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Tractable simulation of error correction with honest approximations to realistic fault models
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In previous work, we proposed a method for leveraging efficient classical simulation algorithms to aid in
the analysis of large-scale fault-tolerant circuits implemented on hypothetical quantum information processors.
Here, we extend those results by numerically studying the efficacy of this proposal as a tool for understanding
the performance of an error-correction gadget implemented with fault models derived from physical simulations.
Our approach is to approximate the arbitrary error maps that arise from realistic physical models with errors
that are amenable to a particular classical simulation algorithm in an “honest” way; that is, such that we
do not underestimate the faults introduced by our physical models. In all cases, our approximations provide
an “honest representation” of the performance of the circuit composed of the original errors. This numerical
evidence supports the use of our method as a way to understand the feasibility of an implementation of quantum
information processing given a characterization of the underlying physical processes in experimentally accessible
examples.
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I. INTRODUCTION

Quantum computing is the theory and practice of using
systems which exhibit the properties of quantum mechanics to
store and process information, allowing certain computational
problems to be solved with greater speed than any known
classical algorithm [1–3]. This work addresses a gap in
efforts towards developing a practical quantum computer,
namely that between our understanding of the physics of
existing small quantum systems and methods for reasoning
about the performance of large fault-tolerant circuits. We
provide a concrete algorithm that is tractable given currently
available classical computational resources and that enables
reasoning about the performance of large-scale quantum
information processors using experimental evidence in small
systems. Our method accomplishes this task by extending
the applicability of simulation algorithms for limited error
models with honest approximations of errors outside these
models. This is of immediate importance given that several
modalities have been proposed for the development of large-
scale quantum information processors, including quantum dots
[4] and superconducting qubits [5].

The development and implementation of fault-tolerant
quantum error correction (QEC) is a key milestone towards the
development of large-scale quantum computation. Therefore,
understanding the thresholds, overhead, and resource require-
ments of fault-tolerance methods is a critical step towards
evaluating the feasibility of proposals for large-scale quan-
tum information processing. For some such fault-tolerance
schemes, we can analytically find thresholds on the acceptable
errors, such that for any error of a weaker rate than the
threshold, we can arbitrarily reduce the logical error rate. How-
ever, analytic thresholds have not yet been proven for fault-
tolerance proposals based on topological properties, such as

surface-code based implementations [6]. For these proposals,
numerical simulations are performed based on restricted error
models that admit efficient classical simulation algorithms.
Connecting these numerically simulated thresholds to models
based on the physics of a device is a pressing concern in the
development and appraisal of quantum information processing
(QIP) proposals.

In recent years, proof-of-principle experiments have pro-
vided a better understanding of the physics underlying can-
didate QIP devices by implementing and fully characterizing
quantum algorithms on small systems [7]. Such characteri-
zation techniques, however, are based on quantum process
tomography [8] and are thus exponentially expensive in the
size of the system. Though techniques exist to improve the
characterization of quantum systems by using classical [9]
and quantum [10] simulation resources, the exponential cost
is inevitable if we demand that the system be characterized in
terms of a quantum channel, due to the number of parameters
that must be estimated. Thus, we cannot practically hope
to directly characterize intermediate or large systems to
demonstrate feasibility of QIP proposals.

A more attractive option, then, is to apply models of noise
derived from experimental characterization of small instances
of, or from simulations of the physics underlying, a proposed
device. Such realistic noise models are not in general efficient
to simulate, however, such that the question naturally arises:
How does one leverage the efficient simulation algorithms for
limited noise models to reason about the performance of large
quantum information processors, using the realistic physical
models afforded by small experimental examples? Crucially,
we demand that we extrapolate small models to simulations
of large quantum information processors in an honest fashion;
that is, such that errors are only ever exaggerated and are never
underestimated.
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Doing so would enable the analysis of the performance of
circuits implemented on a particular device and would in turn
provide insight into whether an implementation would likely
succeed using a given fault-tolerance scheme. Additionally,
an honest model provides a useful tool for other tasks,
such as understanding resource costs of a device that is
already well below the threshold. Potential applications such
as these are motivated by already existent numerical studies of
circuit performance that are not tied to any particular device.
These studies depend on the existence of efficiently simulable
subtheories of quantum mechanics.

The most commonly used subtheory stems from the
Gottesman-Knill (GK) theorem [11], which provides an
efficient classical simulation algorithm for acting Clifford
gates and Pauli measurements on stabilizer states. Coupling
this with Monte Carlo (MC) techniques, stabilizer circuits with
faults modeled as the probabilistic application of stabilizer
circuit elements can be simulated efficiently. While this report
works exclusively with error models useful for GK-MC
simulation, the general method described is independent of the
set of efficiently simulable channels, making it possibly useful
within the context of other efficient simulation results, such
as Wigner function simulation [12], match-circuit simulation
[13], quantum normalizer circuit simulation [14,15], or the
nonadaptive strong-simulation algorithm for Clifford circuits
[16]. GK-MC simulations have been used to numerically
estimate threshold error rates in topological codes [6,17,18]
and have been augmented with sequential Monte Carlo tech-
niques to enable reasoning about overhead required even when
well below threshold [19]. Given the existing applications of
GK-MC simulation, and the potential utility of other efficient
simulation algorithms, it is highly desirable to use these tech-
niques to aid in the understanding of real device performance.
Understanding how to do this could also provide insights
into how to compare the performance of experimentally
realized gates to analytically derived thresholds for limited
error models.

The challenge of applying efficient simulation techniques
to realistic systems lies in the simple fact that errors for
physical systems will, in general, not fit into one of the efficient
simulation formalisms. In Ref. [20], we proposed a solution to
this problem via the concept of honest error approximations.
The idea is to replace an arbitrary error E with a channel �

from a restricted class S, such that � honestly represents the
tendency of E to preserve or distort quantum information. If
S is a subset of efficiently simulable channels, � will be an
efficient, honest estimate of the error induced by E . While we
work exclusively with our definition of honesty, we stress the
generality of this proposal.

We define honesty using the operationally motivated
concept of distinguishability. Let ‖ · ‖1 denote the Schatten
1-norm [21]. For two quantum states ρ0 and ρ1, the quan-
tity 1

2 + 1
4‖ρ0 − ρ1‖1 is the optimal success probability of

inferring the value of a bit α ∈ {0,1}, drawn with uniform
probability, given the state ρα , using a single measurement
[22]. The error that a noise map E induces on a state ρ is then
quantified as ‖ρ − E(ρ)‖1, which we term the input-output
(IO) distinguishability. This provides a strong operationally
motivated definition of error; given a 50% chance that E
acts on ρ, the IO distinguishability tells us what the optimal

probability of “noticing” its action is. Using this quantification
of error, the following optimization problem for finding an
honest approximation to a given noise map E was given in
Ref. [20] as follows:

Minimize: ‖� − E‖�
Subject to: for every pure state ρ, (1)

‖ρ − �(ρ)‖1 � ‖ρ − E(ρ)‖1,

where � ranges over some desirable subset of quantum
channels (e.g., Pauli channels) and ‖ · ‖� is the diamond norm,
which provides an analog to distinguishability for channels
[23].

The constraint of the above problem encodes our definition
of honesty; if the constraint is satisfied for two maps � and
E , we say that � is an “honest representation” of E . The main
result of Ref. [20] is an easy-to-compute, state-independent
condition on the maps � and E which is sufficient to ensure
honesty in the qubit case. For higher dimensions, the property
ensures something similar to honesty, where the Schatten
1-norm is replaced by the 2-norm, though, to date, all instances
that we have generated have also been found to satisfy Eq. (1)
when tested using random pure states. We use this simpler
condition in an optimization problem detailed in Appendix A
1 to numerically find honest approximations in this work.
Details on the actual implementation of the problem, as well
as a definition of the diamond norm, can also be found in
Appendix A 1. We note that work similar to Ref. [20] has
highlighted the utility of efficiently simulable measurements
for modeling nonunital errors [24].

While our method ensures that the individual gate errors
are honestly represented, its utility as a means for determining
overall circuit performance depends on the preservation of
the honesty of the approximations under composition and
tensor products. (For brevity, we will abuse terminology
slightly by using the word “composition” to refer to both
direct composition and tensor products of maps.) That is,
we are concerned with the degree to which a composition
of honest approximations of gate elements is itself an honest
approximation of the circuit composed of the individual gates
in question.

In this paper, we numerically demonstrate that honesty
is preserved under composition for some well-motivated
physical models when used in a typical QEC circuit, pro-
viding evidence for the general applicability of our method.
The circuit we simulate is a stabilizer circuit, and thus
we approximate gate errors as probabilistic applications of
stabilizer circuit elements to make it efficiently simulable using
GK-MC. Specifically, we consider approximating errors as
Pauli channels and as mixed-Clifford channels (probabilistic
application of Pauli gates and Clifford gates, respectively).
Our analysis is carried out within a generic simulation schema,
described in detail in the next section, which emulates analysis
of a physical system’s ability to perform a QIP task, as per
Refs. [4,25]. This schema serves as a demonstration of how
we imagine our approximation method can be used and tests
its value within such a use case. We find that, in all tested cases,
our approximations compose well; that is, the approximated
circuits honestly represent the performance of the originals.
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Additionally, we include performance statistics for “Pauli
twirling,” which is another way of generating a Pauli channel
from an arbitrary error, within our simulation schema. In
Ref. [20], we showed that Pauli-twirled approximations can
underestimate the error induced by the original channel (as
per our definition) and thus may not be useful for circuit
performance evaluation. In Ref. [26], Geller and Zhou ask if
the Pauli-twirled approximations are “sufficiently good.” The
motivation for their work is that the Pauli-twirled approxima-
tion is efficiently computable in the dimension of the system,
given a full description of a map, and that twirled channels are
in general easier to estimate experimentally than the original
[27–29]. This is in contrast to our method, which is not
necessarily efficient to compute in the dimension. They
argue that, while the Pauli-twirled approximations sometimes
underestimate the failure probability for the task they consider,
the amount of underestimation is small. Our simulations, in
conjunction with Geller and Zhou’s work, demonstrate good
and poor regimes of performance for the Pauli-twirled ap-
proximations, in terms of circuit performance evaluation, with
Geller and Zhou’s error models falling into the good regime. In
Appendix C, we identify and examine these regimes in detail
and argue that the poorly performing regime may be more rep-
resentative of the types of errors typically found in experiment.

II. SIMULATION SCHEMA

Our simulation schema begins with a low-level physical
model and ends with a high-level, efficient simulation of a QEC
circuit, with our approximation method being a bridge between
the two. A physical model is a description of the continuous-
time dynamics of a candidate physical system for QIP, consist-
ing of deterministic and stochastic parts to internal and control
Hamiltonians, as well as dissipative open quantum-system dy-
namics, and includes constraints on control amplitudes. Using
control techniques, a gate set is generated from a physical
model, which consists of all elementary quantum logic gates
required for the desired QEC circuit. Once a gate set is gener-
ated, the error on each gate is approximated using our method,
yielding an honest representation of the original gate set, which
is used in an efficient simulation of the desired QEC circuit.

The circuit that we simulate, shown in Fig. 1, is a gadget that
performs one round of error correction in an [[n,k,d]] stabilizer
code, which we implement using the five-qubit perfect code
(a [[5,1,3]] code). The circuit was chosen by balancing the
desire that it be representative of standard practices, with the

requirement that it be small enough to allow for fast simulation
of arbitrary gate errors, thereby allowing for comparison of the
efficiently simulable errors to the original. For us, a gate set
consists of the gates {1,X,Y,Z,H,CNOT}, where the first four
are standard single qubit Pauli gates, H is the Hadamard gate,
and CNOT is the two-qubit controlled-NOT gate. Note that the
circuit we ultimately simulate uses only the 1, H , and CNOT

gates. The rest are included for further comparison of the gate
approximations.

We implement this procedure for three gate sets, generated
from two physical models with varying model parameters
and control techniques. The physical models and control
techniques are chosen to be representative of those found in ex-
periment. Doing so allows us to encounter errors not typically
considered in fault-tolerance research, despite naturally occur-
ring in physical implementations. We emphasize, however, that
neither the approximation method nor the procedure for testing
it given here have been tailored for a particular outcome. The
method is generic; it is independent of both the underlying
physical model and gates, as well as the QEC circuit.

III. ERROR COMPOSITION

Before walking through our implementation of this scheme,
we construct a simple example in which honest approximations
compose dishonestly. This example demonstrates the inherent
limitations of approximating an error with another error that
composes in a fundamentally different way. Consider the two
single-qubit maps

�(ρ) = U (θ )ρU †(θ ), (2)

�(ρ) = (1 − p)ρ + pZρZ, (3)

where U (θ ) = exp(−i θ
2 Z) and Z is the Pauli z operator. In

Ref. [20], it was shown that if p = | sin(θ/2)|, then � and �

have identical IO distinguishability properties; that is,

‖ρ − U (θ )ρU (θ )†‖1 = ‖ρ − �(ρ)‖1, (4)

for all ρ and therefore � is an honest representation of �.
Consider the state ρ+ = |+〉 〈+|, where X |+〉 = |+〉, and X

is the Pauli x operator, which is chosen as it is maximally
sensitive to both U (θ ) and �. One can check that

‖ρ+ − �(ρ+)‖1 =‖ρ+ − �(ρ+)‖1 = 2| sin(θ/2)| = 2p. (5)

|β00
1
2k J(Φgadget)Φgadget

Eideal

syndrome meas.

R Dideal|0⊗r Tr...
...

...
...

...
...

|0⊗r

Z •
...

...
...

Z •

FIG. 1. Circuit to produce a Choi state for the logical action �gadget of a QEC gadget acting on an [[n,k,d]] stabilizer code, where r ≡ n − k.
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Now, consider the circuit composed of two applications of �,
C = � ◦ �, and the approximate circuit C(a) = � ◦ �, where

C(a)(ρ) = [(1 − p)2 + p2]ρ + 2p(1 − p)ZρZ. (6)

For θ ∈ [−π
2 , π

2 ], it can be checked that

‖ρ+ − C(ρ+)‖1 > ‖ρ+ − C(a)(ρ+)‖1, (7)

and thus the composition of approximations is not an honest
representation of the original circuit.

This example can be understood by looking at how
repetitive application of these channels affects the state. Each
application of �, a unitary error, deterministically rotates the
state by a small angle, whereas �, a dephasing error, rotates
the state by 180◦ but with a small probability. In the former
case, the distance that each application moves the current state
remains constant, whereas in the latter case, this distance
decreases exponentially, resulting in an underestimation of
errors after only two applications. We encounter this situation
in our simulations; one of the gate sets we consider has an
identity gate error that is essentially a unitary about the z axis,
and the honest Pauli approximation is the dephasing channel
that reproduces its IO distinguishability properties. Given this
discussion and the frequency with which the gate occurs, we
expected that our approximations might underestimate the
overall circuit error. However, even in this case, our approxima-
tions perform as desired, providing strong numerical evidence
for the value of this method in QEC circuits.

Despite these potential difficulties with error composition,
it remains possible that, after a QEC protocol is applied, the
resulting effective errors might compose more desirably. As an
example, the first step of QEC in stabilizer codes is measuring
the error syndrome. This consists of measuring a generating set
of stabilizer elements {Qi}ki=1, which produces a k-bit string
b with bi = 1 if the outcome from measuring Qi is −1 and
bi = 0 if it is +1. If a particular string b is measured, then the
system is projected onto the subspace defined by the projector

	b = 2−k[1 + (−1)b1Q1] · · · [1 + (−1)bkQk]. (8)

For a Pauli operator P and codeword |ψ〉, 	bP |ψ〉 = 0 if
P does not produce syndrome b and 	bP |ψ〉 = P |ψ〉 if
P produces syndrome b. Thus, indexing the Pauli operators
as {Pi} and denoting Sb as the set of indices for Pauli
operators that produce syndrome b, if a particular syndrome b

is measured after an error �, having χ matrix χij in the Pauli
basis [8], acts on an arbitrary codeword |ψ〉, the state will be
(ignoring normalization)

	b�(|ψ〉 〈ψ |)	b =
∑
ij

χij	bPi |ψ〉 〈ψ | Pj	b

=
∑
ij∈Sb

χijPi |ψ〉 〈ψ | Pj .

Given this form, it is clear that if Pi and Pj have different
syndromes, then χij can play no part in the postsyndrome
measurement state and is therefore effectively truncated by
syndrome measurement. In this way, errors become more
“incoherent” and this, at least superficially, makes errors “more
like” Pauli channels (which have diagonal χ matrices in the
Pauli basis). Thus, whatever the form of �, after a correction
step is enacted, the effective error may compose more like

a Pauli channel. In practice, this argument may fail due to
various aspects of imperfect syndrome measurement, such
as limited visibility measurements, and the time it takes to
perform measurement protocols like ancilla-assisted syndrome
measurement.

IV. IMPLEMENTING THE SCHEMA

A. Physical models and gate set generation

We consider two physical models, PM1 and PM2. PM1
is motivated by a double quantum dot system and PM2
represents an archetypal two-level system (see Appendix B
for a description and full details). Gate Set 1 (GS1) is built on
PM1, and Gate Sets 2 and 3 (GS2 and GS3) are built on PM2
(using different model parameters). GS1 and GS2 use noise
refocusing techniques [30,31], which mitigate errors induced
by stochastic Hamiltonians. GS2 and GS3 implement gates via
hard pulses; that is, the pulse sequences used to generate the
gates are manually specified by choosing control amplitudes.
Due to the complicated structure of the Hamiltonian in PM1,
optimal control theory (OCT) was used to find pulse sequences
that implement the gates in GS1 with high fidelity [32,33].
Every gate in a set is made to be the same length in time, as
our circuit simulation proceeds in discrete time steps in which
a single gate acts on every register qubit. A full description of
how the gates are simulated is given in Appendix A 2.

The different combinations of physical model and control
techniques give rise to different types of gate errors. A detailed
account on the form of the errors for each gate set is given in
Appendix C, as it has particular relevance within the context of
that discussion. We do, however, wish to highlight that some
gates in GS1 have largely unitary errors, resulting from the use
of OCT pulse finding in gate implementation. Thus, given the
discussion on error composition, GS1 provides a strong test
for our method.

B. Gate set approximations and statistics

For each gate set we generate three efficiently simulable
approximate gate sets:

Pauli twirled: The Pauli-twirled errors.
Pauli: The honest Pauli channel approximation.
Clifford: The honest mixed-Clifford channel approxima-
tion. Note that only the single-qubit errors are approxi-
mated as mixed Cliffords (we allowed the algorithm to
search over all mixed Cliffords). Due to the large number
of two-qubit Cliffords, the honest Pauli approximation for
the CNOT gate is reused.

Several metrics are used to compare how each approximation
performs on individual gates. In what follows we denote
the noisy implementation of some ideal operation Uideal by
�Original, and use � as a place holder for the various approx-
imations. The first few metrics are well-known quantities.

(i) χ00: The first entry of the χ -process matrix of the error
in the Pauli basis [8]. This quantity is reported due to its relation
to the average gate fidelity [34] and, for Pauli channels, is the
probability that no fault occurs.

(ii) ‖� − UIdeal‖� and ‖� − �Original‖�: The distance of
the approximation � to the ideal gate and original error,
respectively.
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TABLE I. Statistics for the various approximations of the identity gate for each gate set, approximated from N = 106 random pure states.

Statistics Original Pauli twirled Pauli Clifford

χ00 0.999994 0.999994 0.997618 0.998314
‖� − UIdeal‖� 4.76 × 10−3 1.20 × 10−5 4.76 × 10−3 4.77 × 10−3

GS1 ‖� − �Original‖� 4.76 × 10−3 6.73 × 10−3 3.64 × 10−3

h −3.73 × 10−3 1.14 × 10−7 1.64 × 10−6

pviol 1.0 0.0 0.0

χ00 0.999087 0.999087 0.999085 0.999086
‖� − UIdeal‖� 1.83 × 10−3 1.83 × 10−3 1.83 × 10−3 1.83 × 10−3

GS2 ‖� − �Original‖� 2.48 × 10−5 2.50 × 10−5 2.06 × 10−6

h −1.63 × 10−7 2.65 × 10−6 8.34 × 10−7

pviol 0.49861 0.0 0.0

χ00 0.998751 0.998751 0.996501 0.996501
‖� − UIdeal‖� 4.99 × 10−3 2.50 × 10−3 7.00 × 10−3 7.00 × 10−3

GS3 ‖� − �Original‖� 2.50 × 10−3 5.28 × 10−3 5.28 × 10−3

h −1.03 × 10−3 1.91 × 10−3 1.91 × 10−3

pviol 0.74978 0.0 0.0

The rest stem from our definition of honesty. Using the
function

h(�,E,ρ) ≡ ‖ρ − �(ρ)‖1 − ‖ρ − E(ρ)‖1, (9)

which we call the hedging of the channel � relative to E for
the state ρ, the statement that � honestly represents the error
of �Original can be restated as h(�,�Original,ρ) � 0 for all pure
states ρ. We calculate three quantities related to the hedging,
which we approximate by randomly sampling N pure states
{|ψi〉}Ni=1.

(a) h̄(�,�Original) ≡ ∫
dψ h(�,�Original, |ψ〉 〈ψ |)

≈ 1
N

∑N
i=1 h(�,�Original, |ψi〉 〈ψi |): The average of the hedg-

ing function over pure states.
(b) pviol ≈ Nviol

N
: The ratio of pure states |ψ〉 for which

h(�,�Original, |ψ〉 〈ψ |) < 0, where Nviol = |{|ψ〉 ∈ {|ψi〉}Ni=1 :
h(�,�Original, |ψ〉 〈ψ |) < 0}|.

Table I presents the statistics for the identity gate from each
gate set, using N = 106 uniformly sampled pure states. See
Appendix D for tables containing statistics on all gates.

Looking at the various diamond norm distances among the
Original, Ideal, Pauli twirled (�PT), and Pauli errors (�P), a
simple ordering can be seen to hold for every gate,

‖�PT − UIdeal‖� � ‖�Original − UIdeal‖� � ‖�P − UIdeal‖� ,

‖�PT − �Original‖� � ‖�P − �Original‖�.

Thus, while the Pauli-twirled error is always closer than the
Pauli to the Original, it is also always closer to the Ideal than
the Original and is therefore a less noticeable error than the
Original. The location of the Clifford approximation in the
second inequality chain varies; for some gates, it is an order
of magnitude closer to the Original than both the Pauli and
Pauli-twirled approximations, and, for others, it is the same
distance to the Original as the Pauli, indicating that the best
Pauli is also the best Clifford approximation, and, for the rest,
it is between the two.

Two other important and connected observations can
be made. In some cases, the χ00 element of the honest
approximations is much lower than that of the Original, and
in others it does not appreciably differ. In the former cases,

the Pauli-twirled approximations tend to be much closer to the
Ideal, and have worse hedging performance, than in the latter
cases. These are demonstrations of channels with different
average fidelities but similar IO distinguishability properties
and channels with identical average fidelities but very different
IO distinguishability properties. This observation is connected
to the different regimes of performance for Pauli twirling, as
well as how “coherent” or “unitary” an error is, and is explained
in detail in Appendix C.

C. Circuit design and simulation results

We simulate the gadget �gadget that performs one round
of error correction on one block of an error-correcting code,
as per Fig. 1. We isolate the action �gadget of this gadget on
the encoded state by preceding and following it with perfect
encoding and decoding operations, Eideal andDideal. The circuit
is simulated by computing its Choi state; for a code that
encodes k logical qubits into n physical qubits, we take the
state

|β00〉 = 1√
2k

2k∑
i=1

|i〉 ⊗ |i〉 , (10)

where {|i〉}2k

i=1 is an orthonormal basis for the k-qubit Hilbert
space, and compute

(C ⊗ 1L(Ck))(|β00〉 〈β00|) = 1

2k
J (C), (11)

where C represents the entire circuit and J (C) is the Choi-
Jamiołkowski matrix for the circuit. (This simulation method
is chosen due to the efficiency with which maps of the
form we consider can be applied to states. See Appendix A
3 for details.) Due to the perfect encoding and decoding
operations, J (C) = J (�gadget). Explicitly, the circuit performs
the following operations:

(1) The state |β00〉 [Eq. (10)] is prepared, half of which is
perfectly encoded into an [[n,k,d]] stabilizer code.

(2) The gadget �gadget is applied to the encoded physical
qubits, consisting of the following:

022306-5



PUZZUOLI, GRANADE, HAAS, CRIGER, MAGESAN, AND CORY PHYSICAL REVIEW A 89, 022306 (2014)

H • H H • H •
• H • H H • H

• • H • H

H • H • • H • H

H • H • •

(a) Original circuit

H • • H •
• H • • H

• • H • H
H • H • • H • H

H • H • •

(b) Circuit with simplifications and with explicit wait locations

FIG. 2. Syndrome measurement circuit for the five-qubit perfect code.

(i) One imperfect wait location on all of the data qubits.
This is a placeholder for possible nontrivial operations in
gadgets meant to perform logical operations.

(ii) Simultaneously, a register of ancillas for ancilla-
assisted syndrome measurement is prepared. An imperfect
identity operation acts on each ancilla to represent imperfect
ancilla preparation.

(iii) Imperfect ancilla-assisted syndrome measurement
is performed (see Fig. 2). Measurement of the physical
ancillas is taken to be perfect, with errors represented by
identity gates that precede the measurement.
(3) A perfect recovery operation is performed by classical

feed-forward of syndrome measurement details (see Fig. 3).
(4) Once �gadget is done, the resultant state is then perfectly

decoded and the physical ancillas are discarded.
The recovery operation is chosen to be perfect as, in

practice, it isn’t always necessary to physically perform the
recovery; errors can be tracked and taken into account when
further operations are performed on the block [35].

FIG. 3. Recovery circuit for the five-qubit perfect code.

We implement this simulation schema using the five-qubit
perfect code, with the syndrome measurement and recovery
circuits designed by the PYTHON package QUAEC [36]. Note
that we choose to perform the syndrome measurement in a
non-fault-tolerant way, as a fault-tolerant gadget for a code
with n physical qubits would require at least 2n ancilla qubits
for the Steane or Knill fault-tolerant error correction (FTEC)
gadgets or strictly more than

∑
i wt(Si) = 16 ancillae for the

Shor FTEC gadget. Thus, at least 10 ancillae are needed for
the perfect code, requiring simulation of at least 16 qubits,
putting us outside the range of quickly simulable circuits with
arbitrary errors.

With four stabilizer generators, this code requires four
ancillas for encoding and four for syndrome measurement
using the circuit shown in Fig. 2. Any redundant Hadamard
gates have been removed. The recovery operation is shown in
Fig. 3. This type of non-fault-tolerant syndrome measurement
is similar to gadgets proposed for use in topological QEC
codes, such as the surface code. In particular, the syndrome
measurement gadget used by Fowler et al. [6], shown in Fig. 4,
relies on CNOT gates between each data qubit in the support of a
stabilizer generator and a common ancilla qubit. We emphasize
that we are not concerned with absolute circuit performance.
Rather, the task at hand is the comparison of relative
performance of efficiently simulable error approximations, so

•
•

•
|0 Z

FIG. 4. Circuit to measure the stabilizer generator Z⊗4, proposed
by Fowler et al. [6] for use in surface codes.
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TABLE II. Statistics for �gadget using N = 106 randomly sampled pure states.

Statistics Original Pauli twirled Pauli Clifford

χ00 0.999964 0.999964 0.985820 0.989930
‖� − UIdeal‖� 4.76 × 10−3 7.28 × 10−5 2.84 × 10−2 2.04 × 10−2

GS1 ‖� − �Original‖� 4.76 × 10−3 2.87 × 10−2 2.01 × 10−2

h −3.69 × 10−3 1.85 × 10−2 1.23 × 10−2

pviol 1.0 0.0 0.0

χ00 0.991372 0.991372 0.991355 0.991367
‖� − UIdeal‖� 1.73 × 10−2 1.73 × 10−2 1.73 × 10−2 1.73 × 10−2

GS2 ‖� − �Original‖� 2.45 × 10−5 4.29 × 10−5 1.14 × 10−5

h −1.63 × 10−8 2.24 × 10−5 7.66 × 10−6

pviol 0.55566 0.0 0.0

χ00 0.992495 0.987594 0.969499 0.969499
‖� − UIdeal‖� 1.51 × 10−2 2.48 × 10−2 6.10 × 10−2 6.10 × 10−2

GS3 ‖� − �Original‖� 1.03 × 10−2 4.60 × 10−2 4.60 × 10−2

h 6.36 × 10−3 3.04 × 10−2 3.04 × 10−2

pviol 0.0 0.0 0.0

it suffices that this circuit contains all of the typical elements
and procedures for QEC, regardless of fault tolerance.

Table II gives the simulation statistics for �gadget, again
using N = 106 sample pure states to compute the hedging
parameters. For each gate set, the Pauli and Clifford approxi-
mations compose well; the approximated circuit honestly rep-
resents the error of the original. This is especially encouraging
for GS1, given its unitary identity error. For the Pauli-twirled
errors, we see that in GS1 they fail the honesty condition
for every tested pure state. For GS2, they fail the honesty
condition for just over half of the pure states tested but by an
arguably small degree. Interestingly, for GS3, the Pauli-twirled
approximations provide an honest representation of the circuit
performance.

V. CONCLUSION

In all examined cases, the honest approximations led
to honest representations of circuit performance, providing
confidence in our method as a tool for evaluating the
performance of typical QEC circuits with realistic gate
errors. By starting from continuous-time physical models,
and building gates using common control techniques, we
tested our method against errors typical of those found in
experiment. The details of the physical models and control
techniques were not tailor-made for any desired outcome. The
strongest test of our method came from errors with strong
unitary parts, arising from OCT designed pulses, a regime not
typically considered in fault-tolerance research. Additionally,
our results, in conjunction with the recent work by Geller
and Zhou [26], demonstrate two regimes of performance
for Pauli-twirled error approximations. In one regime, their
performance can be considered “sufficiently good,” while in
the other, Pauli twirling results in systematic underestimation
of the IO distinguishability notion of error (see Appendix C).

Our work is motivated by the desire for the simulations
to be pessimistic. We want to be reasonably assured that, if
the simulation with the approximated errors performs well
according to some metric, then the actual implementation will

perform well also. Currently, experimental implementations
of QIP are limited to small system sizes. Extrapolating
their performance to hypothetical large-scale systems requires
caution. Quantum processors will require constant application
of error-correction protocols like the one we consider, and it
is imaginable that in large systems, consisting of hundreds of
qubits or more, even a small underestimation of the effect of
physical-level errors may dramatically compound, resulting in
false expectations of overall performance.

This work provides hope that our method can be used as
a tool for extrapolating performance from small systems in
an honest way. This is key to understanding the feasibility
of various proposals for large-scale quantum devices, which
in turn will aid in planning the way forward for feasible
experimental implementations of QIP.
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APPENDIX A: METHODS

1. Channel approximation and diamond norm computation

To measure the distance between two maps � and E , we
use the diamond norm distance ‖� − E‖�, which provides an
analog to distinguishability for channels [23]. For any map
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� : L(H1) → L(H2) (mapping the linear operators acting on
one Hilbert space to the linear operators acting on another),
the diamond norm can be defined as follows:

‖�‖� ≡ max{‖(� ⊗ 1L(H1))(X)‖1

: X ∈ L(H1 ⊗ H1),‖X‖1 � 1}, (A1)

where 1L(H1) is the identity channel acting on L(H1). Given a
set of channels S, to find an honest approximation of an error
map E , we seek to minimize ‖� − E‖� for � ∈ S such that
� satisfies the constraint given in Ref. [20]. To implement
the optimization, we require that S has a parametrization. For
our purposes, it is natural to consider sets of the form S =
{∑n

i=1 pi�i : pi � 0 and
∑n

i=1 pi = 1}. Given this, we have
the following optimization problem:

Input: Finite set of channels {�i}ni=1and channel E

Minimize: f (p1,...,pn) =
∥∥∥∥∥

n∑
i=1

pi�i − E
∥∥∥∥∥

�

s.t.
n∑

i=1

pi = 1,pi � 0, and A � 0, where

A = (1 − M�)T (1 − M�) − (1 − ME )T (1 − ME )

+ (‖t�‖2
2 − ‖tE‖2

2 − 2‖(1 − M�)T t�
− (1 − ME )T tE‖2)1, (A2)

where M� = ∑n
i=1 piMi , t� = ∑n

i=1 piti , (Mi,ti) is the Bloch
representation of channel �i , (ME ,tE ) is the Bloch represen-
tation of E , and 1 is the identity matrix of appropriate size.
Note that the constraint given here is slightly more general
than the one in Ref. [20], as it includes the possibility for S to
contain nonunital channels. We note again that if a qubit map
� satisfies the constraint in the above optimization problem,
then it is an honest representation of the error E , according
to the definition in the introduction. For higher dimensional
channels, the constraint is sufficient to ensure something
similar to honesty, where the Schatten 1-norm is replaced by
the Schatten 2-norm, in which case the approximation � is still
guaranteed to be somehow globally worse than E , though not
in an operationally motivated way. To date, however, all higher
dimensional approximations that we have generated using this
algorithm have also been found to be honest when tested using
random pure states.

We implement the approximation optimization problem in
MATLAB using the built in fmincon function. The diamond
norm is computed using a semidefinite program given by
Watrous [37] and implemented using the CVX package [38].
Linear constraints ensure that the vector (p1, . . . ,pn) is a
probability vector and nonlinear constraints check that the
eigenvalues of the matrix A are non-negative with a tolerance
of 10−15. The SQP algorithm is used for the optimization.
Due to the nonconvexity of this problem it is necessary to run
many local solvers and then choose the best result. This is
done using the MultiStart function which instantiates the local
solver many times over randomly chosen starting points that
satisfy the constraints. For each approximation, we used 72
starting points.

2. Cumulant simulation

To simulate quantum logic gates using our noise models, a
method for the simulation of stochastic quantum evolution is
required. This has been considered in the context of analyzing
the fidelity with which decoherence-free subsystems can
be implemented [39]. In that case, the cumulant expansion
[40–42] was applied to model the effects of stochastic
dynamics on a quantum system.

Following that approach, we will consider that, conditioned
on a particular realization of noise, our system evolves
according to the Liouville-von Neumann equation

∂

∂t
ρ(t) = −i[H (t),ρ(t)] + D[ρ(t)], (A3)

where ρ(t) is the density operator describing our system at time
t , H is the Hamiltonian of the system, and D ∈ T(H) is a linear
transformation describing the decoherence of the system. We
assume that H (t) can be decomposed into deterministic and
stochastic parts,

H (t) = Hdet(t) + Hst(t). (A4)

We then further decompose Hst(t) such that all of the
stochasticity is encapsulated in a set of scalar-valued functions
{ω1(t), . . . ,ωk(t)}. Thus,

Hst(t) =
∑

i

ωi(t)Ai(t) (A5)

for some set of deterministic operator-valued functions
{Ai(t)}.

To analyze the dissipation transformation D, we assume
that it can be written in Lindblad form,

D[ρ(t)] =
∑

i

Liρ(t)L†
i − 1

2
{L†

i Li,ρ(t)}, (A6)

where {Li} are called the Lindblad operators of the
system.

Both the Liouvillian operator L[ρ(t)] := [H,ρ(t)] and the
dissipation operator D act linearly on density operators and

thus may be represented by superoperators ˆ̂L, ˆ̂D ∈ L(L(H)),
where L(H) marks the set of all linear operators acting
on Hilbert space H. Using the isomorphism that L(H) ∼=
H ⊗ H, we shall use the column-stacking basis for H ⊗ H,
such that | |i〉 〈j |〉〉 = |j 〉 ⊗ |i〉. Therefore, one can rewrite
Eq. (A3) as

∂

∂t
|ρ(t)〉〉 = (−i[ ˆ̂Ldet(t) + ˆ̂Lst(t)] + ˆ̂D)|ρ(t)〉〉. (A7)

Now we go to the rotating frame of the deterministic

superoperator ˆ̂Ldet(t), i.e., we define a unitary U(t) =
T exp(−i

∫ t

0
ˆ̂Ldet(t ′)dt ′) such that

∂

∂t
|ρ̃(t)〉〉 = (−iU†(t) ˆ̂Lst(t)U(t) + U†(t) ˆ̂DU(t))|ρ̃(t)〉〉, (A8)

where |ρ̃(t)〉〉 = U†(t)|ρ(t)〉〉.

022306-8



TRACTABLE SIMULATION OF ERROR CORRECTION WITH . . . PHYSICAL REVIEW A 89, 022306 (2014)

The formal solution to Eq. (A8), then, for a single
realization of the trajectories {ω(t)} is given by

|ρ̃(t)〉〉 = T exp

(
−i

∫ t

0

ˆ̂G(t ′)dt ′
)

|ρ(0)〉〉, (A9)

with ˆ̂G(t) := U†(t) ˆ̂Lst(t)U(t) + iU†(t) ˆ̂DU(t).
For our purposes, we are interested in the average evolution

ˆ̂S over the ensemble of control trajectories,

ˆ̂S(t) =
〈
T exp

(
−i

∫ t

0

ˆ̂G(t ′)dt ′
)〉

. (A10)

The cumulant expansion gives us that ˆ̂S(t) = exp( ˆ̂K(t)),
where

ˆ̂K(t) =
∞∑

n=1

(−it)n

n!
Kn = −it ˆ̂K1 − t2

2
ˆ̂K2 + · · · , (A11)

ˆ̂K1 = 1

t

∫ t

0
dt1〈 ˆ̂G(t1)〉, (A12)

ˆ̂K2 = 1

t2
T

∫ t

0
dt1

∫ t

0
dt2〈 ˆ̂G(t1) ˆ̂G(t2)〉 − ˆ̂K2

1 . (A13)

To simplify this, we assume that each control parameter ωi (t) is
a trajectory of a stationary zero-mean process (The zero-mean
assumption technically is not an assumption; the mean of each
random process can be absorbed into the deterministic part

of the Hamiltonian.) That is, that ω ∼ GP(0,
φ), where φ is

the matrix-valued autocorrelation function for ω(t), such that
φi,j (t1 − t2) = 〈ωi(t1)ωj (t2)〉.

Then ˆ̂K1 becomes simply

ˆ̂K1 = i

t

∫ t

0
dt1U†(t1) ˆ̂DU(t1), (A14)

whereas we can then rewrite ˆ̂K2 in terms of the autocorrelation
function,

ˆ̂K2 = 2

t2

∫ t

0
dt1

∫ t1

0
dt2

k∑
i,j=1

φi,j (t1 − t2)

×U†(t1) ˆ̂Ai(t1)U(t1)U†(t2) ˆ̂Aj (t2)U(t2), (A15)

− 2

t2

∫ t

0
dt1

∫ t1

0
dt2U†(t1) ˆ̂DU(t1)U†(t2) ˆ̂DU(t2) − ˆ̂K2

1 ,

(A16)

where ˆ̂Ai(t) = −A∗
i (t) ⊗ 1 + 1 ⊗ Ai(t). In this way, we

note that the cumulant expansion generalizes the Magnus
expansion to account for stochastically varying fields. The
motivation for using cumulants instead of expanding the
time-ordered exponential in terms of moments of the stochas-
tic process stems from the fact that cumulant averages
enter in the exponential, reducing the risk of truncation
artifacts.

To numerically simulate the gate action, we discretize
ˆ̂Ldet(t ′) along our gate length t at N points, with equal

time intervals �t between these points, i.e., we evaluate

{ ˆ̂Ldet(m�t)}, with m = 1, . . . ,N while t = N�t . Next we
approximate U(n�) by

U(n�) ≈ exp(−i
ˆ̂Ldet(n�t)�t)... exp(−i

ˆ̂Ldet(�t)�t)

× exp(−i
ˆ̂Ldet(0)�t). (A17)

Finally, we turn turn the integral in line (A14) into a sum

ˆ̂K1 ≈ i

N

N−1∑
n=0

U†(n�t) ˆ̂DU(n�t), (A18)

and the double integral in line (A15) into a double sum,

ˆ̂K2 ≈ 1

N2

N−1∑
n=0

k∑
i,j=1

φi,j (0)U†(n�t) ˆ̂Ai(n�t)U(n�t)U†(n�t) ˆ̂Aj (n�t)U(n�t)

+ 2

N2

N−1∑
n=1

n−1∑
m=0

k∑
i,j=1

φi,j ((n − m)�t)U†(n�t) ˆ̂Ai(n�t)U(n�t)U†(m�t) ˆ̂Aj (m�t)U(m�t)

− 1

N2

N−1∑
n=0

U†(n�t) ˆ̂DU(n�t)U†(n�t) ˆ̂DU(n�t) − 2

N2

N−1∑
n=1

n−1∑
m=0

U†(n�t) ˆ̂DU(n�t)U†(m�t) ˆ̂DU(m�t) − ˆ̂K2
1 . (A19)

To simulate the gates, we truncated ˆ̂K(t) in Eq. (A11)
at second order, which can be partially justified with the
following. If we have no dissipator term in Eq. (A3), then, due
to statistical independence, the mth-order cumulant disappears
if, for a set of times {t1,t2, . . . ,tn}, any of the time gaps |t1 − t2|,
|t2 − t3|,. . . ,|tn−1 − tn| are larger than the correlation time τc

of the stochastic process [40]. Since cumulants at every order
vanish once the gap between the set of time points exceeds τc,

then if t � τc, the mth-order cumulant ˆ̂Km is effectively an
integral over an (m − 1) dimensional sphere with radius τc,

integrated over t . Therefore, ˆ̂Km scales roughly as τm−1
c Amt ,

where A is the maximum norm of ˆ̂Ai(t). Comparing the

second- and fourth-order cumulants, ˆ̂K2 and ˆ̂K4, reveals that
τ 3
c A4t

τcA2t
= τ 2

c A2, meaning that if τcA � 1 and t � τc, we have
a justification for truncating the cumulant expansion at second
order. For the physical models considered in this work, the
dissipator terms in the Liouville-von Neumann equation were
considerably smaller in their norm than the noise Hamiltonian
terms, so we assume that the arguments above are still
applicable.
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3. Circuit simulation

Each gate in the gate set acts on either one or two qubits,
subjecting the rest to identical, uncorrelated noise (the noisy
identity gate). The action of a noisy process on a quantum
register can be calculated in the Kraus representation,

�(ρ) =
4n∑

j=1

AjρA
†
j . (A20)

For a generic noisy process, using naı̈ve matrix multiplication,
this calculation involves ∼25n operations and requires the
storage of ∼24n complex parameters. These costs can be
reduced dramatically by exploiting the fact that the noise is
independent and that the gate set acts identically on different
qubits. Noise maps that act independently commute and can
be applied in sequence as a result,

λ⊗n = λ1(λ2(. . . λn(ρ))). (A21)

Thus, the amount of storage is reduced to that required to store
the gate set and the current state, ∼22n complex parameters,
and the number of operations required now scales as n23n.
This can be further reduced by noting that each channel λj is
equivalent to the perfect identity on n − 1 qubits, and its effect
can be precalculated to reduce the total number of operations
to n22n. The extension to two-qubit gates is straightforward;
for further information, see Ref. [43].

APPENDIX B: PHYSICAL MODELS AND GATE
PROTOCOL DETAILS

This Appendix describes the physical models, noise refo-
cusing techniques, and the subsequent gate sets generated from
these. It is assumed that the density matrix ρ(t) describing a
physical system evolves according to

∂

∂t
ρ(t) = −i�[H (t),ρ(t)]

+
∑

i

(
Liρ(t)L†

i − 1

2
{L†

i Li,ρ(t)}
)

, (B1)

where H (t) is the Hamiltonian for the system and {Li} is
a set of Lindblad operators generating nonunitary dynamics
[44–46]. A physical model must specify all deterministic and
stochastic Hamiltonians (both internal and control) and specify
any Lindblad operators that the system is subject to.

1. Physical Model 1

Physical Model 1 is motivated by a double quantum dot
physical system. A double quantum dot is a pair of electrons
contained in a double potential well. The spatial and spin states
of the electrons encode logical states |0〉 and |1〉,

|0〉 = ∣∣�T
11

〉 ⊗ (|↑↓〉 + |↓↑〉)/
√

2, (B2)

|1〉 = (
a

∣∣�S
11

〉 + b |�02〉
) ⊗ (|↑↓〉 − |↓↑〉)/

√
2, (B3)

where |�S
11〉 and |�T

11〉 are symmetric and antisymmetric
spatial states with one electron in each of the potential wells
and |�S

02〉 is a symmetric spatial state having two electrons in
one particular well.

The electron state can be controlled by varying the voltage
detuning B(t) and Zeeman splitting difference A(t), described
below.

Voltage detuning introduces a potential energy difference
B between the quantum wells. B > 0 favors the |�02〉
spatial state over |�S

11〉 and |�T
11〉, because |�02〉 allows

for both electrons to minimize their potential energy. The
parameters a and b in Eq. (B3) are therefore B dependent
and given by Fermi-Dirac statistics [47] such that the
probability p11 = |a|2 of having an electron with potential
energy B is given by p11 = 1

1+eB/B1−B2
, whereby

a(B) =
√

1

1 + eB/B1−B2

b(B) =
√

1

1 + e−(B/B1−B2)
.

The detuning Hamiltonian H (B) is diagonal in the spatial
states {|�S

11〉 , |�T
11〉 , |�02〉} and takes a form

H (B) = B
( ∣∣�S

11

〉 〈
�S

11

∣∣ + ∣∣�T
11

〉 〈
�T

11

∣∣ )
+B0 |�02〉 〈�02| , (B4)

where B0 is the energy eigenvalue of |�02〉 at zero
detuning. Up to a constant identity contribution, this yields
the following Hamiltonian for logical states:

H (B) =
(〈0| H (B) |0〉 〈0| H (B) |1〉

〈1| H (B) |0〉 〈1| H (B) |1〉
)

= 1

2

(|b|2(B − B0) 0

0 −|b|2(B − B0)

)
.

Zeeman splitting is related to the energy difference
between electron spin-up and spin-down states in the
presence of an external magnetic field. A magnetic field
gradient across the potential wells introduces an energy
splitting A between |�11〉 ⊗ |↑↓〉 and |�11〉 ⊗ |↓↑〉,
where |�11〉 = |�S

11〉 + |�T
11〉, leading to a Hamiltonian

H (A) = A
2 (|�11〉 〈�11| ⊗ |↑↓〉 〈↑↓| − |�11〉 〈�11| ⊗

|↓↑〉 〈↓↑|). The resulting matrix H (A) in the logical basis
is

H (A) =
(〈0| H (A) |0〉 〈0| H (A) |1〉

〈1| H (A) |0〉 〈1| H (A) |1〉
)

= 1

2

(
0 aA

a∗A 0

)
.

Substituting the parameters a(B) and b(B) into the above
expressions and summing them results in the effective logical
single qubit Hamiltonian

H (t) = 1

2

A(t) + α(t)√
1 + exp

(
B(t)
B1

− B2

)X

+ 1

2

B(t) − B0 + β(t)

1 + exp
[
−

(
B(t)
B1

− B2

)]Z, (B5)

where the parameters α(t) and β(t) encapsulate the stochastic
behavior of the parameters A(t) and B(t). As the logical state
|0〉 corresponds to the ground state of the physical Hamiltonian
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at zero detuning (B = 0) and in zero magnetic field gradient
(A = 0), we make an assumption that relaxation acts on the
logical state simply as a Lindblad operator L = 1

2
√

T1
(X + iY ).

The parameters A(t), B(t), Bi for i ∈ {0,1,2}, and T1,
define the deterministic evolution of the system, with the first
two representing the single-qubit controls and the latter being
the T1 time constant of the system. Both control scalars are
specified for intervals of length δt , over which the controls
remain constant, whereas the rate of change of these control
scalars between adjacent intervals is bounded with | dA(t)

dt
| �

�Amax and | dB(t)
dt

| � �Bmax. Additionally, the controls are
bounded by some maximum value; that is, |A(t)| � Amax and
0 � B(t) � Bmax for some Amax,Bmax � 0.

The parameters specified by α and β are independent, zero-
mean, stationary Gaussian processes [48] such that 〈α(t)〉 =
〈β(t)〉 = 0 and 〈α(t1)β(t2)〉 = 0. The autocorrelation functions
are given by

〈α(t1)α(t2)〉 = �2
α1

δ(|t1 − t2|) + �2
α2

e
−( |t1−t2 |

τ1
)2+( |t1−t2 |

τ2
)4−( |t1−t2 |

τ3
)6

〈β(t1)β(t2)〉 = �2
β1

+ �2
β2

δ(|t1 − t2|), (B6)

where δ(t) is the Dirac δ function. Parameters labeled with the
letter � represent the noise strengths, and those labeled with τ

represent various correlation times.
The Hamiltonian for simulating two-qubit gates is given by

H (t) = H (1)(t) ⊗ 1 + 1 ⊗ H (2)(t) + Hzz(t)

Hzz(t) = 1

4

C(t)(1 + γ (t))(
1 + exp

[−(
B(1)(t)

B1
− B2

)])

× Z ⊗ Z − Z ⊗ 1 − 1 ⊗ Z(
1 + exp

[−(
B(2)(t)

B1
− B2

)]) ,

with two Lindblad operators L1 = 1
2
√

T1
(X + iY ) ⊗ 1 and

L2 = 1
2
√

T1
1 ⊗ (X + iY ). Any parameters or Hamiltonians

denoted by superscript (i) mark either the first (i = 1) or the
second (i = 2) qubit and are identical to the Hamiltonian in line
(B5). The stochastic parts for single-qubit Hamiltonians on dif-
ferent qubits are taken to be independent. The two-qubit con-
trol parameter C(t) can only take two values, C(t) ∈ {0,Cmax},
and the noise parameter γ (t) is an independent zero-mean
stationary Gaussian process with autocorrelation function

〈γ (t1)γ (t2)〉 = �2
γ δ(|t1 − t2|). (B7)

2. Physical Model 2

Physical Model 2 is an archetypal two-level system. For a
single qubit, the Hamiltonian is given by

H (t) = 1
2 [B(t)(1 + β1(t)) + β2(t)]Z

+ 1
2A(t)(1 + α(t))[cos (φ(t))X + sin (φ(t))Y ],

(B8)

with the only Lindblad operator given by L = 1
2
√

T1
(X + iY ).

The parameters A(t), B(t), φ(t), and T1 define the determin-
istic evolution of the system, with the first three representing
the single-qubit controls. Every control value is specified for
intervals of length δt , over which the controls remain constant.
Each control scalar is bounded by some maximum value; that

is, |A(t)| � Amax and |B(t)| � Bmax for some Amax,Bmax � 0
but is not limited by any control rates.

The parameters specified using the letters α and β are
all stationary Gaussian processes. All are zero-mean and
independent. That is, 〈α(t)〉 = 〈βi(t)〉 = 0 for i = 1,2, and
〈α(t1)βi(t2)〉 = 〈β1(t1)β2(t2)〉 = 0 for i = 1,2. The autocorre-
lation functions are given as

〈α(t1)α(t2)〉 = �2
αg1/f

(
�(l)

α ,�(u)
α ,|t1 − t2|

)
, (B9)

〈β1(t1)β1(t2)〉 = �2
β1

g1/f

(
�

(l)
β1

,�
(u)
β1

,|t1 − t2|
)
, (B10)

〈β2(t1)β2(t2)〉 = �2
β2

g1/f

(
�

(l)
β2

,�
(u)
β2

,|t1 − t2|
)
, (B11)

where the parameters labeled with the letter � are the noise
strengths and those labeled with � represent upper and lower
cutoffs for 1/f noise. The autocorrelation function g1/f for
1/f noise is defined as the Fourier transform of 1/f spectral
density with smooth cutoffs [49],

g1/f (�1,�2,�t)

=
∫ ∞

−∞

2

πω

(
arctan

(
ω

�1

)
− arctan

(
ω

�2

))
e−iω�t dω.

(B12)

Notice that lim
�1→0,�2→∞

2
πω

(arctan( ω
�1

) − arctan( ω
�2

)) = 1
|ω| .

The two-qubit Hamiltonian for this model is given by

H (t) = H (1)(t) ⊗ 1 + 1 ⊗ H (2)(t) + Hzz(t)
(B13)

Hzz(t) = −1

2
C(t)(1 + γ (t))Z ⊗ Z,

with two Lindblad operators L1 = 1
2
√

T1
(X + iY ) ⊗ 1 and

L2 = 1
2
√

T1
1 ⊗ (X + iY ).

Single-qubit Hamiltonians denoted by H (i) acting either
on the first (i = 1) or the second (i = 2) qubit have identical
parameters to the Hamiltonian in Eq. (B8), and stochastic parts
for single-qubit Hamiltonians are taken to be independent. The
two-qubit control parameter C(t) is bounded in its maximum
value |C(t)| � Cmax but is otherwise unconstrained. γ (t) is
an independent zero-mean stationary Gaussian process, its
autocorrelation function being given by

〈γ (t1)γ (t2)〉 = �2
γ g1/f

(
�(l)

γ ,�(u)
γ ,|t1 − t2|

)
. (B14)

3. XY sequence gate protocol

Suppose we have a dynamical decoupling sequence which
is given as a list of unitary operations {Ai}, i = 1, . . . ,N ,
where i denotes the temporal order of these operations. We
demand that

AN...A2A1 = eiφ1, (B15)

where eiφ is an arbitrary global phase. If we want to
spread a unitary gate U across the sequence {Ai}, we first
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find

U1 = A1U
1/NA−1

1 , (B16)

U2 = A2A1U
1/NA−1

1 A−1
2 , (B17)

... (B18)

UN = AN...A2A1U
1/NA−1

1 A−1
2 ˜...˜A−1

N , (B19)

where (U 1/N )N = U , and then implement the sequence A1,
U1, A2, U2, . . . ,AN , UN resulting in UNAN . . . U2A2U1A1 =
eiφU , which follows from direct substitution and Eq. (B15).

a. XY8 sequence

The XY8 sequence [30] is an eight-unitary decoupling
sequence where, following the notation above, A1 = A3 =
A6 = A8 = X and A2 = A4 = A5 = A7 = Y . In the limit of
perfect control and infinitesimally short (delta) pulses, the
sequence refocuses noise along any direction that varies slower
than the sequence is implemented. To implement a unitary gate
U within the sequence, we split it into eight parts,

U1 = U7 = XU
1
8 X, U2 = U6 = YXU

1
8 XY,

(B20)
U3 = U5 = XYXU

1
8 XYX, U4 = U8 = U

1
8 ,

where we simplify the expression using XYXY = YXYX =
−1, and the fact that the global phase of the desired unitary is
irrelevant.

b. XY4 sequence

The XY4 sequence [31] is a four-unitary decoupling
sequence where, following the notation above, A1 = A3 = X

and A2 = A4 = Y . Like the XY8 sequence, the XY4 sequence
refocuses noise along any direction that varies slower than the
sequence is implemented, given that the pulses are ideal and
infinitesimally short. We spread a unitary gate U across the
sequence by breaking it into four parts as follows:

U1 = XU
1
4 X, U2 = YXU

1
4 XY,

(B21)
U3 = XYXU

1
4 XYX, U4 = U

1
4 .

4. Gate sets

Gate Set 1 is built on Physical Model 1 using the parameters
in Table III. This gate set was built from an XY8 pulse
sequence [30], with single-qubit gates being implemented
within this sequence according to the XY sequence gate
protocol. Each pulse piece in the sequence was found via
the GRAPE algorithm [32,33] with control constraints from
Table III incorporated into the algorithm. All gates are 199.2 ns
long and the discretization step for cumulant simulations was
chosen to be 0.1 ns.

Gate Set 2 (GS2) is built on Physical Model 2 using
the parameters in Table IV. This gate set was built from
an XY4 pulse sequence [31], again, with single-qubit gates
being implemented within this sequence according to the XY
sequence gate protocol. All pulse pieces are performed using
hard pulses. All gates are 168 ns long and the discretization step

TABLE III. Parameters used for Physical Model 1, Gate Set 1.

Control Noise
parameter Value parameter Value

B0 1.5193 × 1013 Hz T1 1 s
B1 1.5193 × 1011 Hz �α1 4.804 Hz
B2 120 �α2 1.519 × 108 Hz

Amax 3.798 × 108 Hz τ1 10−2 s
Bmax 3.0385 × 1013 Hz τ2 10−3 s

�Amax 0.7596 × 1018 Hz/s τ3 10−4 s
�Bmax 1.215 × 1023 Hz/s �β1 1.519 × 109 Hz
Cmax 8.73568 × 1012 Hz �β2 4.804 × 106 Hz
δt 10−10 s �γ 103 Hz

for cumulant simulations was chosen to be 0.25 ns. (As GS2
uses hard pulses, the cumulant simulation can be discretized
more coarsely, as the pulse amplitudes and phases remain
constant for longer periods of time. The same can be said for
GS3, though, given that the gates are so short, a smaller time
step was used anyway).

Gate set 3 (GS3) is also built on Physical Model 2 but
uses the noise parameters in Table V to provide variety in the
resultant gate errors. No refocusing pulse sequences are used;
all gates are generated from simple hard pulses. All gates are
25 ns long and the discretization step for cumulant simulations
was chosen to be 0.1 ns.

For each gate set, the two-qubit CNOT gate is implemented
using the identity

(−1)
3
4 UCNOT = ei π

2 1⊗ X
2 e−i π

2 1⊗ Y
2 e−iπ Z⊗Z

4 ei π
2 1⊗ Y

2 ei π
2

Z
2 ⊗1.

(B22)

For GS1 and GS2, as for single-qubit gates, the gate is
broken into parts that are interspersed into their respective
XY sequences. In this case, however, the first two single-qubit
rotations are done during the first half of the XY sequence, and
the last two single-qubit rotations are done during the second
half of the XY sequence, in a way similar to the single-qubit

TABLE IV. Parameters used for Physical Model 2, Gate Set 2.

Control Noise
parameter Value parameter Value

Amax 2π × 108 Hz T1 10−4 s
Bmax 2π × 109 Hz �α 3 × 104 Hz
Cmax 2π × 108 Hz �β1 3 × 104 Hz
δt 10−9 s �β2 106/2π Hz

�(l)
α 1/2π Hz

�(u)
α 109 Hz

�
(l)
β1

1/2π Hz

�
(u)
β1

109 Hz

�
(l)
β2

1/2π Hz

�
(u)
β2

109 Hz

�γ 1.2 × 103/2π Hz
�(l)

γ 1/2π Hz

�(u)
γ 109 Hz
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TABLE V. Parameters used for Physical Model 2, Gate Set 3.

Control Noise
parameter Value parameter Value

Amax 2π × 108 Hz T1 10−5 s
Bmax 2π × 109 Hz �α 0 Hz
Cmax 2π × 108 Hz �β1 104 Hz
δt 10−9 s �β2 104 Hz

�(l)
α 1/2π Hz

�(u)
α 109 Hz

�
(l)
β1

1/2π Hz

�
(u)
β1

109 Hz

�
(l)
β2

1/2π Hz

�
(u)
β2

109 Hz

�γ 1.2 × 103/2π Hz
�(l)

γ 1/2π Hz

�(u)
γ 109 Hz

gates. The two-qubit coupling operation is implemented in
the middle of the XY sequence. For GS3, the CNOT gate
is implemented according to the above identity, using hard
pulses.

See Appendix A 2 for details on the procedure used to
simulate the gates.

APPENDIX C: SECONDARY ANALYSIS

This Appendix contains analysis that is secondary to the
main point of the paper but that we consider important in
its own right. We identify the good and poor regimes of
performance for the “Pauli-twirled” errors and classify our
gate sets into these regimes. This analysis also aids in the
understanding of the behavior of the approximations generated
by our own method; in particular, the observation made in
the main body that in some cases, the average fidelity of our
approximations is much less than that of the original, whereas
in some cases they are very similar. Given the importance on
the classification of errors to this discussion, we conclude by
explaining why the errors for each gate set take the form that
they do.

The identification of these regimes requires analysis on
what happens to the IO distinguishability properties of a
channel when it is twirled. Generally, twirling a map � by
a set of unitaries {Uk}Nk=1 is the action of mapping � →
1
N

∑N
k=1 U

†
k ◦ � ◦ Uk . The twirled map results from choosing a

unitary operator from the twirling set with uniform probability,
applying it, applying �, and then inverting the twirling
operator. If the twirling set is chosen to be the Pauli operators,
it is called a Pauli twirl and, if perfectly implemented, will
transform any map into the Pauli channel that results from
mathematically truncating the off-diagonal elements of the
process (χ ) matrix [8].

Before analyzing the effects of Pauli twirling specifically,
we can look at the general effect of twirling on the dia-
mond norm distance of an arbitrary channel to the identity
operation. Let H denote a finite-dimensional Hilbert space,

and L(H) the set of linear operators from H → H. One
property of the diamond norm is that for � : L(H) → L(H),
and any unitary operators U,V ∈ L(H), it holds that ‖U ◦
� ◦ V ‖� = ‖�‖� [21]. Thus, for any finite set of unitaries
{Uk}Nk=1 ⊂ L(H), and quantum channel � : L(H) → L(H), it
holds by straightforward application of the triangle inequality
that

∥∥∥∥∥1L(H) − 1

N

N∑
k=1

U
†
k ◦ � ◦ Uk

∥∥∥∥∥
�

�
∥∥1L(H) − �

∥∥
� , (C1)

where1L(H) is the identity channel. In other words, the distance
of a twirled error to the identity operation is always bounded
above by that of the original error and so, in a worst-case
sense, twirling typically acts to make an error harder to
detect.

To specify the regimes of performance of twirling, we look
at the Bloch representation of quantum channels. Any qubit
map � can be represented as a matrix M and vector t that acts
on Bloch vectors as r → Mr + t . M can be written in terms
of its polar decomposition M = OP , where O and P are
an orthogonal and positive semidefinite matrix, respectively.
Thus, the action on the Bloch sphere can be represented as
r → O(P r + OT t) [50]. That is, as a possibly nonunital
channel followed by an orthogonal rotation of the Bloch
sphere, which corresponds to a unitary rotation for qubits [51].
We say that a channel is in the “unitary regime” if the effect
of O is relatively large compared to P and t , and we say the
channel is in the “deforming regime” if the opposite is true. To
quantify the “effect” of a Bloch matrix M , we use the quantity
‖1 − M‖2, and use ‖t‖2 to quantify the effect of the nonunital
part. We use ‖ · ‖2 to denote both the Hilbert-Schmidt norm
on matrices and the Euclidean norm on vectors, where context
and notation will make clear which is meant. In the following
paragraphs, we examine how twirling affects worst-case
IO distinguishability properties of different errors in these
regimes.

First, for a unital deforming qubit channel �, the Bloch
representation is simply a positive semidefinite matrix P .
Diagonalize P as P = UDU † for some orthogonal matrix
U and diagonal non-negative matrix D. Then, as diagonal
Bloch matrices are realizable as Pauli channels, we can write
� as �(ρ) = ∑3

i=0 piV PiV
†ρV PiV

†, where V is the unitary
corresponding to U . Channels of this form are called general-
ized Pauli channels, and the diamond norm distance between
channels of this form with different probability vectors p and
q is given by

∑3
i=0 |pi − qi | [52,53]. For these channels, as

V PiV
† has no identity part for i � 1, the χ00 element in the

Pauli basis is identical to the probability assigned to the identity
operator. As this quantity is conserved in Pauli twirling,
and as the identity map on qubits 1L(C2) is a generalized
Pauli channel, it follows that, for a deforming unital qubit
channel � and its Pauli twirl �PT, ‖1L(C2) − �‖� = (1 −
p0) + p1 + p2 + p3 = 2(1 − p0) = ‖1L(C2) − �PT‖�. Thus,
diamond norm distance to the identity for these channels is
unaffected by Pauli twirling.

To examine the qualitative behavior of Pauli twirling on a
nonunital deforming channel, we examine the special case of
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TABLE VI. We denote the Bloch representation of each gate error as (OP,t), where O is an orthogonal matrix, P is positive semidefinite,
and t is the “nonunital part.” Norms of size less than 10−10 are displayed as 0, as at this size they are irrelevant compared to the dominant parts
of the error.

Statistics 1 X Y Z H CNOT

‖1 − O‖2 6.74 × 10−3 1.83 × 10−2 1.83 × 10−2 5.06 × 10−3 1.63 × 10−2 5.78 × 10−2

GS1 ‖1 − P ‖2 8.22 × 10−7 1.06 × 10−2 4.43 × 10−3 1.33 × 10−2 6.24 × 10−3 3.56 × 10−2

‖t‖2 0.0 5.51 × 10−9 5.56 × 10−9 0.0 1.36 × 10−8 2.19 × 10−8

‖1 − O‖2 3.35 × 10−5 5.52 × 10−4 5.52 × 10−4 2.09 × 10−4 1.59 × 10−3 1.73 × 10−3

GS2 ‖1 − P ‖2 2.16 × 10−3 2.15 × 10−3 2.15 × 10−3 2.32 × 10−3 2.19 × 10−3 8.13 × 10−3

‖t‖2 4.01 × 10−8 5.65 × 10−5 4.95 × 10−5 1.66 × 10−4 9.91 × 10−5 2.14 × 10−4

‖1 − O‖2 0.0 1.09 × 10−5 1.50 × 10−5 1.04 × 10−5 2.83 × 10−6 4.45 × 10−2

GS3 ‖1 − P ‖2 3.06 × 10−3 2.93 × 10−3 2.93 × 10−3 3.06 × 10−3 2.96 × 10−3 1.12 × 10−2

‖t‖2 2.50 × 10−3 1.37 × 10−3 1.37 × 10−3 2.50 × 10−3 2.11 × 10−3 2.95 × 10−3

an amplitude damping channel, which has Kraus operators

K1 =
(

1 0

0
√

1 − γ

)
, K2 =

(
0

√
γ

0 0

)
, (C2)

for some parameter γ and Bloch representation

M =

⎛
⎜⎝

√
1 − γ 0 0

0
√

1 − γ 0

0 0 1 − γ

⎞
⎟⎠ , t =

⎛
⎜⎝

0

0

γ

⎞
⎟⎠ . (C3)

In the Bloch representation, the effect of Pauli twirling is to
remove the off-diagonal elements of M and set t → 0. Thus,
the only effect that twirling has on this channel is to remove
the nonunital part. Note that the dominant error considered by
Geller and Zhou in Ref. [26] is of this form; the Bloch matrix
is diagonal, and so, in some sense, Pauli twirling has a minimal
effect. We consider the worst-case performance of this channel
on a pure qubit state. It is clear that the state most affected by �,
and by its Pauli twirl �PT, is the −1 eigenstate of Z, which we
denote as ρ−. It can be easily checked that ‖ρ− − �(ρ−)‖1 =
2γ , and ‖ρ− − �PT(ρ−)‖1 = γ . Thus, while the worst-case
performance in this case is lessened by Pauli twirling, it is
only by a factor of 2.

Last, we look at purely unitary channels. For two unitary
operators U,V in L(H), there exists a pure state |ψ〉 ∈ H for
which

‖U · U † − V · V †‖� = ‖U |ψ〉 〈ψ | U † − V |ψ〉 〈ψ | V †‖1

= 2
√

1 − | 〈ψ | U †V |ψ〉 |2 (C4)

(see Ref. [21]). From this form, it is clear that any state
that maximizes the distinguishability between the identity
operation and a unitary U will be orthogonal to the unitary
rotation axis. Thus, for a rotation U by an angle θ , ‖1L(C2) −
U · U †‖� = 2| sin(θ/2)|. As the χ00 element of a qubit rotation
by angle θ is cos2(θ/2), it follows from the preceding discus-
sion that, for the Pauli-twirled error �PT, ‖1L(C2) − �PT‖� =
2(1 − cos2(θ/2)) = 2 sin2(θ/2). Thus, for small values of θ ,
the twirled channel can be orders of magnitude closer to the
identity than the original.

With this qualitative analysis in hand, we examine the form
of the Bloch representation of the errors considered in this
paper. The Bloch representation of each error is decomposed

into the three pieces, O, P , and t , and the size of each
piece is reported in Table VI. As the identity gate occurs
most frequently in the circuit, its properties are the most
important.

We see that GS1 has the largest unitary component to its
errors (in terms of the ratio to the other components). The error
in the identity gate is almost entirely unitary and, therefore,
falls neatly into the unitary regime. Indeed, this is consistent
with the fact that a single-qubit unitary rotation by an angle θ

will have a χ00 element of cos2(θ/2) ≈ 0.99999, whereas the
Pauli channel that exactly matches its IO distinguishably has
a χ00 element of 1 − | sin(θ/2)| ≈ 0.99762. We see that these
numbers correspond exactly to the given number of digits
in Table I, where a two-order-of-magnitude decrease in the
distance of the Pauli-twirled error to the identity channel
is shown. While the other errors in the set have unitary
parts, the nonunitary parts are comparable in size. As such,
character from both the unitary and unital deforming regimes
is observed; the diamond norm distance of the Pauli-twirled
error to the identity decreases, but the decrease is not as
impressive as for the identity gate. For the Y and H errors,
the unitary part is 2 or 3 times larger than the nonunitary, and
thus the decrease in diamond norm distance to the ideal channel
for the Pauli-twirled errors is the greatest of the nonidentity
gates.

For every gate in GS2, ‖t‖2 is relatively small and ‖1 − O‖2

is in most cases an order of magnitude smaller than ‖1 − P ‖2,
putting GS2 into the unital deforming regime. When looking
at the diamond norm distances of the Pauli-twirled channels
to the identity, we see that, as expected in this regime, there is
very little decrease. Indeed, while the Pauli-twirled channels
generally underestimate the error in the hedging metrics, the
underestimation is small.

For GS3, ‖1 − O‖2 is usually of comparatively negligible
size, and ‖t‖2 is of the same order of magnitude as ‖1 − P ‖2,
putting this gate set into the nonunital deforming regime.
Looking at the decrease of the diamond norm distance to the
ideal operations for the Pauli-twirled errors, we see roughly
what is expected; a decrease on the order of a factor of 2.
As in the case of GS2, while the Pauli-twirled errors show
underestimation in the hedging statistics, it is by a small
degree.

022306-14



TRACTABLE SIMULATION OF ERROR CORRECTION WITH . . . PHYSICAL REVIEW A 89, 022306 (2014)

This discussion supports and illuminates the idea of two
regimes of behavior for Pauli-twirled approximations. In the
unitary case, we observe large underestimation of IO distin-
guishability properties. For the circuit we have considered,
this underestimation propagates upwards; the gadget simulated
with Pauli-twirled errors is much harder to distinguish from
the perfect gadget than the original errors. In the deformation
regime, the Pauli-twirled errors can result in underestimation.
One might argue, however, as Geller and Zhou do, that
this level of underestimation is acceptable. Indeed, while the
hedging is negative for the Pauli-twirled gates and circuit for
GS2, it is small in magnitude. For GS3, the Pauli-twirled circuit
even has positive hedging. This is perhaps not surprising on
an intuitive level. Pauli channels are a subset of deforming
channels, and while not all deforming errors are Pauli channels,
they are like Pauli channels. All deforming channels contract
the Bloch sphere inwards (with possible nonunital shifts), so
Pauli twirling simply maps one deforming channel to another,
which does not dramatically change the IO distinguishability
properties. This stands in contrast to the unitary regime where,
in regards to IO distinguishability, something fundamental can
be lost when a dominantly unitary error is mapped to a Pauli
channel via Pauli twirling.

This discussion also demonstrates why our approximations
behave the way they do in regards to average gate fidelity.
As we have seen from the Pauli twirl analysis, for a fixed
average fidelity, channels in the unitary regime are much more
distinguishable from the identity operation than those in the
deforming regime. Thus, if the original error is in the unitary
regime, our approximations, which fall into the deforming
regime, will sometimes have a much worse average fidelity
than the original to allow them to honestly represent its IO
distinguishability properties.

As a final point, we can ask why the errors for each
gate set have the form that they do. To explain this, it is
necessary to examine the physical models and the pulse design
techniques used, which are described in detail in Appendix B.

The simplest case is GS3, where hard pulses with no refocusing
sequences were used. As the T1 time was the shortest of all of
the gate sets, and no refocusing pulses were used, the strong
nonunital effects were allowed to continue building in their
natural direction throughout each gate resulting in primarily
nonunital errors. In GS2, which used the same physical model
as GS3, the T1 time was an order of magnitude longer. In
addition, the refocusing pulse sequence used has the effect of
“flipping” the nonunital shift between the positive and negative
z direction, and so, when averaged over the whole sequence,
the effective nonunital shift tends to zero. As a result, the size of
the nonunital piece tends to be at least an order of magnitude
smaller than the other pieces, putting this gate set into the
unital deformation regime. Finally, as GS1 had the longest T1

time, and the refocusing sequence was performed at a rate far
faster than the T1 time, the nonunital error components are
negligible. Aside from this, the prime difference between GS1
and the other gate sets is that the pulses used were found using
the GRAPE algorithm, rather than being hard, which accounts
for the dominant unitary components of the errors. For hard
pulses, in the limit of no noise, the implemented unitary
should be perfect, aside from numerical imprecision in the
field amplitudes, which can be made arbitrarily small with low
overhead. For pulses found using the GRAPE algorithm this is
not the case; even a noiseless implementation will not produce
the perfect unitary. Arguably, this situation is more prevalent
in experimental implementations as pulse-finding algorithms
like GRAPE are necessary to obtain high-fidelity control over
systems with complicated Hamiltonians. In addition, these
types of algorithms can be used to achieve high-fidelity control
across a range of internal Hamiltonian parameters, even when
the Hamiltonian is simple [33].

APPENDIX D: GATE STATISTICS

Tables VII–IX contain statistics on all gates in Gate Sets
1-3.

TABLE VII. Statistics for the various approximations of the gates in GS1, approximated from N = 106 random pure states.

Gate Statistics Original Pauli twirled Pauli Clifford

χ00 0.999994 0.999994 0.997618 0.998314
‖� − UIdeal‖� 4.76 × 10−3 1.20 × 10−5 4.76 × 10−3 4.77 × 10−3

1 ‖� − �Original‖� 4.76 × 10−3 6.73 × 10−3 3.64 × 10−3

h −3.73 × 10−3 1.14 × 10−7 1.64 × 10−6

pviol 1.0 0.0 0.0

χ00 0.996147 0.996147 0.991234 0.994179
‖� − UIdeal‖� 1.51 × 10−2 7.71 × 10−3 1.75 × 10−2 1.59 × 10−2

X ‖� − �Original‖� 1.29 × 10−2 1.67 × 10−2 4.58 × 10−3

h −5.76 × 10−3 1.12 × 10−3 3.90 × 10−4

pviol 0.99892 0.0 0.0

χ00 0.998330 0.998330 0.992021 0.994711
‖� − UIdeal‖� 1.35 × 10−2 3.34 × 10−3 1.60 × 10−2 1.43 × 10−2

Y ‖� − �Original‖� 1.30 × 10−2 1.86 × 10−2 8.15 × 10−3

h −7.96 × 10−3 9.94 × 10−4 3.09 × 10−4

pviol 0.99953 0.0 0.0
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TABLE VII. (Continued).

Gate Statistics Original Pauli twirled Pauli Clifford

χ00 0.995289 0.995289 0.992055 0.993663
‖� − UIdeal‖� 1.06 × 10−2 9.42 × 10−3 1.59 × 10−2 1.31 × 10−2

Z ‖� − �Original‖� 4.59 × 10−3 7.68 × 10−3 3.46 × 10−3

h −5.71 × 10−4 3.01 × 10−3 1.29 × 10−3

pviol 0.60369 0.0 0.0

χ00 0.997642 0.997642 0.991031 0.993638
‖� − UIdeal‖� 1.35 × 10−2 4.72 × 10−3 1.79 × 10−2 1.54 × 10−2

H ‖� − �Original‖� 1.27 × 10−2 1.85 × 10−2 8.83 × 10−3

h −6.42 × 10−3 2.51 × 10−3 1.10 × 10−3

pviol 1.0 0.0 0.0

χ00 0.993152 0.993152 0.976600 0.976600
‖� − UIdeal‖� 3.09 × 10−2 1.37 × 10−2 4.68 × 10−2 4.68 × 10−2

CNOT ‖� − �Original‖� 2.82 × 10−2 4.52 × 10−2 4.52 × 10−2

h −1.17 × 10−2 1.52 × 10−2 1.52 × 10−2

pviol 1.0 0.0 0.0

TABLE VIII. Statistics for the various approximations of the gates in GS2, approximated from N = 106 random pure states.

Gate Statistics Original Pauli twirled Pauli Clifford

χ00 0.999087 0.999087 0.999085 0.999086
‖� − UIdeal‖� 1.83 × 10−3 1.83 × 10−3 1.83 × 10−3 1.83 × 10−3

1 ‖� − �Original‖� 2.48 × 10−5 2.50 × 10−5 2.06 × 10−6

h −1.63 × 10−7 2.65 × 10−6 8.34 × 10−7

pviol 0.49861 0.0 0.0

χ00 0.999074 0.999074 0.998972 0.999029
‖� − UIdeal‖� 1.91 × 10−3 1.85 × 10−3 2.06 × 10−3 2.00 × 10−3

X ‖� − �Original‖� 4.38 × 10−4 4.85 × 10−4 1.16 × 10−4

h −4.04 × 10−5 9.61 × 10−5 6.12 × 10−5

pviol 0.7897 0.0 0.0

χ00 0.999075 0.999075 0.998990 0.999033
‖� − UIdeal‖� 1.91 × 10−3 1.85 × 10−3 2.02 × 10−3 1.99 × 10−3

Y ‖� − �Original‖� 4.32 × 10−4 4.72 × 10−4 1.03 × 10−4

h −4.02 × 10−5 7.32 × 10−5 5.58 × 10−5

pviol 0.8674 0.0 0.0

χ00 0.999023 0.999023 0.998869 0.998901
‖� − UIdeal‖� 1.97 × 10−3 1.95 × 10−3 2.26 × 10−3 2.21 × 10−3

Z ‖� − �Original‖� 2.67 × 10−4 4.27 × 10−4 3.33 × 10−4

h −1.37 × 10−5 1.87 × 10−4 1.52 × 10−4

pviol 0.61392 0.0 0.0

χ00 0.999060 0.999060 0.998684 0.998878
‖� − UIdeal‖� 2.33 × 10−3 1.88 × 10−3 2.63 × 10−3 2.53 × 10−3

H ‖� − �Original‖� 1.25 × 10−3 1.45 × 10−3 4.35 × 10−4

h −3.05 × 10−4 1.98 × 10−4 1.32 × 10−4

pviol 1.0 0.0 0.0

χ00 0.998071 0.998071 0.997683 0.997683
‖� − UIdeal‖� 3.99 × 10−3 3.86 × 10−3 4.63 × 10−3 4.63 × 10−3

CNOT ‖� − �Original‖� 1.01 × 10−3 1.33 × 10−3 1.33 × 10−3

h −7.38 × 10−5 5.44 × 10−4 5.44 × 10−4

pviol 0.76905 0.0 0.0
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TABLE IX. Statistics for the various approximations of the gates in GS3, approximated from N = 106 random pure states.

Gate Statistics Original Pauli twirled Pauli Clifford

χ00 0.998751 0.998751 0.996501 0.996501
‖� − UIdeal‖� 4.99 × 10−3 2.50 × 10−3 7.00 × 10−3 7.00 × 10−3

1 ‖� − �Original‖� 2.50 × 10−3 5.28 × 10−3 5.28 × 10−3

h −1.03 × 10−3 1.91 × 10−3 1.91 × 10−3

pviol 0.74978 0.0 0.0

χ00 0.998751 0.998751 0.997447 0.997674
‖� − UIdeal‖� 3.17 × 10−3 2.50 × 10−3 5.11 × 10−3 4.65 × 10−3

X ‖� − �Original‖� 1.37 × 10−3 3.12 × 10−3 2.75 × 10−3

h −3.64 × 10−4 1.39 × 10−3 1.06 × 10−3

pviol 0.69216 0.0 0.0

χ00 0.998751 0.998751 0.997669 0.997669
‖� − UIdeal‖� 3.17 × 10−3 2.50 × 10−3 4.66 × 10−3 4.66 × 10−3

Y ‖� − �Original‖� 1.38 × 10−3 2.76 × 10−3 2.76 × 10−3

h −3.63 × 10−4 1.06 × 10−3 1.06 × 10−3

pviol 0.69113 0.0 0.0

χ00 0.998751 0.998751 0.996501 0.996501
‖� − UIdeal‖� 4.99 × 10−3 2.50 × 10−3 7.00 × 10−3 7.00 × 10−3

Z ‖� − �Original‖� 2.50 × 10−3 5.28 × 10−3 5.28 × 10−3

h −1.03 × 10−3 1.92 × 10−3 1.91 × 10−3

pviol 0.75055 0.0 0.0

χ00 0.998751 0.998751 0.996883 0.996940
‖� − UIdeal‖� 4.31 × 10−3 2.50 × 10−3 6.23 × 10−3 6.12 × 10−3

H ‖� − �Original‖� 2.27 × 10−3 4.43 × 10−3 4.36 × 10−3

h −7.92 × 10−4 1.68 × 10−3 1.60 × 10−3

pviol 0.74018 0.0 0.0

χ00 0.997441 0.997441 0.981266 0.981266
‖� − UIdeal‖� 1.98 × 10−2 5.12 × 10−3 3.75 × 10−2 3.75 × 10−2

CNOT ‖� − �Original‖� 1.83 × 10−2 3.90 × 10−2 3.90 × 10−2

h −1.15 × 10−2 1.48 × 10−2 1.48 × 10−2

pviol 0.99988 0.0 0.0
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