V + εS(k))
2 − 2T [(V + εS(k))

2 − 1]

+ T 2(V + εS(k) + χline)2

B = T 2[1 + (V + εS(k))χline]2. (42)
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The symplectic eigenvalues λ4,5,6,7 � 1 can be obtained from
the covariance matrix γ ′G

FAGH|b and have the following form:

λ2
4,5 = 1

2 (C ±
√

C2 − 4D), λ6,7 = 1, (43)

where

C = Aχh + (V + εS(k))
√

B + T (V + εS(k) + χline)

T (V + εS(k) + χline) + χh

(44)

D =
√

B(V + εS(k)) + Bχh

T (V + εS(k) + χline) + χh

,

where A and B are given in Eq. (42). Based on
Eqs. (41), (42), (43), and (44), we can calculate the asymptotic
lower bound of the secret key rate in Eq. (40) against collective
attacks.

VI. SIMULATION AND DISCUSSION

For a given total channel number N , the bit rate of the secret
key of the kth channel is given as

R(k) = frepK̃(k), (45)

where K̃(k) is the secret key bit per pulse and can be evaluated
using Eq. (33). We assume the system repetition rate frep,
quantum efficiency η, and the electronic noise of homodyne
detector vel as frep = 1 MHz, η = 0.552, and vel = 0.015,
corresponding to the typical experimental parameters [8].
The excess noise ε is assumed to be ε = 0.02, which is
a conservative value [6]. The reverse reconciliation is set
to β = 0.93, which is an achievable value with existing
techniques [15]. We choose VA = 10 as the modulation
variance at Alice’s side.

According Fig. 2, since the first and last channels have the
maximal and minimal extra source noise, we need to evaluate
only the secret key of these two channels while the other
channels are placed between them. Figure 4 shows the secret
key bit rate for the first (k = 1) and last (k = N ) channels in
cases of N = 5,15, and 40. For each case, the k = N channel
always performs best among all the channels in both secret key
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FIG. 4. (Color online) The secret key bit rate R(k) as a function
of transmission distance L of the first and last channels. Curves from
left to right are (N,k) = (40,1), (40,40), (15,1), (15,15), (5,1), (5,5),
and the single-channel case.
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FIG. 5. (Color online) Source noise to modulation variance ratio
εS(k)/VA in terms of mk of the first channel (k = 1) and the last
channel (k = N ). Curves from top to bottom represent (N,k) =
(40,1), (40,40), (15,1), (15,15), (5,1), and (5,5), respectively.

rate and the maximum transmission distance while the k = 1
channel performs the worst. This is because the extra source
noise introduced by intermodulation is a decreasing function
of the channel index k as shown in Fig. 2 and an increasing
function of the total channel number N as shown in Fig. 5. Due
to the extra source noise, the maximum transmission distance
and the secret key rate of the subcarrier channels are smaller
than single-channel CV-QKD.

The total secret key bit rate can be defined as a sum of key
rate of each channel

Rtot =
N∑

k=1

R(k). (46)

Rtot as a function of transmission distance L is demonstrated
in Fig. 6. The total secret key bit rate is considerably increased
with the channel numbers N from 0 to 80 km. Interestingly,
the maximum transmission distance is a decreasing function
in terms of N . We also find that the high-count channel
system (e.g., N = 40) may perform worse than the midcount
and low-count channel systems in certain distance ranges
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FIG. 6. (Color online) The total secret key bit rate Rtot as a
function of transmission distance L in cases of different channel
plans. From top to bottom: N = 40, 15, 5, and the single channel
case.
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(90–110 km). This is mainly due to the fact that Rtot of the
high-count system starts to go down and falls to zero rapidly,
while at this distance the low-count system still has a positive
key rate. With the increase of total channel numbers, the
effect of nonlinear signal mixing between channels becomes
more salient. As a result, more extra source noise will be
introduced when channel number N grows. In the security
analysis model, since the states Alice sent turn noisy, the
maximum secure distance of each channel will be reduced.
Therefore, the performance of both each channel and total
secret bit rate will turn down at longer distance.

In order to estimate the increment on the secret key bit rate
of multichannel protocol, we define the multichannel gain as

GM = Rtot

Rsc

= 1

Rsc

N∑
k=1

R(k), (47)

where Rsc represents the secret key bit rate of a single-
channel CV-QKD with the identical parameters as those in
the multichannel scheme. Figure 7(a) shows the evolution of
GM as a function of the mean value of mk at the distance of L =
50 km. For mk � 0.005, the effect of nonlinear signal mixing
can be neglected and the multichannel gain is almost identical
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FIG. 7. (Color online) The multichannel gain of the system.
Panel (a) is the function of mk at the distance of L = 50 km. Panel (b)
is the function of transmission distance when mk = 0.01. Curves from
top to bottom are N = 40, 15, and 5. Dotted lines act as a reference.
Other parameters: β = 0.93, ε = 0.02, η = 0.552, vel = 0.015, and
VA = 10.

to the number of channels(N ). With the increase of mk , GM

is reduced, so GM � N . Figure 7(b) demonstrates the relation
between GM and the transmission distance L with mk = 0.01.
GM descends rapidly with the increment of L and finally falls
to zero when Rtot reaches its maximum transmission distance.
In short distance ranges (e.g., L � 30 km), the multichannel
system greatly improves the total secret key bit rate with a gain
of about N times.

VII. PRACTICAL CONSIDERATIONS

Now we turn to consider the practical limitations imple-
mented on the ideal scheme. In the previous discussions,
we use ideal arrayed-waveguide gratings (AWGs) as the
optical filters in our theoretical analysis. In practice, the
implementation of our scheme depends on both the bandwidth
of modulator and the resolution of AWG device. Now, 40-GHz
phase modulators are commercially available. The state of the
art in AWGs could have 32 outputs, with 10-GHz channel
spacing, more than −30 dB extinction ratio and −3 dB
attenuation for the central channels [30]. Spacing between
channels could be reduced to 5 GHz by spectral interleaving of
two devices with extra −3 dB attenuation. Ultranarrow AWG
with 1-GHz spacing has been available since 2002 [22] but
has not been commercialized yet. In principle, no fundamental
limitation exists on the attainable channel separation. Thus
future development on AWG technologies would improve its
performance, including narrower spacing, higher extinction
ration, and lower insert loss.

In this paper, our target is to estimate the best improvement
by applying our multichannel scheme, and the improvement
could be seen as the upper bound. However, implementation
imperfections may reduce the improvement, depending on how
defective the devices are. We reconsider the impact on the total
secret key bit rate with the typical imperfective values (e.g.,
−3 dB AWG attenuation and −10 dB extinction ratio). Results
show that although these implementation imperfections will
make the total key rate decreased, our scheme still has positive
improvement. Future improved AWG devices will make the
performance much closer to the ideal estimation, which has
been evaluated in our theoretical analysis.

Besides the optical filters, it is also assumed that the
modules, such as the light source, amplifier, and VCO, are
ideal devices. In practice, as the channel spacing we use in
our scheme becomes narrower, the requirements we need
for these modules become greater. For example, when the
channels are 1 GHz apart, both the lasers and amplifiers need
to have KHz linewidth, as well as very stable VCOs. Ultra-
narrow-bandwidth lasers and EDFAs, centered at 1550 nm
with KHz linewidth, are both commercially available. VCO
stable at 40 GHz has also been demonstrated, with a wide lock-
ing range of 10.6 GHz and low phase noise of −108.65 dBc/Hz
at 1-MHz offset [31], meaning that very stable output could
be ensured. So these current technologies are sufficient to be
applied in our scheme.

VIII. CONCLUSIONS

In summary, we present a scheme for continuous variable
quantum key distribution using the subcarrier multiplexing
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technique in microwave photonics. We study the generation
of both the subcarrier signal and the local oscillator light. We
also analyze the influence of nonlinear signal mixing and the
extra source noise due to intermodulation. We find the extra
source noise is non-Gaussian distributed and proportional to
the modulation variance VA. Then we investigate the security
against collective attacks and evaluate the lower bound for the
secret key rate. Our results show that by using this multiplexing
technique, the maximum transmission distance of each channel
will decreased slightly, while the total secret key rate could
have a considerable improvement.

We also notice that our scheme could be used for key
distribution for multiple users. As shown in Sec. IV, each
channel generates an independent secret key at the same time,
meaning the key distribution in the multichannel system is
parallel. This scheme could be used for one Alice to distribute
keys to several Bobs. Limited by the electro-optic modulators,

the bandwidth occupied by the multichannel scheme is under
100 GHz, which is smaller than the interval of WDM devices,
so several multichannel CV-QKD systems with different
central frequencies could be combined with WDM devices,
resulting in a potential CV-QKD network.

Future work will be the experiments of generating the mul-
tichannel signals and the demonstration of the multichannel
CV-QKD system.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 61170228 and No.
61332019), China Postdoctoral Science Foundation (Grant
No. 2013M540365), and Shanghai Jiao Tong University
Postdoctoral Research Foundation (No. AE606203).

[1] N. Gisin, G. Ribordy, W. Tittle, and H. Zbinden, Rev. Mod.
Phys. 74, 145 (2002).

[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N.
Lutkütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).

[3] C. Weedbrook, S. Pirandola, R. Garcı́a-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621
(2012).

[4] F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902
(2002).

[5] F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf,
and P. Grangier, Nature (London) 421, 238 (2003).

[6] J. Lodewyck, M. Bloch, R. Garcı́a-Patrón, S. Fossier, E. Karpov,
E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W.
McLaughlin, and P. Grangier, Phys. Rev. A 76, 042305 (2007).

[7] B. Qi, L.-L. Huang, L. Qian, and H.-K. Lo, Phys. Rev. A 76,
052323 (2007).

[8] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and
E. Diamanti, Nat Photon. 7, 378 (2013).

[9] S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-
Brouri, and P. Grangier, New J. Phys. 11, 045023 (2009).

[10] R. Garcı́a-Patrón and N. J. Cerf, Phys. Rev. Lett. 97, 190503
(2006).

[11] M. Navascués, F. Grosshans, and A. Acı́n, Phys. Rev. Lett. 97,
190502 (2006).

[12] R. Renner and J. I. Cirac, Phys. Rev. Lett. 102, 110504 (2009).
[13] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M.

Tomamichel, and R. F. Werner, Phys. Rev. Lett. 109, 100502
(2012).
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