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Every choice of an orthonormal frame in the d-dimensional Hilbert space of a system corresponds to one set
of all mutually commuting density matrices or, equivalently, to the classical statistical state space of the system;
the quantum state space itself can thus be profitably viewed as an SU(d) orbit of classical state spaces, one for
each orthonormal frame. We exploit this connection to study the relative volume of separable states of a bipartite
quantum system. While the two-qubit case is studied in considerable analytic detail, for higher-dimensional
systems we fall back on Monte Carlo. Several insights seem to emerge from our study.
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I. INTRODUCTION

States of a quantum system are represented by density
operators (positive-semidefinite unit-trace operators acting on
a d-dimensional Hilbert space Hd ). The set of all density
operators of such a d-dimensional (d-level) system constitutes
a convex subset of Rd 2−1; this is the state space (generalized
Bloch sphere) �d of the quantum system. An understanding
of the geometry of the state space is of fundamental impor-
tance [1,2]. The state space of a two-level system or qubit is the
well-known Bloch (or Poincaré) sphere, while the generalized
Bloch sphere of higher-dimensional system is much richer,
and more complex to visualize and analyze. Recently, a
limited analysis of the cross sections of the state space of
the three-level system (qutrit) has been performed [3,4].

When d is nonprime, it is possible that the system is
composite, i.e., made up of two or more subsystems. For
example, a four-dimensional system could be a single quantum
system with four levels or a pair of two-level systems or
qubits. In the latter case of composite system, the issue
of separability becomes important, entanglement being a
characteristic feature of quantum theory of composite systems,
and a key resource in quantum information processing [5].
An understanding of the separability property of states is
therefore important from both foundational and application
perspectives. We would like to understand the geometry of
separable states and know how much of the state space is
entangled.

The issue regarding the relative volume of the set of
all separable states was considered in the seminal work of
Życzkowski et al. [6]. It was not only shown that the set
of separable states has nonzero volume, but also analytical
lower and upper bounds were obtained for the two-qubit
and the qubit-qutrit cases. They also argued that all states
in a sufficiently small neighborhood of the maximally mixed
state are separable, and conjectured that the volume of the
separable region decreases exponentially with Hilbert space
dimension. Different aspects of this issue have been addressed
by other authors [7–9]. Vidal and Tarrach [10] generalized
the result to obtain an analytical lower bound on this volume
for multipartite systems, showing that it is nonzero. Verstraete
et al. [11] gave an improved lower bound on the volume of
the separable region for the two-qubit system. More recently,

significant contribution has been made to the understanding
of the generalized two-qubit Hilbert-Schmidt separability
probabilities by Slater [12,13]. In similar work on pure
states it was shown that typical or generic pure states of
multiple-qubit systems are highly entangled, while having low
amounts of pairwise entanglement [14]. Regarding the issue of
geometry of state space, the geometry of Bell-diagonal states
for two-qubit systems in the context of quantum discord has
been addressed recently [15].

The genesis of this work is the following. During a recent
reading of the seminal work of Życzkowski et al. [6] (a paper
we had indeed read more than once earlier), the following
observation by these authors somehow captured our attention:
“Our numerical results agree with these bounds, but to our
surprise the probability that a mixed state ρ ∈ H2 ⊗ H2 is
separable exceeds 50%”. Their paper established an interesting
analytical lower bound of 0.302 for the probability of separa-
bility (fractional volume of separable states) of a two-qubit
system (and an analytical upper bound of 0.863), but on
numerical (Monte Carlo) estimation they found it to actually
exceed 50% and assume 0.632. We could not resist asking
ourselves the following question: Could there be a ground to
“anticipate” this value in excess of 50%? It is this question that
marked the beginning of this work.

The quantum (statistical) state space of a two-state system
or qubit is simply the Bloch (Poincaré) sphere, a unit ball
B3 ⊂ R3 centered at the origin; but, for d � 3 the generalized
Bloch “sphere” has a much richer structure. It is a convex
body �d ⊂ Rd 2−1 determined by CP d−1 worth of pure states
as extremals, this 2(d − 1)-parameter family of pure states
being “sprinkled over” the (d 2 − 2)-dimensional boundary
of �d . In contrast, the classical (statistical) state space of a
d-state system is extremely simple, for all d. Indeed, it is the
regular simplex �d−1 ⊂ R d−1, the convex body defined by d

equidistant vertices or extremals (the classical pure states).
The quantum state space itself can be profitably viewed,
for all d, as the union of the SU(d) orbit � of simplices
(classical state spaces) �d−1. This fact is fundamental to both
our point of view and analysis in this work. Every set of
all mutually commuting d × d density matrices constitutes
one classical state space or simplex �d−1, a point in the
orbit, and choice of a set or frame of orthonormal unit
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vectors (more properly, unit rays) labels different points on
the orbit. Thus, the orbit � is exactly as large as the coset
space U(d)/[U(1) × U(1) × . . . × U(1)], a particular case of
(complex) Stiefel manifold. The volume of �d is thus the
product of the volume of the simplex �d−1 and the volume
of the (d2 − d)-dimensional orbit U(d)/[U(1) × U(1) × . . . ×
U(1)], the latter volume being determined by the measure
inherited from the Haar (uniform) measure on the unitary
group SU(d).

Our interest here is the d1 × d2 bipartite system, and there-
fore the relevant simplex is �d1d2−1 and the dimension of the
orbit � of orthonormal frames is d1d2(d1d2 − 1). Separability
issues are invariant under local unitaries Ud1 ⊗ Ud2 , so it is
sufficient to restrict attention to the local unitarily inequivalent
frames. This removes d 2

1 + d 2
2 − 2 parameters, and so we are

left with (d 2
1 − 1)(d 2

2 − 1) − d1d2 + 1 parameters needed to
label points on the orbit of local-unitarily inequivalent or-
thonormal frames or simplices �d1d2−1, this number evaluating
to 6 for the two-qubit systems and to 56 for the two-qutrit
systems.

We now have all the ingredients to describe our approach
to the problem of (fractional) volume of separable states in
more precise terms. Considering the full state space �d1d2

of the d1 × d2 bipartite system as an orbit � of simplices
�d1d2−1, let ξ denote the collection of variables, say k in
number, needed to label points on the orbit or manifold �,
i.e., for each ξ ∈ � we have an orthonormal basis of d1d2-
dimensional vectors and an associated simplex �d1d2−1(ξ ) of
mutually commuting density operators. The volume of simplex
�d1d2−1(ξ ) is independent of ξ ; this fact is trivially obvious,
but proves important for our present purpose. For each ξ , a
convex subset of �d1d2−1(ξ ), whose volume is not independent
of ξ , is separable. Let f (ξ ) represent the fractional (d1d2 −
1)-dimensional volume of this convex subset of �d1d2−1(ξ ).
The uniform Haar measure on the unitary group SU(d1d2)
induces a measure or probability p(ξ ) on the orbit �. Clearly,
the fractional volume of separable states for the full space is
given by

V sep/V tot ≡ vsep =
∫

dkξ p(ξ )f (ξ ). (1)

An immediate and important implication of this rendering of
relative volume of separable states is this: Should it turn out
that f (ξ ) � a > 0,∀ ξ ∈ �, then vsep is trivially bounded from
below by a. For the two-qubit system we shall indeed show
that a = 0.5, thus reconciling the “surprise” element which
acted as the “seed” for this work, as noted earlier.

Two remarks are in order in respect of our analysis leading
to Eq. (1): one in respect of choice of measure over the
simplex and the other regarding the fact that the simplices
corresponding to two distinct points of the orbit � are not
necessarily disjoint.

Remark 1. There exists a natural volume measure for �

arising from the very fact that it is an SU(d1d2) orbit. But, the
situation in respect of the simplex �d1d2−1 is quite different.
There seems to exist no fundamental mathematical principle
to pick one unique or distinguished measure on �d1d2−1,
and therefore the choice seems to be ultimately a matter of
taste or point of view. However, the action of the permutation

group Sd1d2 on the simplex �d1d2−1, through permutation of
its vertices, renders �d1d2−1 the union of (d1d2)! mutually
equivalent fundamental domains. Thus, the complete freedom
in choice of measure applies to one fundamental domain, of
fractional volume 1/(d1d2)!. The measure is transferred to the
other copies of the fundamental domain by the natural action
of the permutation group Sd1d2 . The choice of Życzkowski
et al. is the uniform measure, the one inherited by embedding
�d1d2−1 in the Euclidean space Rd1d2−1. Other measures
have been motivated and used in [7,8]. Since this work
was inspired by that of Życzkowski et al., we stick to their
measure.

Remark 2. The different simplices on the orbit � are
not necessarily disjoint. As is readily seen, the intersection
is, however, restricted to those points of the simplex which
correspond to density matrices with degenerate spectrum.
For instance, in the case of a qutrit, such points correspond
precisely to the bisectors of the equilateral triangle, the
2-simplex �2. Since such points of zero measure contribute
neither to the total volume of the simplex nor to that of
its separable convex subset, the fact that the simplices are
not disjoint affects in no way the development leading
to Eq. (1).

The content of the paper is organized as follows. In Sec. II,
we present details of the two-qubit system, and this is followed
by numerical Monte Carlo analysis for higher-dimensional
systems in Sec. III. In Sec. IV, we make a few observa-
tions on the separable volume for the qubit-qutrit system.
Section V concludes with a comment on the volume and “ef-
fective radius” of the separable region for higher-dimensional
quantum systems. The final Sec. VI summarizes our
results.

II. TWO-QUBIT SYSTEM

The state space of a two-qubit system �4 corresponds
to positive-semidefinite unit-trace operators on the four-
dimensional Hilbert space, and in the present scheme can
be symbolically expressed as �4 ∼ �22 × � 3. But, this 15-
parameter convex set �4 should not be viewed as the Cartesian
product of the two sets �22 and � 3, but rather as the
union of 3-simplices (tetrahedra) � 3 parametrized by the
12-parameter manifold of frames �22 = U(4)/[U(1) × U(1) ×
U(1) × U(1)]. We first describe the 3-simplex � 3 comprising
probabilities {pj },

∑4
j=1 pj = 1,pj � 0,j = 1, . . . ,4. Since

� 3 resides in a three-dimensional Cartesian real space, it
is both desirable and instructive to pictorially visualize this
simplex along with its convex subset of separable states. We
can explicitly picture the separable set corresponding to any
selected frame using the following change of variables from
the four pj ’s constrained by

∑
pj = 1 to three independent

Cartesian variables x,y,z:

p1 = (1 + x + y + z)/4,

p2 = (1 + x − y − z)/4,

p3 = (1 − x + y − z)/4,

p4 = (1 − x − y + z)/4.

(2)
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FIG. 1. (Color online) Separable regions for different values of (θ,α). Each tetrahedron represents a set of all density matrices with common
eigenvectors. The volume enclosed by the shaded surface shows the separable region for the given frame. We find that the separable set is the
entire tetrahedron for (θ,α) = (0,0) and is an octahedron for (θ,α) = (π/4,π/4) as expected. For other values of (θ,α), we find the separable
set to be the tetrahedron limited by planes and conic surfaces.

The situation where one particular pj = 0,j = 1, . . . ,4, is
seen to correspond to one of the four faces of the tetrahedron
or 3-simplex � 3 in the three-dimensional xyz space with
vertices at (1,1,1), (1,−1,−1), (−1,1,−1), and (−1,−1,1)
(see Fig. 1). The six edges correspond to pairs of pj ’s
vanishing, and the vertices to only one nonvanishing pj . In this
way, we associate a tetrahedron with every set of all mutually
commuting density matrices determined by choice of a frame
of four orthonormal pure states {|
k〉}, 〈
j |
k〉 = δjk .

A. A special two-parameter family of frames

Before we discuss the general parametrization of the
12-parameter manifold �22 of two-qubit frames, for clarity
of presentation we consider first a special two-parameter
family of locally inequivalent frames which are obtained
as two orthonormal linear combinations within the com-
putational basis pair {|00〉,|11〉} and two within the pair

{|01〉,|10〉} :

|
1〉 = cos θ |00〉 + sin θ |11〉,
|
2〉 = sin θ |00〉 − cos θ |11〉,

(3)
|
3〉 = cos α |01〉 + sin α |10〉,
|
4〉 = sin α |01〉 − cos α |10〉.

These frames can be viewed, in an obvious manner, as a
two-parameter generalization of the Bell or magic frame of
maximally entangled states. Indeed, the Bell basis corresponds
to θ = π/4 = α. The entanglement of the first two states
is determined by sin(2θ ) while that of the next two by
sin(2α). That there are only two parameters is an immediate
consequence of our forbidding superposition across the two
pairs of vectors {|00〉,|11〉} and {|01〉,|10〉}. It is readily verified
that if one constructs any orthonormal pair of vectors as linear
combinations of |00〉 and |11〉, both would have one and
the same measure of entanglement; the same is true of |01〉
and |10〉 as well. For this special parametrization, the density
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matrix corresponding to a given point {pj } in �3 is

ρ({pi}) =
4∑

j=1

pj |
j 〉〈
j |

=

⎛⎜⎜⎝
p1 cos2 θ + p2 sin2 θ 0 0 (p1 − p2) sin θ cos θ

0 p3 cos2 α + p4 sin2 α (p3 − p4) sin α cos α 0
0 (p3 − p4) sin α cos α p3 sin2 α + p4 cos2 α 0

(p1 − p2) sin θ cos θ 0 0 p1 sin2 θ + p2 cos2 θ

⎞⎟⎟⎠. (4)

It is well known that positivity under partial transpose (PPT) is
both a necessary and sufficient condition for separability of the
qubit-qubit system [16,17]. Since the partial transpose of the
above matrix is a direct sum of 2 × 2 matrices, the condition
for separability attains a simple (quadratic) form in {pj } (or
x,y,z):(

p2
1 + p2

2

)
sin2 θ cos2 θ + p1p2(sin4 θ + cos4 θ )

−(p3 − p4)2 sin2 α cos2 α � 0,(
p2

3 + p2
4

)
sin2 α cos2 α + p3p4(sin4 α + cos4 α)

− (p1 − p2)2 sin2 θ cos2 θ � 0. (5)

It is clear that (saturation of) these separability inequalities,
for a given numerical pair (θ,α), corresponds to surfaces
that are quadratic in the xyz space. For special values of
the parameters, one or both of these quadratic surfaces might
factorize to give planes. Thus, the boundaries of the separable
region of �3, for any choice of (θ,α), consist entirely of
quadratic and planar surfaces.

In Fig. 1, we picture the separable region (inside the
tetrahedron) for a few selected values of (θ,α). The Bell or
magic frame which corresponds to θ = α = π/4 is shown
as the last and sixth (as is well known, the separable region
is an octahedron in this case). We numerically estimate the
volume of the separable region for each value of (θ,α), and
the result is pictured in Fig. 2 in the (sin 2θ, sin 2α) plane.
Clearly, the volume decreases with increasing “entanglement
of the frame”. Since the volume of the octahedron is exactly
half the volume of the tetrahedron of which it is a convex
subset, the ratio of the volume of separable states to the total
volume V sep/V tot = 0.5 for the Bell frame. For every other
frame in this two-parameter family, this ratio is larger, as is
evident from Fig. 2.

B. Parametrization of �22

Having looked at a special two-parameter family of frames
in some detail, now we move on to parametrization of the full
orbit �22 of two-qubit frames, modulo local unitaries. To this
end, we expand a generic set of orthonormal two-qubit vectors
{|
k〉} in the computational basis:

|
k〉 =
2∑

a,b=1

C
(k)
ab |a〉A ⊗ |b〉B, k = 1,2,3,4. (6)

Orthonormality of the set {|
k〉} reads as the trace-
orthonormality condition

〈
j |
k〉 = Tr(C(j )†C(k)) = δjk (7)

on the corresponding set of 2 × 2 matrices {C(k)} of expansion
coefficients. Clearly, quadruples of complex 2 × 2 matrices
{C(k)} meeting the requirement (7) are in one-to-one corre-
spondence with ONB’s or frames in a two-qubit Hilbert space.

Under the six-parameter local unitaries UA,UB ∈ SU(2),
these coefficient matrices undergo the change C(k) → C̃(k) =
UAC(k)UT

B , k = 1,2,3,4. We begin by using this local freedom
to first bring C(1) to the canonical form

C̃(1) =
(

cos θ1 0
0 sin θ1

)
, 0 � θ1 � π/4 (8)

cos θ1 and sin θ1 being, respectively, the larger and smaller
singular values of C(1). In this process, we have already used
up all local unitary freedom except conjugation by diagonal
SU(2) matrices: UA = diag(e−iη,eiη), UB = U


A. (Just as we
are free to multiply every |
k〉 of a frame by a phase factor
eiηk , so also we can multiply every coefficient matrix by a
unimodular scalar eiηk .)

To obtain the canonical form for the second vector, note
that any normalized matrix orthogonal to C̃(1) is necessarily of
the form(

α sin θ1

√
1 − α2eiφ sin θ2√

1 − α2eiφ′
cos θ2 −α cos θ1

)
, 0 � α � 1.

(9)
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FIG. 2. (Color online) Volume of separable states as a function
of the two entanglement parameters sin 2θ, sin 2α in the case of the
two-parameter family of frames. It is seen that the volume is minimum
for (π/4,π/4) which corresponds to the Bell or magic frame.
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Now, we may use up the sixth and last local freedom to
render the phases of the off-diagonal elements equal. Thus,
the canonical form for the second matrix is

C̃(2) =
(

α sin θ1

√
1 − α2eiφ sin θ2√

1 − α2eiφ cos θ2 −α cos θ1

)
. (10)

With the local unitary freedom having been thus fully
exhausted, C̃(3) has the canonical form

C̃(3) =
(

β sin θ1

√
1 − β2eiφ3 cos θ3

−
√

1 − β2eiφ′
3 sin θ3 −β cos θ1

)
.

(11)

It should be noted that the four (real) parameters β, θ3, φ3, φ′
3

of C̃(3) are not arbitrary. While C̃(3) is manifestly orthogonal
to C̃(1), the orthogonality requirement Tr(C̃(3)†C̃(2)) = 0 when
enforced would determine these four parameters in terms of
two independent parameters. Finally, C̃(4) has the canonical
form

C̃(4) =
(

γ sin θ1

√
1 − γ 2eiφ4 cos θ4

−
√

1 − γ 2eiφ′
4 sin θ4 −γ cos θ1

)
,

(12)

but it is clear that none of γ, θ4, φ4, φ′
4 is a free (continuous)

parameter: they get fixed by the two complex-valued condi-
tions Tr(C̃(4)†C̃(2)) = 0 = Tr(C̃(4)†C̃(3)).

Returning to C̃(3), the complex-valued condition
Tr(C̃(3)†C̃(2)) = 0, when written out in detail, reads as

αβ +
√

(1 − α2)(1 − β2)[ei(φ−φ3) sin θ2 cos θ3

−ei(φ−φ′
3) cos θ2 sin θ3] = 0. (13)

The imaginary part of this equation leads to the restriction

φ′
3 = φ − sin−1

[
tan θ2

tan θ3
sin(φ − φ3)

]
, (14)

while the real part requires

β =
√

(1 − α2)�2

α2 + (1 − α2)�2
, (15)

where � = sin θ2 cos θ3 cos(φ − φ3) − cos θ2 sin θ3 cos(φ −
φ′

3). Thus, in the present scheme we may choose the following
six as free parameters: 0 � α � 1, 0 � θ1 � π/4, 0 � θ2,θ3 �
π/2, and 0 � φ,φ3 < 2π . In terms of these six parameters,
the other two parameters for |ψ3〉 or C̃(3), namely φ′

3,β, can be
determined through Eqs. (14) and (15). Note that the allowed
ranges for angles are not completely free and have to satisfy
constraints such that the argument of sin−1 in Eq. (14) has
magnitude less than or equal to 1, and � � 0 since α,β � 0
by assumption.

Let us quickly do a parameter counting to check the
reasonableness of this parametrization. A generic orthonormal
frame in the two-qubit Hilbert space would be expected
to be parametrized by 12 parameters: 6 (real, continuous)
parameters for the first vector (a generic element of CP 3),
4 for the second (an element of the orthogonal CP 2), 2 for
the third (the CP 1 ∼ S2 orthogonal to the first two vectors),
and none for the fourth. We have thus “efficiently” used the
3 + 3 = 6-parameter local unitary freedom to maximal effect

to go from 12 to 6: |ψ1〉 is left with one parameter (θ1)
with five local unitary parameters used up, |ψ2〉 has three
parameters (α,θ2,φ) with the sixth and last local parameter
used up, 〈ψ1|ψ3〉 = 〈ψ2|ψ3〉 = 0 implies just two residual
(continuous) parameters for |ψ3〉, namely, (θ3,φ3). And, |ψ4〉
is automatically fixed by the requirement that this four-
dimensional vector is orthogonal to |ψ1〉,|ψ2〉,|ψ3〉.

Note that the special two-parameter family of frames or
tetrahedra discussed earlier corresponds to the choice α = 1,
which immediately renders β = 0 = γ . Unlike the case of this
special two-parameter family, the condition for separability in
the general case of six canonical parameters does not break
into direct sum of a pair of 2 × 2 matrices. And hence the
resulting separable subsets of the associated tetrahedra can
have boundaries considerably more complex than quadratic
and planar surfaces of the earlier two-parameter case: they can
be up to quadric surfaces.

For each ξ ∈ �22 we have numerically evaluated the
fractional volume f (ξ ) of the convex subset of separable states
in �3(ξ ), and using this result in Eq. (1), we find the following:

(i) f (ξ ) � 0.5 for every ξ ∈ �22, the inequality saturating
only for the Bell or magic frame (modulo local unitaries);

(ii) the integral in Eq. (1) for vsep actually evaluates to the
value 0.632, consistent with the earlier result of Ref. [6].

III. MONTE CARLO SAMPLING:
HIGHER-DIMENSIONAL SYSTEMS

To gain quick insight into the situation in respect of higher-
dimensional systems, we perform Monte Carlo sampling of the
sets �AB and �dAdB−1 following the scheme in [6]. However,
instead of sampling from the joint distribution we estimate
the relative separable volume for each frame. The relative
separable volume in the full space is simply the average
over frames, as expressed in Eq. (1). For most systems,
215 ≈ 3 × 104 frames were sampled from �AB using Haar
measure, and for each frame 106 points were sampled from
the corresponding simplex �dAdB−1 uniformly. Although the
Haar measure for the orbit �AB is the natural one, there is
no “unique” measure to sample the simplex �dAdB−1, and
indeed different measures have been motivated and used
in [7,8]. However, we have used the uniform measure, in
order to be consistent with the work of Życzkowski et al. [6]
which motivated this work. Figure 3 shows the distribution of
relative separable volume and frame entanglement, the average
entanglement of the orthonormal pure states (dAdB in number)
defining the frame. It also shows the joint distribution of these
two quantities as well as their scatter plots. We observe that
for a 2 × 2 system the separable volume distribution becomes
narrow as the frame entanglement approaches 1, which does
not happen for other cases. This is possibly a consequence of
the fact that for a 2 × 2 system there exists only one maximally
entangled frame modulo local unitary, whereas for higher-
dimensional systems there are many locally inequivalent
maximally entangled frames [18,19]. We show in Fig. 4 the
mean and minimum separable volume and frame entanglement
as a function of Hilbert space dimension. Consistent with
earlier work [6], we find that the separable volume decreases
exponentially with Hilbert space dimension. Systems with the
same total or composite Hilbert space dimension but different
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FIG. 3. (Color online) Distribution of separable volume and
frame entanglement over the orbit of frames. In each subfigure, the
top-left plot shows the distribution of (fractional) separable volume,
the top-right plot shows the distribution of frame entanglement,
the bottom-left plot shows the scatter plot of all pairs of separable
volume and frame entanglement, and the bottom-right plot shows the
two-dimensional histogram corresponding to the joint distribution of
separable volume and frame entanglement.
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FIG. 4. Top panel shows mean and minimum of separable volume
over frames as a function of Hilbert space dimension, showing an
exponential decrease. It also shows the lower bounds given by [6] as
a solid line, and the one given by [10] as a dashed line. Bottom panel
shows the corresponding mean frame entanglement with different
symbols for different dA, for fixed dAdB .

subsystem dimensions have only slightly different separable
volume which is not prominently visible in Fig. 4, and so has
been detailed in Table I.

Our approach generalizes to higher-dimensional systems,
wherein qualitatively different additional features emerge.
For instance, for the qutrit-qutrit systems, not all frames
of maximally entangled states are local unitarily equivalent
and, consequently, they lead to unequal fractional volume of
separable states and, perhaps surprisingly, the “Bell frame”
is not the one to result in minimum separable volume. This
result is significant should it possibly imply that for higher-
dimensional d × d systems, the Bell frame is not the most
robust one among the maximally entangled frames.

TABLE I. Relative separable volume for bipartite systems with
fixed total Hilbert space dimensions dAdB that can be decomposed as
HA ⊗ HB in more ways than one.

dAdB dA × dB Mean Minimum

12 2 × 6 0.0796 0.0708
3 × 4 0.0724 0.0631

16 2 × 8 0.0268 0.0242
4 × 4 0.0233 0.0204

18 2 × 9 0.0154 0.0140
3 × 6 0.0135 0.0118

20 2 × 10 0.0088 0.0080
4 × 5 0.0075 0.0065

24 2 × 12 0.0029 0.0026
3 × 8 0.0025 0.0021
4 × 6 0.0024 0.0021
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To indicate what we mean by Bell frame for a d ×
d system, define a pair of d × d matrices X,Y through
X = diag (1,ωd,ω

2
d , . . . ,ω

d−1
d ), Yjk = δj+1,k where ωd =

exp(−i2π/d) and j + 1 = k is to be understood in the mod d

sense. It is clear that the d2 matrices Cαβ = d−1/2XαYβ , α,β =
1,2, . . . ,d, viewed as coefficient matrices in the computational
product basis correspond to maximally entangled orthonormal
vectors. For brevity, we call this basis of maximally entangled
states “the Bell frame”.

IV. QUBIT-QUTRIT SYSTEM

Analogous to the special two-parameter family of the
two-qubit frames considered earlier, we now consider a special
three-parameter family of orthogonal frames for the 2 × 3
system representing a qubit-qutrit system:

C|ψ1〉 =
(

cos θ 0 0
0 sin θ 0

)
, C|ψ2〉 =

(
sin θ 0 0

0 − cos θ 0

)
,

C|ψ3〉 =
(

0 cos α 0
0 0 sin α

)
, C|ψ4〉 =

(
0 sin α 0
0 0 − cos α

)
,

C|ψ5〉 =
(

0 0 cos β

sin β 0 0

)
, C|ψ6〉 =

(
0 0 sin β

− cos β 0 0

)
.

(16)

The particular case θ = α = β = π/4 may be called the
Bell basis for the 2 × 3 system. We find using Monte Carlo
sampling that the relative separable volume is approximately
0.377. We find numerically that there are other maximally
entangled frames which do not belong to this special
parametrization that have lower separable volume than the
Bell-diagonal frame.

V. VOLUME OF HYPERSPHERES

In this section, we suggest that an exponential decrease
in the volume of separable states with increasing Hilbert
space dimension implies an increase in “effective radius” for
separable states [6,10,20]. To gain some perspective, let us
discuss the effect of Hilbert space dimension on the ratio of
volumes of hyperspheres (in the state space) with constant ratio
of radii. Let rsep and rtot be the radii of the inner (separable)
and outer (total) hyperspheres, respectively (rsep < rtot). The
ratio of the volumes of these hyperspheres in n dimensions
is V sep/V tot = (rsep/rtot)n. Thus, the ratio of the volumes
decreases exponentially with the dimension n even if the ratio
of the radii is constant. For a quantum system represented
by a d-dimensional Hilbert space, the state space, i.e., the
space of density matrices, is d2 − 1 dimensional. Thus, in the
hypothetical case in which the set of all states and the set of
separable states were (concentric) hyperspheres with ratio of
radii independent of d, the ratio of the volume would have
decreased as (rsep/rtot)(d2−1), which is faster than exponential
in Hilbert space dimension d. Thus, if one observes no-
stronger-than exponential decrease (e−αd ) in the actual ratio
of volumes, then the ratio (rsep/rtot) ought to increase with d

as e−αd/(d2−1), and approach 1 asymptotically (see Fig. 5).
Thus, it follows that a no-faster-than exponential decrease
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FIG. 5. Behavior of the ratio of radii for hyperspheres in state
space �d with Hilbert space dimension d , assuming exponential
decrease e−αd in the ratio of volumes.

in relative separable volume with Hilbert space dimension
implies that the “effective” relative radius of the separable
region must actually increase with dimension. This seems to
be a new insight, as earlier results have claimed a decreasing
lower bound on this effective radius [20]. More importantly,
there exists one claim that an upper bound on this effective
radius too decreases with increasing Hilbert space dimen-
sion [20] for the case of quantum systems composed of many
qubits.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed in some detail the geometry
of separable states in some three sections of the 15-parameter
two-qubit state space �4, and some of these sections are
pictured in Fig. 1. This hopefully gives some insight into
the geometry of separable sets for two-qubits. We have also
given a general parametrization for the state space of two-qubit
system. We believe our analysis shows why the surprising
result of Ref. [6] could indeed have been “anticipated”.
Using Monte Carlo sampling of the state space of the
higher-dimensional system, we have explored the relation
between separable volume and frame entanglement. One of
the major surprising results is that for higher-dimensional
systems, the Bell frame is not the one having minimum
separable volume. This result could possibly have important
consequences for generating robust entangled states. We have
also pointed out that a no-stronger-than exponential decrease
in relative separable volume with Hilbert space dimension
actually implies an increase in the “effective radius” of the
separable set, contrary to earlier claims.

Although we have considered the uniform measure on
the simplex, other measures can also be considered. As
an example, we find that with Dirichlet measure (ν = 1

2 )
the separable volumes are 0.350 (2 × 2), 0.122 (2 × 3),
and 0.022 (3 × 3) consistent with earlier results [7,8]. The
computational cost of our approach appears to grow as ∼ d5/2

with Hilbert space dimension d(=dAdB), which makes it
possible to go to even bigger systems if sufficient computa-
tional resources are available. Since the Monte Carlo method
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employed is embarrassingly parallel, the performance of sim-
ulation should increase linearly with the number of available
processors.
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