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Quantum walk (QW) on a disordered lattice leads to a multitude of interesting phenomena, such as Anderson
localization. While QW has been realized in various optical and atomic systems, its implementation with
superconducting qubits still remains pending. The major challenge in simulating QW with superconducting
qubits emerges from the fact that on-chip superconducting qubits cannot hop between two adjacent lattice sites.
Here we overcome this barrier and develop a gate-based scheme to realize the discrete time QW by placing a pair
of qubits on each site of a one-dimensional (1D) lattice and treating an excitation as a walker. It is also shown that
various lattice disorders can be introduced and fully controlled by tuning the qubit parameters in our quantum
walk circuit. We observe a distinct signature of transition from the ballistic regime to a localized QW with
an increasing strength of disorder. Finally, an eight-qubit experiment is proposed where the signatures of such
localized and delocalized regimes can be detected with existing superconducting technology. Our proposal opens
up the possibility of exploring various quantum transport processes with promising superconducting qubits.
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I. INTRODUCTION

Quantum walk (QW) was first proposed by Aharonov et al.
[1] and has since remained a subject of growing interest for
many subsequent theoretical [2–16] and experimental [17–25]
pursuits. QW has already turned out to be significant in
developing quantum algorithms with polynomial as well as
exponential speedups (see Ref. [26] for a review), designing
a universal model for quantum computation [10,16], and
studying various quantum transport processes [12,27–29].
While QW has so far been demonstrated with nuclear magnetic
resonance (NMR) [17,18], neutral atoms [19], trapped ions
[21,22,30], and optical systems [20,23–25,31], its realiza-
tion with superconducting qubits still remains pending [32].
Superconducting qubits are composed of on-chip Josephson
junctions and therefore, unlike many other qubit realizations,
cannot hop from one lattice site to another, which presents a
major challenge in implementing QW with such systems.

We here propose a gate-based approach to simulate discrete
time QW (DTQW) that circumvents the existing challenges.
Our approach is applicable to any qubit realization (capable
of demonstrating single- and two-qubit gates) and specifically
useful for stationary qubits (qubits that cannot hop between
lattice sites, such as semiconductor spin qubits or supercon-
ducting qubits). We, however, concentrate on superconducting
qubits here, primarily due to their high degree of scalability
(required to fabricate long lattices) and long coherence times
(required to simulate long transport processes). In this section,
we outline the overview of our protocol (see Sec. II for a brief
review on discrete quantum walk). Figure 1 depicts the key
idea of our scheme for both the linear and circular lattices.
Every empty circle denotes a qubit and arrows between two
adjacent sites indicate possible nearest-neighbor hopping of
the excitation at any given time. We treat the excitation itself
as a walker and define it to be “spin-up” (denoted by ↑) if it
is trapped in a gray qubit, and “spin-down” (denoted by ↓)

*ghoshj@ucalgary.ca

if in a black qubit. Since the excitations of superconducting
qubits possess no internal spin degrees of freedom, such an
arrangement is sufficient to construct the two-dimensional
Hilbert space for the so-called coin-tossing operation. For
DTQW, these coin-tossing operations (usually Hadamard)
determine the next hopping direction (left or right for the linear
lattice and clockwise or anticlockwise for the circular one) of
the walker at each site.

For the purpose of this work, we concentrate on a single-
particle DTQW on a circle, while our protocol can be extended
for a linear array simply by imposing an open boundary condi-
tion at any site on the circular lattice. The required architecture
for our scheme consists of a circular array of superconducting
transmon qubits with nearest-neighbor couplings via tunable
couplers [33–36]. Figure 2 shows the circuit diagram for the
quantum walk, where the horizontal direction denotes time,
and the vertical direction denotes the sites on a circular lattice
(with first and last qubits being nearest neighbors). Note that
each quantum gate is performed between adjacent qubits in
a circular geometry. The state |θ,s〉(s ∈ {↑,↓}) denotes the
angular position and effective spin (↑ if the excitation is in
a gray qubit and ↓ if in a black qubit) of the excitation. �θ

is the angular separation (assumed to be uniform) between
neighboring sites. Hopping operations are performed with
simultaneous SWAP gates between each neighboring lattice
sites, and the Hadamard coin-tossing operations are performed
with Hadamard gates defined on the single excitation subspace
(hereafter referred to as cross-Hadamard gates) of the pair of
qubits at each lattice site. In the two-qubit computational basis
({|00〉,|01〉,|10〉,|11〉}), the SWAP gate is defined as

SWAP ≡

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (1)

SWAP is a symmetric operation under the exchange of qubit
indices and therefore it is not required to distinguish between
the two qubits. However, an additional care is required in
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FIG. 1. (Color online) A schematic diagram describing QW (a)
on a line and (b) on a circle. In both cases, every single lattice site
consists of two (gray and black) superconducting qubits. The arrows
denote possible hopping to the nearest neighbor. In panel (a) each
lattice site is characterized with an integer (positive on the right and
negative on the left from the origin) and in panel (b) each site is
characterized by the angle from the origin (positive along clockwise
and negative along anticlockwise direction).

defining the cross-Hadamard operation, primarily due to two
reasons: First, cross-Hadamard is not a symmetric operation
under the exchange of qubit indices and therefore we need to
use an explicit notation to distinguish between participating
qubits. Second, in our scheme every hopping operation also
flips the spin state of the walker (because in our arrangement
every black qubit is coupled to a gray one and vice versa)
and therefore, in order to be consistent with the existing
convention, our definition of cross-Hadamard gate must take
this fact into account and nullify it with an additional internal
SWAP gate. In order to comply with these constraints we adopt
the notation for cross-Hadamard as shown in Fig. 2, and in the
basis

{|00〉,|01〉,|10〉,|11〉},
the cross-Hadamard gate is defined as

cross-Hadamard ≡

⎡
⎢⎢⎢⎣

1 0 0 0

0 1√
2

1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1

⎤
⎥⎥⎥⎦ . (2)

In our scheme, the excitation itself therefore plays the role of
a walker and, under the proposed gate operations, performs a

DTQW via the constructive and destructive interferences of
various paths.

It is also possible to introduce disorders on the lattice sites
within our scheme. QW in presence of static and random
lattice disorders results in a localization of the wave function
of the walker. For an infinitely long lattice, the existence of
such localized eigenmodes was predicted by Anderson in
1958 [37], which eventually turned out to be an ubiquitous
effect in any form of energy transport through disordered
lattices. Since its discovery, Anderson localization has so far
been reported for light waves [27,38,39], microwaves [40,41],
acoustic waves [42], and matter waves [43]. It still remains
a topic of ongoing discussions if the terminology—Anderson
localization—should be used for localized quantum walks on
a finite disordered lattice where the initial wave function of
the walker is also localized [44–49]. We demonstrate here
that if the walker is prepared initially on a particular lattice
site, then it gets localized around its initial location if we
perform QW in the presence of a random static disorder
on each site. We also observe that if the walker is prepared
initially on two diametrically opposite lattice sites (in uniform
superposition as shown in Fig. 8), the final wave function of
the walker gets localized around the initially populated sites
when disorder is turned on. We, however, refer to this effect
as Anderson localization in this work (following Refs. [24]
and [20]). While we can introduce both static and dynamic
disorders using this approach, we here mainly focus on static
disorders and discuss how the signature of wave function
localization can be extracted for a finite-sized 1D lattice. The
random static diagonal disorders are introduced in our quantum
walk by inserting a σ z rotation on each qubit after every
cross-Hadamard operation. The σ z rotation angles are time
independent but chosen from a uniform random distribution
between −Wπ and Wπ (W is referred to as the disorder
strength and assumed to vary between 0 and 1) for each
lattice site. For superconducting qubits, as described later,
these rotations are in fact performed by random excursions
of qubit frequencies, which is similar to assigning a random
energy on each lattice site in Anderson’s original tight-binding
model [37].

The rest of the paper is organized as follows. In Sec. II,
we provide a detailed review of DTQW on a 1D lattice. The
connection between quantum walk and localization is also
discussed in this context. In Sec. III, we elaborate our scheme
to implement DTQW on a circular lattice of superconducting
qubits with or without disorders, and numerical results are
obtained by simulating the quantum circuit 2 for various
disorder strengths. The protocols to design the required gate
operations are also discussed and an eight-qubit experiment
is proposed to observe localization that is within reach of
current superconducting technology. We conclude in Sec. IV
with possible future directions of this research.

II. DISCRETE TIME QUANTUM WALK

In this section, we review the standard protocol for DTQW
on a one-dimensional lattice. While in this work we mostly
concentrate on the quantum walk on a circle, we still discuss
the QW on a linear lattice for completeness.
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FIG. 2. (Color online) The quantum circuit diagram for the DTQW on a circular lattice. The horizontal axis shows consecutive time steps
and the vertical axis shows qubits on the lattice with +�θ (−�θ ) being angular separation between two adjacent lattice sites along clockwise
(anticlockwise) direction.

A. DTQW on a line

In this section, we briefly describe the quantum walk on
a line. A detailed discussion on QW on a line can be found
in Ref. [50]. Figure 3 shows a schematic diagram for DTQW
on a line. Each empty circle denotes a lattice site labeled by
an integer (varying between −n and n, where 2n + 1 is the
total number of sites on the lattice) denoting its position.
The arrows denote possible nearest-neighbor hopping. We
assume that the walker has its own spin degree of freedom
and it could either be in |k, ↑〉 or in |k, ↓〉 state, where
k ∈ {−n, − (n − 1), . . . , − 1,0,1, . . . ,n − 1,n}. In order to
have a quantum walk, we assume that at t = 0 the walker
is in |0, ↓〉 state, and perform the Hadamard coin-tossing
operation (denoted by Ĥ ) on the spin space, which is
defined as

Ĥ |k, ↓〉 = |k, ↓〉 + |k, ↑〉√
2

,

(3)

Ĥ |k, ↑〉 = |k, ↓〉 − |k, ↑〉√
2

.

For an initial |↑〉 or |↓〉 state, this operation creates a uniform
superposition. In order to retrieve a classical random walk,
the spin of the walker gets measured after this coin tossing
and a shift to the left nearest-neighbor site is performed if
the measured state is |↑〉, and a rightward shift is performed
otherwise. The real difference between classical and quantum
walk emerges from the fact that the spin of the walker never

FIG. 3. (Color online) A schematic diagram showing DTQW on
a line. The integers denote the site indices and the arrows denote
possible hopping between adjacent sites.

gets measured for quantum case. Instead, for quantum walk we
perform a conditional shift operation (denoted by Ŝ) defined
as follows:

Ŝ|k, ↓〉 = |k + 1, ↓〉,
(4)

Ŝ|k, ↑〉 = |k − 1, ↑〉.

A single step in DTQW consists of a Hadamard coin-tossing
operation followed by the conditional shift. Table I shows the
probability distribution for a quantum walk on a line after each
step. The initial state is assumed to be |0,↓〉. While for classical
random walk the nonzero terms in the probability distribution
at every step can be obtained from Pascal’s triangle and,
therefore, symmetric about the origin, for DTQW we observe
a clear departure from the classical case starting from the third
step. This is a typical characteristic of QW originating from the
quantum interference among various possible paths. Another
quintessential signature of quantum walk is the standard devia-
tion of the probability distribution at each time step that scales
linearly with the time, as opposed to classical random walk
where the variance scales linearly with time instead of standard

TABLE I. The probability distribution of a DTQW on a line for
various timesteps. A departure from that of classical random walk is
observed from the third step.

Lattice sites
Time
steps −3 −2 −1 0 1 2 3

0 0 0 0 1 0 0 0
1 0 0 1

2 0 1
2 0 0

2 0 1
4 0 1

2 0 1
4 0

3 1
8 0 5

8 0 1
8 0 1

8
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FIG. 4. A schematic diagram showing DTQW on a circle. The
arrows denote possible hopping between adjacent sites and each site is
characterized by the angular distance from the origin (positive along
clockwise and negative along anticlockwise direction).

deviation as

σquantum ∼ total time steps,
(5)

σclassical ∼
√

total time steps,

where σ denotes the standard deviation. It has been extensively
verified numerically that σquantum not only scales linearly with
the number of time steps but also almost independently of the
initial state of the walker [6]. The linear scaling of standard
deviation for quantum walk denotes the ballistic spread of
the probability distribution of the walker in comparison to its
classical diffusion.

B. DTQW on a circle

Figure 4 shows the quantum walk on a circular lattice. Like
the linear case, each open circle here denotes a lattice site. We
assume the site at the north pole as our origin and identify
each site with its angular distance θ (θ ∈ [−π, + π ]) from
the origin. The Hadamard coin-tossing operation is defined as
given by Eq. (3), where k denotes the site index on the circular
lattice for this case. The conditional hopping is defined as

Ŝ|θ, ↓〉 = |θ + �θ, ↓〉,
(6)

Ŝ|θ, ↑〉 = |θ − �θ, ↑〉,
with �θ being the angular separation between two neighboring
sites. The probability distribution for circular case remains
identical to the linear case until the population hits the
boundary, which is at an angle ±π in Fig. 4. Therefore, prior
to the time step when population gets closer to the boundary
from both directions, the standard deviation of the probability
distribution at each time step scales linearly with time as in the
case of QW on a line. We demonstrate this signature with

our superconducting circuit in Sec. III A. If we start with
an initial state |0, ↓〉, then for |�θ | = π/2, we discover the
walker at θ = π/2 after two steps with unit probability due
to constructive quantum interference. Again, this is a distinct
feature of quantum walk on a circle.

In order to investigate the DTQW analytically on a circle,
let us now introduce the so-called transfer-matrix approach,
which especially turns out to be useful later in understanding
the localized eigenstates in the presence of random disorder.
A transfer matrix is the matrix representation of an operator
that transforms the wave function at j th time step to the wave
function at (j + 1)-th timestep. Let �N(j ) be the wave function
of a particle performing quantum walk at t = j on a circular
lattice having N sites. The action of transfer-matrix TN on the
j th state can be defined as

�N(j + 1) = TN�N(j ). (7)

In the basis (hereafter referred to as clockwise basis),

{|0, ↓〉,|0, ↑〉,|�θ, ↓〉,|�θ, ↑〉, . . . ,| − �θ, ↓〉,| − �θ, ↑〉},
the matrix representation of TN is given by

TN ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 A 0 . . . . . . 0 B

B 0 A 0 . . . . . . 0

0 B 0 A 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 B 0 A 0

0 . . . . . . 0 B 0 A

A 0 . . . . . . 0 B 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where

A ≡ 1√
2

[
0 0

1 −1

]
,

B ≡ 1√
2

[
1 1

0 0

]
, (9)

0 ≡
[

0 0

0 0

]
.

Note that, TN is a 2N × 2N dimensional time-independent
matrix and by repeated application of the transfer matrix on
the initial state, we can express the state of the walker at the
kth time step as

�N(k) = (TN)k�N(0), (10)

with �N(0) being the initial wave function of the walker.
Aharonov et al. [4] and Bednarska et al. [51] showed how to
obtain the eigenvalues and eigenvectors of the transfer matrix
TN analytically, which in fact enables one to determine the
�N(k) analytically (at least in principle) for a given initial state.
These formulas, however, are not relevant for our purpose and
we do not attempt to review these results here.

An interesting point to note in this context is the recurrence
of a cycle. This is a typical feature of DTQW on a circle
or any closed graph topologically equivalent to a circle. For
�θ = π/2 (i.e., when we have 4 lattice sites on a circle) it
is easy to check that the probability distribution repeats itself
after every 7 steps, and therefore, if we start with our walker at
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the origin initially, the probability of observing it at the origin
again becomes unity after every 7 time steps. Such a recurrence
of probability distribution can be observed after every 23 time
steps for �θ = π/4 (in this work we always assume �θ to
be in the form of π/2l , l being an integer). However, for
l > 2 (equivalently, if we have more than 8 lattice sites on
the circle), such a complete recurrence does not occur, while
we can always retrieve our walker in the origin with some
fractional probability, a phenomenon sometimes referred to as
fractional recurrence (see Ref. [52] for a detailed analysis of
recurrence).

C. Localization of wave function in 1D disordered lattice:
A perspective from quantum walk

In this section, we first consider an infinitely long 1D lattice,
investigate the localized eigenmodes in the presence of random
disorders, and then discuss how to generate such localized
eigenstates via quantum walk in a disordered lattice with finite
number of lattice sites.

1. Tight-binding model

Let us consider the the tight-binding model on a 1D lattice
for which the Hamiltonian is given by

HTB =
∑

j

εj |j 〉〈j | +
∑
〈jk〉

Vjk|j 〉〈k|, (11)

with εj being on-site energies, Vjk being the coupling between
j th and kth sites, and 〈· · · 〉 denotes nearest neighbors. For any
pair of sites, we here assume

Vjk =
{
V if |j − k| = 1

0 otherwise.
(12)

Let �TB be an eigenstate of our tight-binding Hamiltonian
(11). In the usual lattice basis, we can express

|�TB〉 =
∞∑

j=−∞
ψj |j 〉. (13)

Note that the probability amplitudes ψj are real, as our
Hamiltonian HTB is assumed to be real and symmetric. The
off-diagonal coupling terms Vjk (assumed to take a constant
value V for our case) contribute to hopping from one lattice site
to its neighboring sites and the random diagonal disorders can
be introduced in the Hamiltonian by choosing the values of εj

from a uniformly distributed random numbers. The eigenvalue
equation for Hamiltonian (11) can be written as

HTB|�TB〉 = ETB|�TB〉, (14)

with ETB being the eigenvalue of our tight-binding Hamilto-
nian with eigenstate |�TB〉.

2. Localized eigenstates: Random matrix theory

With a little algebra, we can rewrite Eq. (14) in the form of
recurrence relations of the probability amplitudes as

εjψj + V (ψj−1 + ψj+1) = ETBψj , (15)

for all j on the lattice. In matrix form,(
ψj+1

ψj

)
= T

(j )
TB

(
ψj

ψj−1

)
, (16)

where the transfer matrices T
(j )

TB are defined as

T
(j )

TB :=
(

ETB−εj

V
−1

1 0

)
. (17)

Now, assume that we have a circular lattice with infinite
number of sites, indexed by j where j ∈ {. . . , − 3, − 2, −
1,0, + 1, + 2, + 3, . . .}. Also, assume that εj is a random
variable chosen from a uniform distribution. Note that, if ψ0

and ψ1 are known, then using this transfer-matrix approach we
can iteratively determine (along both directions from origin)
the probability amplitudes of an eigenstate as(

ψk+1

ψk

)
= M

(+)
k

(
ψ1

ψ0

)
and

(18)(
ψ−k

ψ−k−1

)
= M

(−)
k

(
ψ1

ψ0

)
,

where

M
(+)
k :=

1∏
j=k

T
(j )

TB and

(19)

M
(−)
k :=

0∏
j=−k

(
T

(j )
TB

)−1
.

Also, note that with εj being a random variable, the transfer
matrices T

(j )
TB are random symplectic matrices (so are (T (j )

TB )−1,
as symplectic matrices form a group) having unit determinants.
At this point, we invoke the tools of random matrix theory to
show that the eigenstates in such a 1D disordered lattice are
localized [53,54]. We specifically use Fürstenberg theorem on
product of random matrices, which states that, if {Xj } is a set
of uniformly distributed random matrices, then the limit

λ1 := lim
k→∞

1

k
ln

∥∥∥∥∥∥
k∏

j=1

Xj

∥∥∥∥∥∥ (20)

exists and λ1 is usually referred to as maximum Lyapunov
characteristic exponent. The symbol ‖ · · · ‖ denotes the so-
called operator norm of a matrix. Fürstenberg also showed
that λ1 is nonrandom in general and if the random matrices
are uniformly distributed and the determinant of each random
matrix Xj is unity then λ1 > 0. If we apply Fürstenberg
theorem for our case, it essentially means (remember ψj is
real for all j )

|ψk| ∼ eλ1|k||ψ0|, and |ψ−k| ∼ eλ1|k||ψ0|. (21)

Now, if we assume our lattice to be a circular one having
many sites, then starting from origin the probability amplitudes
increase exponentially on both directions and the exponential
growth rate is the maximum Lyapunov characteristic exponent
λ1. For a closed lattice geometry, however, there is no
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guarantee that

lim
|k|→∞

|ψk| = |ψ−k| (22)

necessarily, and a mismatch in the closed boundary apparently
seems paradoxical. We should emphasize at this point that
although Eq. (22) cannot be satisfied in general, it is sufficient
for our purpose if it gets satisfied when ETB is an eigenvalue of
the Hamiltonian (11), as opposed to any arbitrary real number.
In fact, it has been observed that the probability amplitudes do
match in the boundary for such a choice, and the inverse of the
Lyapunov exponent λ1 evaluated at any arbitrary energy tends
to the localization length ξ0 (described below) of the eigenstate
as ETB gets closer to the eigenvalue of that eigenstate. This is
known as Borland conjecture [55]. Note that we can choose
any arbitrary site on a circular lattice as our origin and
the exponential increase of probability amplitudes on both
directions essentially indicates that on such a disordered lattice
all the eigenstates are localized, which is consistent with the
scaling theory of Anderson localization for one dimension
[56].

3. Measures of localization

We define an eigenstate to be localized at the origin, if the
probability amplitudes decrease exponentially with distance
from the origin as

|ψk| ∼ |ψ0|e−|k|/ξ0 , (23)

where ξ0 is referred to as the localization length and can be
defined in terms of the limiting probability amplitudes as [54]

ξ0 := −
[

lim
|k|→∞

1

|k| 〈ln |ψk|〉
]−1

, (24)

where the average (denoted by 〈· · · 〉) is taken over different
configurations of lattice disorders. Notice that for a uniformly
extended state ξ0 diverges, while it decreases for localized
states and tends to zero for a Kronecker-δ-like distribution on
a discrete lattice.

While localization length is a measure of localization, it is
not a unique one. Bell and Dean introduced another measure,
called participation ratio (denoted by P in this work), which
also distinguishes between extended and localized states [57].
For a discrete lattice the participation ratio is defined as

P :=
⎡
⎣∑

j

|ψj |4
⎤
⎦

−1

, (25)

{ψj } being the set of normalized probability amplitudes. Note
that on a discrete lattice with N sites P = N for a perfectly
extended state, and it tends to +∞ as the number of sites
increases. For a perfectly localized state P becomes unity.

Localized states can also be characterized by computing
the moment for the position of the walker from its most likely
location (assumed to be the origin). This approach is adopted
by Yin et al. [58], where the second moment is used as a
measure of localization. In our analysis in this work, we follow
this moment measure to quantify the localization, but instead of
computing the second moment we compute the first moment,

which is defined as

μ(1) :=
∑

j

|j |(|ψj |2 + |ψ−j |2), (26)

where |j | denotes the distance from the origin and (|ψj |2 +
|ψ−j |2) is the probability to find the particle at that distance
from the origin. As far as characterizing the localization around
a single lattice site is concerned, a case that is primarily
considered in this work, this first moment essentially gives an
effective length scale (from origin) in which the trajectory of
the walker is restricted. Note that μ(1) can vary between 0 and
N/2, N being the total number of lattice sites. For a localized
QW we expect μ(1) to be small in comparison to N/2 and the
exact value denotes the expected range of its trajectory, which
is more intuitive for visualizing the localization on a lattice.

4. Localization via quantum walk

The correspondence between Anderson localization and
random walk was first established by Allen [59] (also see
Ref. [60] for a brief summary), where it was shown using
energy-time uncertainty relation that a random walk on a
disordered 1D lattice eventually gets localized for any arbitrary
disorder strength. The recent experimental realizations of
localization of wave function in optical lattices via quantum
walk [20,24], in fact, corroborate such an analog. In this
section, however, we do not review the results obtained by
Allen, but rather describe briefly how to achieve such a
localization via DTQW.

In order to introduce random diagonal disorders in the
lattice, we perform a random phase rotation in the spin space
of the walker after each Hadamard coin tossing, which is
given by

R̂(ϕk↓)|k, ↓〉 = eiϕk↓ |k, ↓〉,R̂(ϕk↑)|k, ↑〉 = eiϕk↑ |k, ↑〉.
(27)

The rotation angles ϕk↓ and ϕk↑ are time independent but
depend on the site as well as the spin state of the walker.
These angles are chosen at random from a uniform distribution
between −Wπ and Wπ , where W is referred to as the disorder
strength. In order to implement such random rotations within
our scheme, we essentially need to perform a σ z rotation
on each qubit in the lattice after every cross-Hadamard gate,
where the rotation angles are drawn from a uniform random
distribution as mentioned above. For superconducting qubits
such σ z rotations are in fact performed with random excursions
of the qubit frequencies that closely mimic Anderson’s original
model where random energies are assigned to each lattice
site. As shown below, it is possible to observe a transition
from delocalized to localized states with increasing disorder
strength under this scheme even for finitely many lattice sites.

In this context, we emphasize that there exists an unset-
tled controversy if the terminology—Anderson localization—
should be used for localized quantum walks on a finite
disordered lattice where the initial wave function of the walker
is also localized [44–49]. We demonstrate here that if the
walker is prepared initially on a particular lattice site, then it
gets localized around its initial location if we perform QW
in presence of a random static disorder on each site. We also
investigate the case where the walker is prepared as a uniform
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superposition of being in two diametrically opposite lattice
sites at t = 0 and observe that the final wave function of the
walker gets localized around the initially populated sites when
disorder is turned on. We, however, refer to this phenomenon as
Anderson localization in this work (as also done in Refs. [24]
and [20]).

III. SIMULATING DTQW WITH SUPERCONDUCTING
QUBITS

In this section, we first discuss the quantum walk with
superconducting qubits in the absence of any disorder, then
demonstrate how it gets localized with increasing disorder
strength, and finally consider a realistic model of 8 coupled
superconducting qubits, where the signature of such localized
states can be observed. The results in this section are obtained
via simulating the quantum circuit shown in Fig. 2 and
assuming that the walker is initially localized in |0, ↑〉 state.
However, at the end of Sec. III B, we also consider a case
where the walker initially occupies two diametrically opposite
sites (in a superposition) instead of being on a single site.

A. DTQW without disorder

In absence of any disorder, the circuit diagram shown in
Fig. 2 simulates pure quantum walk on a circular lattice.
We simulate our quantum circuit (Fig. 2) for �θ = π/2 (4
sites), π/4 (8 sites), π/8 (16 sites), and π/16 (32 sites). The
results of our simulation are shown in Fig. 5, where the qubit
indices follow the same order from top to down as given by
the quantum circuit in Fig. 2. Since we consider the circular
lattice, it is important to remember that the leftmost qubit is a
nearest neighbor to the rightmost qubit. The quantum circuit
is simulated for many consecutive time steps and each gray
value in Fig. 5 denotes the probability of finding the walker in
that specific qubit.

The simulation in Fig. 5(a) shows that when the total
number of lattice sites is 4 and 8, the quantum walk repeats
itself after every 7 and 23 time steps respectively, which is
a characteristic signature of DTQW on a circle as discussed
in Sec. II B. However, for more than 8 sites, such a complete
recurrence becomes extinct and only fractional recurrence can
be observed. In Fig. 5(b), we have shown simulations with 16
and 32 lattice sites for 50 and 100 time steps respectively, but
no complete recurrence has been observed, which is consistent
with earlier studies on DTQW on a circle [52].

As mentioned before, there is no difference between the
signatures of a QW on a line or on a circle, until the population
hits the boundary. In order to confirm that our quantum circuit
in Fig. 2, in fact, simulates a quantum walk, in Fig. 6 we plot the
standard deviation of the probability distribution (in the same
unit of time steps) for �θ = π/16. The plot shows standard
deviations before population touches the boundary. A linear
dependence is observed between the standard deviation and
the time in that regime with a slope ≈ 3/5, as found in earlier
works [6]. This ballistic spread of wave function as opposed to
classical diffusion is a typical signature of quantum walk and
almost independent of the initial state of the walker.

B. DTQW with disorder

As discussed in Sec. II C, in a 1D lattice quantum walks
get localized in presence of random static disorders. In the
limit of an infinite lattice such a localization was predicted by
Anderson, and the terminology “Anderson localization” gets
used even in the context of localization on a finite lattice with
an initially localized walker [20,24]. In this section, we explore
DTQW on a lattice of finitely many superconducting qubits.
Here we concentrate entirely on the �θ = π/16 case (32 sites,
64 qubits) and demonstrate numerically how the quantum walk
gets localized with increasing disorder strength.

As previously mentioned, we introduce disorders by per-
forming some arbitrary σ z rotations on each qubit at each step
in between the cross-Hadamard and SWAP gates. The rotation
angles are chosen randomly from the interval [−Wπ,Wπ ],
W (0 � W � 1) denoting the strength of disorder. In order
to characterize the localization of the DTQW, we compute
the first moment μ(1) [defined by Eq. (26)], which essentially
measures the expected absolute distance of the walker from the
origin. Figure 7 shows the results of our simulation for �θ =
π/16, where each graph is computed by averaging over many
possible realizations of disorders. In Fig. 7(a), we plot μ(1) as
a function of time and observe a distinct signature of transition
from the ballistic spread of the wave function to localized
modes with increasing disorder strength. Note that for W = 0
the expected position of the walker varies almost (but not
exactly as there is no complete recurrence in that regime) up to
the farthest possible distance from the origin, and for W = 1
it gets localized in the neighborhood of its initial position.
Figure 7(b) shows the probability distribution for W = 1 case
as a function of the distance from the origin (positive for
clockwise, negative for anticlockwise) after 100 time steps
and averaged over many realizations of disorders. A prominent
exponential decay of the probability distribution is observed
away from the origin, which is considered to be a typical
signature of localization.

We also investigate the case where the walker is initially
prepared in two diametrically opposite sites on the circle
instead of a single lattice site. Figure 8 shows the probability
distribution for W = 1 after 100 time steps and averaged over
many runs with different random sets of disorders for this
case. We observe a bimodal distribution with peaks around the
initially populated lattice sites, which indicates the localization
of the wave function of the walker around its initial possible
locations under QW in presence of random disorders on each
lattice sites.

C. Designing required gate operations

In this section, we outline how to implement the required
SWAP and cross-Hadamard gates with two coupled supercon-
ducting qubits. Note that our protocol only requires gate
operations between nearest-neighbor qubits. Since we are
assuming an architecture where the superconducting qubits are
coupled with tunable couplers, for the purpose of gate design
we only consider a two-qubit Hamiltonian, where other qubits
are assumed to be decoupled from the system.

In a rotating frame, the Hamiltonian of two tunably coupled
superconducting qubits is given by (in terms of Pauli matrices)

022309-7



JOYDIP GHOSH PHYSICAL REVIEW A 89, 022309 (2014)

FIG. 5. Simulation of quantum walk circuit (without disorder) in Fig. 2 for (a) 4 and 8 lattice sites and (b) 16 and 32 lattice sites. The
horizontal axis denotes the qubit indices in the same order from top to bottom as in Fig. 2, and the vertical axis denotes time. A periodicity in the
probability distribution is observed in case (a), while no complete recurrence is found in case (b), which is consistent with earlier works [52].

[61]

H (t) = 1(t)

2
σ z

1 + 2(t)

2
σ z

2 + g(t)

2

(
σx

1 σx
2 + σ

y

1 σ
y

2

)
, (28)

σx , σy , and σ z being Pauli spin matrices and the subscripts
denote the qubit indices. Since we are designing gates in the
rotating frame, the terms 1,2 denote the detunings of qubit
frequencies from the frequency of the rotating frame and for
superconducting qubits we assume 0 GHz � 1,2 � 2 GHz
and −50 MHz � g � 50 MHz. We also assume

1(t = 0) = 0, 2(t = 0) = 0,
(29)

g(t = 0) = 0,

where all the quantities are expressed in gigahertz in Eq. (29).
Usually, superconducting qubits contain higher energy levels
that are not considered in our Hamiltonian. While the auxiliary
energy levels often play a crucial role in introducing leakage
errors in an algorithm, for single-particle quantum walk with
our approach their effect is negligible, as the entire system
contains only one excitation. From the Hamiltonian (28), it
can be observed readily that any arbitrary σ z rotation can
be performed on either qubit simply by qubit frequency
excursions from the reference frequency, with the coupling
turned off. In this section, we consider the two-qubit SWAP

and cross-Hadamard gates. In order to perform these gate
operations, we assume 1 = 2 = 0 throughout and the
coupling g is varied with time.
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FIG. 6. (Color online) Plot showing the standard deviation of the
probability distribution vs time for �θ = π/16 on a circular lattice
before the population reaches the boundary. The dots indicated the
numerically evaluated points and the solid line denotes the best linear
fit. Such a linear dependence denotes the ballistic spread of wave
function as opposed to classical diffusion and considered to be a
characteristic signature of quantum walk.

1. SWAP gate

First, we discuss the pulse profile for the SWAP gate. Two-
qubit SWAP gate [defined by Eq. (1)] acts as a σx rotation in
the single excitation subspace of the two qubits and acts as
an identity operation for other states. Note that our two-qubit
Hamiltonian (28) in the single excitation subspace (denoted
by Hs) can also be written as (with 1 = 2 = 0)

Hs(t) = g(t)

[
0 1

1 0

]
≡ g(t)σx. (30)

In order to perform a π rotation about x axis, we need to
choose a pulse for g(t), such that∫ tgate

0
g(t)dt = π

2
. (31)

Figure 9(a) shows a trapezoidal pulse that satisfies the con-
straint (31). We also showed how population gets transferred
from the first qubit to the second with time under this pulse in
Fig. 9(b). The parameters considered for this computation are
consistent with the current superconducting control electronics
and we note that it is possible to perform SWAP gate within 7 ns.
The SWAP gate obtained under this pulse also contains a global
phase in the single excitation subspace that can be nullified
with post-σ z rotations, a technique that is frequently used in
superconducting quantum computing [62].

2. Cross-Hadamard gate

In the single excitation subspace, the cross-Hadamard gate
is given by

cross-Hadamard{|01〉,|10〉} = 1√
2

[
1 1

−1 1

]
. (32)
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FIG. 7. (Color online) Simulation of quantum circuit in Fig. 2 in
presence of disorder for �θ = π/16. (a) The first moment μ(1) is
plotted against time for various disorder strengths W . A distinct
signature of transition from the ballistic spread regime (W = 0
case shown by uppermost solid red curve) to the localized walk
(W = 1 case shown by lowermost solid blue curve) is observed
with increasing W . (b) Plot showing the probability distribution as a
function of the distance from origin for W = 1 case after 100 time
steps. An exponential decay is observed in the probability of finding
the particle away from the origin, which is a characteristic signature
of wave function localization under disorder.

We define the unitary rotation about any axis as

Rν(φ) = e−i
φ

2 σν

, (33)

φ being the rotation angle and ν ∈ {x,y,z}. It is easy to check
that

cross-Hadamard{|01〉,|10〉} = Ry

(
−π

2

)
. (34)
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FIG. 8. (Color online) Plot showing the probability to find the
walker on various sites on a circular lattice for W = 1 case
after 100 time steps. Initially the walker is prepared in the state
(|π/2, ↓〉 + |−π/2, ↑〉)/√2, as opposed to a single site. A bimodal
distribution is observed denoting localization around each initially
populated location.

Using the Euler angle decomposition, one can show

cross-Hadamard{|01〉,|10〉} ≡ Rz

(
−π

2

)
Rx

(π

2

)
Rz

(π

2

)
.

(35)
The σ z rotations can be performed with qubit frequency
excursions, as previously mentioned. We here discuss the π/2
rotation about the x axis. With the same reasoning as employed
for SWAP gate, we can derive a similar constraint for Rx(π/2)
as ∫ tgate

0
g(t)dt = π

4
. (36)

0 1 2 3 4 5 6 7
0

0.02

0.04

g 
(G

H
z)

0 1 2 3 4 5 6 7
0

0.5

1

t (ns)

P
op

ul
at

io
n 

in
 2

nd
 q

ub
it

FIG. 9. (Color online) (a) A trapezoidal control pulse for the
variable coupling strength g that satisfies Eq. (31). (b) The probability
to find the excitation on the second qubit is shown during the pulse.

Such a constraint can be satisfied with a similar trapezoidal
pulse that encloses half the area enclosed by the SWAP gate
pulse in Fig. 9. According to Eq. (36), the cross-Hadamard
gate takes even less time than SWAP. In order to discuss the
effect of decoherence in Sec. III E, however, we modestly
assume that each step in the circuit 2 can be performed within
30 ns.

D. The 8-qubit case

So far, we outlined our implementation scheme for DTQW
with superconducting qubits using our gate-based approach
and observed that it is possible to simulate localized QW. Now,
we concentrate on the �θ = π/2 case that involves 4 lattice
sites and requires 8 qubits to realize. It is important to note
that a circular lattice with 4 sites offers an optimal architecture
where for each site, there exists at least one other site (the
diametrically opposite one) that is not the nearest neighbor of
the previous one. Therefore, if we prepare the walker on a given
site, it is interesting to explore if any signature of localization
is observed where the probability to discover the walker in
the neighborhood of its origin is maximum in comparison to
finding it on the diametrically opposite position. This motivates
us to pay special attention to the 8-qubit case.

Here we demonstrate numerically that the signature of two
distinct regimes, the ballistic regime in absence of disorder
and the localized QW regime in the disordered lattice, can
be clearly distinguished even for such a few-qubit system.
Figure 10 shows the result of our simulation for this case,
where the first moment μ(1) is plotted against time for
W = 0 and 1. Note that while the walker travels through
the entire lattice periodically in absence of disorder, it gets
localized quite noticeably around the origin when disorder
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µ(1
)
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FIG. 10. (Color online) Simulation of quantum circuit in Fig. 2 in
presence of disorder for �θ = π/2. The first moment μ(1) is plotted
against time for disorder strengths W = 0 (dashed red [gray]) and
W = 1 (solid blue [gray]). A distinct signature of transition from
the delocalized regime (W = 0 case) to the localized regime (W = 1
case) is observed.
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is turned on. Observing such a localized quantum walk for
�θ = π/2 requires only 8 nearest-neighbor-coupled qubits,
an architecture that is already within reach of current super-
conducting qubit technology and could be realized in the near
future.

E. Effect of intrinsic errors and decoherence

Superconducting qubits possess some additional states
other than the computational |0〉 and |1〉 states. These higher
energy levels play a significant role in producing intrinsic leak-
age errors in any quantum computation with such qubits, not
only because they exist but also because these states often get
utilized for designing some quantum gates [62,63]. However,
some recent advancements show that designing high-fidelity
two-qubit entangling gates is possible by suppressing such
leakage errors below 10−4 [62]. In our simulation, such
intrinsic errors are not considered because for single-particle
quantum walk within our scheme, the entire lattice always
remains in the single-excitation subspace, for which the effect
of such higher-energy-level-induced errors remains negligible
anyway.

Another challenge to perform any quantum computation
with superconducting qubits is the decoherence. A tremendous
progress has been made along this direction in the past few
years and a superconducting qubit (called “Xmon”) with
T1 ≈ 44 μs has recently been reported [64]. Such a long
coherence time can be achieved for these Xmon qubits without
any three-dimensional (3D) cavity, and therefore, they remain
as one of the best candidates for fabricating long 1D or
two-dimensional (2D) lattices of coupled superconducting
qubits. As we showed earlier, each time step in our quantum
circuit 2 can be performed within 30 ns, which essentially
means that 100 such time steps would require only 3 μs.
Assuming that decoherence is only dependent on the total
simulation time and affects each qubit individually, we argue
that the effect of decoherence in realizing quantum walk or
observing localization with our approach remains negligible
since such effects become prominent within 100 time steps
(as shown in Figs. 7 and 10) and the required simulation time
(3 μs) is order of magnitude smaller than the energy relaxation
time of the current superconducting qubits, which is 44 μs.

IV. CONCLUSIONS

The motivation to realize interesting quantum transport
processes with superconducting qubits emerges from the

fact that the superconducting qubits have long coherence
times and high degree of scalability. However, the challenge
to simulate such processes via quantum walk comes from
their stationary nature, because superconducting qubits are
fabricated with on-chip Josephson junctions and therefore
cannot hop from one lattice site to another. Our proposal
in this work offers a solution to this problem. We treat
the excitations of the superconducting qubits as our walkers
and artificially introduce their spin degrees of freedom by
placing two qubits (gray and black) at each lattice site and
adopting the convention that the walker is in |↑〉 state if the
excitation is in the gray qubit and |↓〉 state if it is in the black
qubit. We numerically demonstrated that such a mapping is
capable of simulating DTQW on a one-dimensional lattice.
A quantum circuit is discovered for this purpose and the
gate-design protocols are discussed. As an additional benefit,
it has also been shown that lattice disorders can be introduced
and controlled for each individual site within this scheme.
While it is possible to introduce both static and dynamic
disorders in this protocol, we here concentrated on random
diagonal static disorders and observed a transition of the wave
function of the walker from its ballistic regime to the localized
mode, a phenomena that was first predicted by Anderson
for infinitely long lattices. An 8-qubit experiment is also
proposed where the signature of localized quantum walk can be
observed with increasing disorder strength. Conducting such
a few-qubit experiment is already within reach of the current
superconducting technology and could be implemented in near
future. While in this work we primarily concentrated on single-
particle QW, a generalization of this scheme for multiparticle
QW is also possible and is discussed elsewhere [65]. Our
proposal thus opens up the possibility to explore various
quantum transport processes using promising superconducting
qubits. A detailed investigation on multiparticle QW in the
presence of static and dynamic disorders could be a possible
future direction of this research.
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