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Experimental realization of quantum algorithm for solving linear systems of equations
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Many important problems in science and engineering can be reduced to the problem of solving linear equations.
The quantum algorithm discovered recently indicates that one can solve an N -dimensional linear equation
in O(log N ) time, which provides an exponential speedup over the classical counterpart. Here we report an
experimental demonstration of the quantum algorithm when the scale of the linear equation is 2 × 2 using a
nuclear magnetic resonance quantum information processor. For all sets of experiments, the fidelities of the final
four-qubit states are all above 96%. This experiment gives the possibility of solving a series of practical problems
related to linear systems of equations and can serve as the basis to realize many potential quantum algorithms.
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I. INTRODUCTION

Linear equations are omnipresent in nearly all fields of
research in science and engineering that involve quantitative
analysis. For example, in chemistry, linear equations arise
commonly in problems such as electrostatic calculation in
density functional theory, where the discretized Poisson
equation takes a linear form [1]. In quantum reactive scattering,
the Kohn variational calculation involves the inversion of the
augmented stiffness matrix, which is equivalent to solving
a linear system in certain situations [2]. Also solving linear
equations often plays a role as an intermediate step in many
algorithms, a typical one of which is data fitting [3]. The
algorithm of linear equations of N unknowns for a classical
computer, even to obtain an approximate solution, in general
requires time that scales at least as N [4]. Hence, any
improvement in the cost scaling over this is a significant
computational advantage.

Quantum computing has attracted tremendous interest in
both the physics and computer science community because of
the current progress on developing quantum algorithms [5–7]
that outperform their classical counterparts. Recently, Harrow
et al. [8] proposed a quantum algorithm that is able to solve lin-
ear equations A�x = �b (A being the N -dimensional Hermitian
matrix) in O(log N ) time using O(log N ) qubits, indicating
another promising application of quantum computers.
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The advantage of the algorithm is confined to cases where
one is not interested in �x itself, but the value of �x†M �x for
some quantum mechanical operator M . Thus this algorithm is
different from some deterministic quantum algorithms, such
as the Deutsch-Jozsa algorithm [9], that provide the solution
by a determinate final pure state. Since the value 〈x|M|x〉
is obtained by a measurement of M with respect to |x〉, the
experiment needs to be carried out multiple times using a pure
state but only once on an ensemble system.

With the maturity of the nuclear magnetic resonance
(NMR) engineering experience and its well-developed control
technology [10], NMR has been used to realize many of the
first demonstrations of quantum algorithms [11–13]. In this
paper we start by describing the quantum circuit for solving a
2 × 2 instance of A�x = �b. Then we show the implementation
of the algorithm using a four-qubit NMR quantum information
processor. We carried out the experiment for three different
vectors �b, and the fidelities of all three final four-qubit states
were checked to be above 96%. The algorithm is potentially
useful for a range of applications. For example, it could serve
as a subroutine for other quantum algorithms such as data
fitting [3]. Also, as pointed out in Ref. [8], the algorithm could
prove useful in determining certain properties of stochastic
processes [14].

II. DESCRIPTION OF THE ALGORITHM

Given any N × N Hermitian matrix with a spectral decom-
position A = ∑N

j=1 λj |uj 〉〈uj |, where λj is the eigenvalue
of A and |uj 〉 is the corresponding eigenstate, solving
the linear system A�x = �b is equivalent to finding state
|x〉 that satisfies A|x〉 = |b〉. It thus suffices to implement
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FIG. 1. (Color online) Quantum circuit for implementation of the algorithm in the experiment. Here r = 2 and t0 = 2π , determining

the precision and probability of the correct answer. The matrix forms of the single-qubit gates are S = (1 0
0 i

)
, H = 1√

2

(1 1
1 −1

)
, Ry(θ ) =(cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
. The vertical segments with “×” mean SWAP operations.

A−1 = ∑
j λ−1

j |uj 〉〈uj |. By expanding |b〉 in the eigenbasis
of A as |b〉 = ∑

j βj |uj 〉, the quantum mechanical solution to
the linear system is |x〉 ∝ A−1|b〉 ∝ ∑

j (βj/λj )|uj 〉. The main
steps of the quantum algorithm are shown in Fig. 1. The first
two qubits (termed register c) are used for phase estimation,
the third qubit (register b) stores the input vector �b and the
output vector �x, and the fourth is an ancillary qubit which
needs to be measured in the end of the circuit.

The initial state is |b〉 = ∑N
i=1 bi |i〉, expanded in the

computational basis together with a few ancilla qubits in |0〉
states. We then perform the well-known phase estimation
algorithm [15] with the controlled unitary operator U =∑T −1

τ=0 |τ 〉〈τ | ⊗ eiAτ t0/T , where T = 2l , with l being the qubit
number of register c. The state of registers c and b after this step
is transformed into

∑
j βj |λj 〉C |uj 〉B , where |λj 〉 represents

the binary representations of λj stored to a precision of t qubits.
A crucial step of the algorithm is to introduce an ancilla qubit
|0〉 and then using the |λj 〉 as a control register to get the state

∑
j

(√
1 − C2

λ2
j

|0〉 + C

λj

|1〉
)

βj |λj 〉|uj 〉. (1)

Here C is an appropriate constant [16]. To implement this,
we first prepare the state |θj 〉 with θj = 2 arcsin(C/λj ) using
|λj 〉, and then use |θj 〉 as the control register to rotate the
anxilla qubit by a controlled rotation C-Ry(θj ), where Ry(θj ) =
e−iθj Y , with Y being the Pauli operator. It was shown in
Ref. [17] that by using quantum circuits to simulate Newton’s
iteration, the state |θj 〉 approximating θj up to an error ε can
be prepared with O[poly(log(1/ε))] cost. The final step of the
algorithm is to apply the inverse of the previous operations, so
as to transform the register c back to |00〉. When a projective
measurement on the ancilla qubit yields |1〉, the state in register
b will collapse to the desired state

∑
j C

βj

λj
|uj 〉 ∝ |x〉 with

a probability of |C2 ∑
j β2

j λ
−2
j |, which is shown to scale as

O(1/κ2), with κ being the condition number of A [8].
To realize the algorithm experimentally with a limited

number of qubits, some simplifications with respect to the
general algorithm are necessary. For a four-qubit quantum
circuit, instead of using auxiliary qubits, the subroutine for
computing λ−1

j can be accomplished by a SWAP gate between

the first two qubits |01〉 SWAP←→ |10〉, which changes λ1 = 1
(01 in binary form) into 2λ−1

1 and λ2 = 2 (10 in binary form)

into 2λ−1
2 . Then we use |2λ−1

j 〉 states to apply Ry(λ−1
j ) rotation

on the ancilla qubit. As shown in Fig. 1, the C-Ry(θj ) gates
apply rotation with θj = (2π/2r )λ−1

j , where r is a parameter
that influences the error due to the approximation sin(θj /2) ≈
θj /2. We generate the state in Eq. (1) by taking r = 2 and the
corresponding C = 0.736 derived from Ref. [16].

Here we take an instance of A�x = �b specified by A =
1
2

(3 1
1 3

)
and �b = (

b1
b2

)
, so that we can perform a precise phase

estimation for the two eigenvalues of A that are powers of 2.
In principle, the circuit in Fig. 1 can be extended to fit for an
arbitrary Hermitian matrix A in a straightforward way.

III. EXPERIMENT

The experiment was carried out on a Bruker AV-400 spec-
trometer (9.4 T) at 303.0 K. We chose iodotrifiuoroethylene
dissolved in d-chloroform, where a 13C nucleus and three 19F
nuclei constitute a four-qubit quantum system. We label 13C as
the first qubit, and 19F1, 19F2, and 19F3 as the second, third, and
fourth qubits. Figure 2 shows the measured properties of this
four-qubit quantum system. The experiment consists of three
parts: (A) pseudopure state preparation, (B) implementation
of the quantum algorithm, and (C) state tomography. Figure 3
is the pulse sequence of the experiment.

FIG. 2. (Color online) Properties of the iodotrifiuoroethylene
molecule. The chemical shifts and J-coupling constants (in Hz)
are on and below the diagonal in the table, respectively. The
chemical shifts are given with respect to reference frequencies of
376.47 MHz (fluorines) and 100.64 MHz (carbons) at 303.0 K. The
molecule contains four weakly coupled spin half nuclei which are
13C,19F1,

19F2,
19F3. The natural abundance of the sample with a single

13C is about 1%.
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FIG. 3. (Color online) Pulse sequence of the experiment. The
numbers that label the pulse symbols represent the time duration
of the pulse in milliseconds. The symbols “C” and “F” represent
the channels for carbon and fluorine atoms, respectively. The blue
rectangular boxes in the figure represent gradient field pulses. The
durations of the readout pulses differ from 0.4 to 20 ms.

A. Pseudopure state preparation

This system is first prepared into a pseudopure state (PPS)
ρ0 = 1−ε

16 I + ε|0000〉〈0000|, with I representing the 16 × 16
unity operator and ε ≈ 10−5 the polarization, using the line-
selective-transition method [18]. In Fig. 3, the first two gradient
ascent pulse engineering (GRAPE) pulses [19] and two gradient
field pulses are used to prepare the PPS. The spectrum and
state tomography of the pseudopure state are shown in Fig. 4.

B. Implementation of the algorithm

We perform a rotation operation Ry(θ ) = e−iI 3
y θ (i.e., a

rotation along the y axis with an angle θ to the 19F2) to obtain
the initial state ρin = |00b0〉〈00b0|, with the normalized state
|b〉 = cos(θ/2)|0〉 + sin(θ/2)|1〉 representing the state vector
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FIG. 4. (Color online) Experimental spectrum and state tomog-
raphy of the pseudopure state. (a) is the spectrum of 13C obtained by
a π/2 readout pulse. The vertical axes have arbitrary units. (b) and (c)
are the real and imaginary parts of the experimentally reconstructed
density matrices of the pseudopure state, respectively. The rows and
columns in (b) and (c) represent the standard computational basis in
binary order, from |0000〉 to |1111〉. The fidelity of the whole PPS is
98.73%.

�b = [cos(θ/2), sin(θ/2)]T . Then, we implement the quantum
circuit of the algorithm shown in Fig. 1 on the prepared input
state ρin. All these operations are realized using a shaped
radio-frequency (rf) pulse (the third GRAPE pulse in Fig. 3) that
is optimized by the gradient ascent pulse engineering (GRAPE)
algorithm [19–21]. The GRAPE pulse is characterized by 1500
segments; the pulse duration is about 20 ms and is robust to
rf inhomogeneities, with a theoretical fidelity 0.995. Here we
consider three different �b by preparing three input states ρin

with different θ and performing the quantum computation.

C. State tomography

To examine if the experiments have produced the correction
answer, we performed quantum state tomography [22] to the
final states. The desired final state shall be in the form |
end〉 =
|00〉[(a|0〉 + b|1〉)|0〉 + |x〉|1〉], with |x〉 = c|0〉 + d|1〉 repre-
senting the solution �x = (x1 x2)T = (c d)T /C, where C is
the constant (1). Hence, the qubit of interest, i.e., the third
qubit, provides the solution when the fourth qubit is measured
to be 1. We perform a partial state tomography to get the
information about c and d. The experimental 13C spectra are
shown in Fig. 5: |x1/x2|2 = |c/d|2 are the ratio of the intensity
of the peaks related to |0001〉 and |0011〉. We can obtain these
ratios from Figs. 5(a)–5(c), which are about 1:2, 3:1, and 1:1,
respectively. In addition, the relative phase between x1 and x2

can be obtained by the coherence term cd∗ or c∗d of qubit 3.
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FIG. 5. (Color online) Experimental 13C spectra of the final states
after a π/2 readout pulse for three different �b, which are listed
in Fig. 8. There are eight peaks for 13C. Here we only show four
of them related to the solution, and their intensities represent the
respective probabilities of projecting the final state onto the states
|0011〉,|0000〉,|0001〉,|0010〉 from left to right. The other four peaks
are almost zero, which are not shown here. The vertical axes have
arbitrary but the same units. The numbers above the peaks are the
relative intensity compared to the intensity of the peak of PPS.
The experimentally measured, fitting, and ideal spectra are shown as
the blue, red, and green curves, respectively.
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FIG. 6. (Color online) Experimental reconstructed partial den-
sity matrices for the final states. (a)–(c) are real parts of experimentally
reconstructed density matrices of the final states in the subspace where
the first and the second qubits are in the |00〉 state, along with the
theoretical expectations (d)–(f). The rows and columns represent the
standard computational basis in binary order, from |00〉 to |11〉.

Since A and �b are both real, �x is real and the relative phase is
either 0 or π determined by the sign of cd∗. There may exist
a global phase indeterminable in the solution �x, but this is not
relevant for the estimation of the expectation value of some
operator associated with �x.

The natural abundance of the sample in which just one
carbon is 13C is about 1%. To distinguish those molecules
against the large background, we read out all three 19F qubits
via the 13C channel, by applying SWAP gates and reading out the
13C qubit. The partial state tomography can be achieved by five
readout pulses (YEEE, YEEE ∗ swap12, YEEE ∗ swap13,
YEEE ∗ swap14, XEEE ∗ swap13; here E represents the
unity operator; X and Y represent, respectively, a π/2 rotation
operation along the x and y axis; swapij denotes a SWAP

operation between the ith and j th qubits). The first four
readout pulses are to get |c|2 and |d|2, while the last readout
pulse is to get the relative phase of c∗d. The real parts of
the reconstructed density matrices in the subspace labeled
by |00〉12 are shown in Fig. 6. Furthermore, we perform the
complete quantum state tomography [22] (which needs 44
readout pulses) for the final state in the Hilbert space spanned
by all four qubits as shown in Fig. 7. We list all the results
of the three experiments in Fig. 8, with the experimental
fidelities being all above 96%. The state fidelity is calculated

by using F = Tr(ρalgρexp)/
√

Tr(ρ2
alg)Tr(ρ2

exp), where ρexp and

ρalg represent the experimentally measured density matrix and
the corresponding ideal algorithm expectation.

IV. DISCUSSION

The infidelity of the experimental final state, i.e., its devi-
ation from the ideal algorithm expectation of the algorithm,
is about 3%–4%. It is well known that inhomogeneity of
magnetic fields, the imperfection of the GRAPE pulses, the
variations of the chemical shift, and decoherence are sources of
infidelity. Numerical simulations reveal that the imperfection
of the GRAPE pulses produces about a 1% error to the final
state, which can cause about a 2% error to the intensities of
some peaks. The infidelity due to decoherence is estimated to
be about 1.5% from the experimental time of 50 ms and the
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FIG. 7. (Color online) Experimental final state tomography. (a),
(c), and (e) are the real parts of the state tomography of the
experimental final states for experiments 1, 2, and 3, respectively,
along with the theoretical expectations (b), (d), and (f). The rows and
columns represent the standard computational basis in binary order,
from |0000〉 to |1111〉. The fidelities of the experimental final states
are 96.4%, 96.6%, and 96.7%, respectively.

coherence time 0.61–1.22 s given in Fig. 2. Another source
of error comes from state tomography. Numerical simulations
[23] show that the decoherence effect on the state readout will
cause at most an error of 0.3% to the fidelity of the final state.
To reduce the error due to the noise in the spectra, fitting with
the Lorentzian function was adopted to obtain the intensity of
the peaks.

FidelityExp. No. Δx Δx
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Δxalg
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0.04
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FIG. 8. (Color online) Experimental results of the quantum algo-
rithm for solving the linear equations A�x = �b. �xtheory is the theoretical
solution, �xalg is the ideal solution obtained by the algorithm, and �xexp

is the experimental solution obtained by quantum state tomography.
Here |�xi |theory

max = |xi
exp − xi

theory|max, |�xi |alg
max = |xi

exp − xi
alg|max, and

|�xi |max = |xi
alg − xi

theory|max, where xi
exp, xi

theory, and xi
alg are the ith

elements of �xexp, �xtheory, and �xalg, respectively. The fidelity in the
table refers to the final state of the whole four-qubit system, and is
measured between the experimental final state and the ideal algorithm
expectation.
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There are intrinsic approximations in the algorithm, i.e., the
phase estimation in the second step and the control-rotation
operation in the fourth step shown in Fig. 1, which will
bring deviation to the experimental solution �xexp from the
theoretical expectation �xtheory. The eigenvalues of A chosen in
our experiment satisfy λk = 2πk

t0
, and so the phase estimation

is perfect and contains no error in theory [8]. The error due
to control-rotation operation depends on the quality of the
approximation sin α ≈ α, where α is the rotation angle which
is an integral multiple of π

2r+1 acted on the ancillary qubit. The
theoretical error in this step decreases as r increases, while
the intensities of the counterpart peaks of the final states are
proportional to 1

r2 . Here, we adopted a balanced choice r = 2
in the experiment. The resultant theoretical error on |�xi |max is
about 3% (given in Fig. 8), and the intensities of the counterpart
peaks are about 10% of the intensity of PPS.

V. CONCLUSION

In summary, we experimentally demonstrate the quantum
algorithm for solving linear systems of equations in a four-
qubit NMR system. We acquire solutions with errors of about
7% for all three experimental implementations, which show
fine experimental accuracy and the validity of the algorithm.

The experimental demonstration of the algorithm sheds light
on many potential applications. For example, the ability to
use the quantum algorithm to solve the Poisson equation
[17] would allow quantum chemists to speed up electrostatic
calculations in density function theory. Since the quantum
algorithm could be used efficiently for solving linear systems
of differential equations [24], a quantum computer might prove
to be useful in solving differential equation systems that arise
in various technical applications. Furthermore, the algorithm
can serve as a basis to realize a series of quantum algorithms
related to linear equations [3].

Note added: Related results were obtained by two other
groups using other systems [25,26].
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