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Exact dynamics for optical coherent-state qubits subject to environmental noise
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We study the exact dynamics of optical qubits encoded via coherent states with opposite phases which
are interacting with an environment modeled as a collection of simple harmonic oscillators. Making use of a
coherent-state path-integral formulation, we are able to study memory effects on the dynamics of the coherent-state
qubits due to strong environment coupling. We apply this formulation to examine the time evolution of a noisy
quantum channel formed by two coherent-state qubits that are subject to uncorrelated local environment noises. In
particular, we examine the time evolution of entanglement and maximal teleportation fidelity of the noisy quantum
channel and show that at strong coupling, due to large feedback effects from the environment noise, it is possible
to maintain a robust quantum channel in the long-time limit if an appropriate error-correcting code is applied.
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I. INTRODUCTION

Classical computation and information theories have
chiefly been based on encoding bit states for computing
and information processing using discrete classical variables
taking two values, say, 0 and 1. Quantum mechanics has
opened up new possibilities for representing the bit states,
making use of quantum mechanical states, such as |0〉 and
|1〉 along with their superpositions. This brings computational
theory to a new horizon, since new algorithms have proved
to be able to solve problems that are believed to be insoluble
classically [1,2]. At the same time, it has also revolutionized
information theory in that new communication protocols
can reach unprecedented security levels that are classically
impossible [3–5].

In standard approaches to quantum computing and quantum
information processing, one adopts two orthogonal basis
states, denoted |0L〉 and |1L〉, to encode the logical states of
the quantum bits (qubits), which can be two orthogonal spin
states of electrons or nuclear moments, or two orthogonal
polarization states of single photons [3]. In recent years,
however, there has been a rapid growth of interest in an
alternative approach which encodes quantum information us-
ing continuous (quantum) variables [6,7]. Since unconditional
quantum operations can be achieved in this scheme, it has
the merit of significantly reducing the resource overhead
for quantum information processing (although with non-
ideal fidelities). For optical implementations, the continuous-
variable approach has the additional advantage of experimental
accessibility [8]. Typically, in optical implementations the
quantum information is encoded using the quadrature variables
(for instance, the “position” and the “momentum” operators)
of the electromagnetic fields which have continuous spectra.
The experimental detection of the quantum states can then be
achieved using homodyne detection with high efficiency and
accuracy. Moreover, various quantum optical techniques are
available for quantum state manipulations necessary for gate
operations.
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Along with these developments, Jeong and Kim [9] and
Ralph et al. [10] propose encoding the logical states of
qubits using two coherent states with unequal amplitudes, for
example,

|0L〉 �→ |α〉 and |1L〉 �→ |β〉, (1)

where |α〉 and |β〉 are coherent states with (complex) ampli-
tudes α and β, respectively, for an optical mode. The coherent
states are defined as [11]

|α〉 ≡ eαâ†−α∗â|0〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉, (2)

where â is the annihilation operator for the optical mode, and
|n〉 the number state with n photons, so that |0〉 represents the
vacuum state. Although coherent states with finite amplitudes
are not exactly orthogonal to each other (thus causing
errors in quantum computing tasks and reduced fidelity in
quantum information processing), the coherent-state approach
has several advantages. Among them, due to the continuous
spectra of coherent states, this scheme is a “hybrid” of
the discrete-variable and the continuous-variable approaches.
It therefore inherits merits from both approaches, so that
unconditional single-qubit gate operations can be implemented
via offline resource states, linear optical networks, photon
counting, and classical feedforward [10]. In particular, it has
been shown that based on this scheme efficient quantum
gates can be implemented [12] and fault-tolerant quantum
computation can be achieved with experimentally accessible
amplitudes for the coherent states [13]. At the same time,
quantum error-correcting codes have also been developed for
the coherent-state logic [14–16]. Experimentally, the resource
states for this scheme (the “cat states”) can be generated
using photon subtractions [17–20], making the scheme a
promising candidate for realistic quantum computing and
quantum information processing.

As with other realizations for quantum computing and
quantum information processing, coherent-state qubits are
inevitably exposed to environment noises. For instance, when
an optical coherent state passes through an optical element
(e.g., a beam splitter) that is part of a quantum gate, photon
loss can occur due to the finite absorption coefficient of the
element. In any realistic analysis, it is therefore essential to
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take into account such effects. Earlier works in this regard
have primarily focused on the limit of weak qubit-environment
interactions and/or negligible environment-noise coherence
time compared with the time scale for the qubit dynamics,
so that the Born-Markov approximation can be invoked
[12,14,21,22]. In recent years, however, it has been recognized
that such considerations are not satisfactory for most realistic
conditions. In particular, for full-scale quantum computing
it may be necessary to integrate optical systems with, for
instance, solid-state systems [23]. At the interface between
these systems, more complicated decoherence mechanisms
may arise compared with those in all-optical settings. The
study of non-Markovian dynamics for open quantum systems
has therefore become a key issue [24–31]. In the present work,
we aim to study the exact open-system dynamics for coherent-
state qubits making use of a formulation based on coherent-
state path integrals developed by Zhang and collaborators
[28–30]. This formulation will allow us to study nonpertur-
batively the dynamics of coherent-state qubits in the presence
of strong environment noise. In particular, we will consider a
noisy quantum channel, which consists of two entangled qubits
that are interacting with their local environments, and examine
the time evolution of its entanglement and teleportation
fidelity. Surprisingly, we find that at strong coupling, due to
feedback effects from the environment noise, it is possible
to preserve at long time the entanglement of the two qubits
and achieve better-than-classical teleportation fidelity if an
appropriate error-correcting code is applied. This demonstrates
that it is feasible to establish a robust coherent-state quantum
channel even in the presence of environment noise.

We will start in Sec. II by introducing a model for
dissipation which allows exact solutions via a coherent-state
path-integral formulation. We will then examine the exact
dynamics of a single coherent-state qubit subject to such
environmental noise. In Sec. III the analysis will be extended
to two entangled qubits that constitute a quantum channel.
We will look into the time evolution of the entanglement and
teleportation fidelity of the quantum channel in the presence of
dissipation. Then in Sec. IV we will study how error-correcting
codes can help recover the entanglement and teleportation
fidelity of the pair of coherent-state qubits at long times.
Finally, in Sec. V we summarize our findings and offer brief
discussions of related issues.

II. FORMULATION

To study decoherence of the coherent-state (CS) qubits,
let us suppose the optical mode (henceforth the “CS mode”)
adopted for coherent-state encoding undergoes dissipation
due to photon loss to its environment. This dissipation
has previously been modeled with a beam splitter which
deflects photons from the CS mode into an environment mode
[14,21,22]. Since the dissipation is characterized solely by the
transmissivity of the beam splitter, it has no dynamics in this
simple model [22]. Although one could phenomenologically
ascribe an exponentially decaying time dependence to the
transmissivity, the dynamics would invariably be Markovian
for which no memory effect from the environment coupling
can arise [21]. In order to overcome this difficulty, let us
consider a generic model in which the CS mode interacts

with an environment that consists of a collection of simple
harmonic oscillator modes. The total Hamiltonian thus reads
(we set � = 1 throughout) [32]

H = ω0â
†â +

∑
k

ωkb̂
†
kb̂k +

∑
k

(Vkâ
†b̂k + V ∗

k b̂
†
kâ), (3)

where ω0 is the CS mode frequency and â the corresponding
annihilation operator, and b̂k is the annihilation operator
for the kth environment mode with frequency ωk , which is
coupled to the CS mode with amplitude Vk . In this model,
the CS mode exchanges energy with each environment mode
through a beam-splitter interaction Hamiltonian [33]. These
environment modes can correspond to, for instance, phonon
modes in a solid or other photon modes. The Hamiltonian
(3) therefore provides a generic model for photon loss which
may be relevant for interfacing between optical and solid-state
systems, for instance in integrated quantum optical circuits
[23]. In the limit of weak coupling, it reduces to a beam-splitter
model with transmissivity that decays exponentially with time
(see later in this section) [12]. For general coupling, this
generic model can exhibit richer dynamics than that of the
beam-splitter model, as we will see in the following [29].
In particular, memory effects due to environment feedback
at strong coupling can lead to different dynamics for the
coherent-state qubits.

In the context of damped harmonic oscillators, the Hamil-
tonian (3) has previously been studied under the Born-Markov
approximation [32,34]. In order to examine feedback effects
from the environmental noise, it is necessary to go beyond
this limit. This has been achieved by Zhang and co-workers
[28–30] using coherent-state path integrals applied to the
Feynman-Vernon influence-functional formalism [28,35]. In
essence, one starts from the time evolution of the density
matrix ρtot for the total system (including the CS mode and the
environment),

ρtot(t) = e−iH (t−t0)ρtot(t0)e+iH (t−t0), (4)

where t0 is the initial time and the Hamiltonian H is given
by (3). In the coherent-state representation, one has the
completeness relation [11,36]∫

d2α

π
|α〉〈α| = Î , (5)

where the integral extends over the entire complex α plane
and d2α ≡ d Re{α} d Im{α} with Re and Im indicating the
real and imaginary parts, respectively; the coherent states |α〉
are defined earlier in Eq. (2), and Î is the identity operator.
Utilizing (5), one can express (4) in terms of the coherent-
state basis for the CS mode and the environment modes. By
integrating out all environmental degrees of freedom, one can
then arrive at an effective equation for the time evolution of
the CS mode which is encoded with the full environmental
effects.

Let us suppose the CS mode and the environment modes
are completely decoupled initially, and the environment starts
off in the vacuum state at zero temperature. The initial total
density matrix is thus

ρtot(t0) = ρ(t0) ⊗ |0E〉〈0E |, (6)
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where ρ(t0) is the initial density matrix for the CS mode and
|0E〉 denotes the vacuum state for the environment modes.
Using (6) in Eq. (4) and tracing out all environment modes
in the coherent-state basis, one can derive a path-integral
representation for the time evolution of the reduced density
matrix for the CS mode [28]. Expressing the reduced density
matrix for the CS mode at time t

ρ(t) =
∫

d2αf

π

∫
d2α′

f

π
ρ(α∗

f ,α′
f ; t)|αf 〉〈α′

f |, (7)

where α∗ denotes the complex conjugate of α and
ρ(α∗

f ,α′
f ; t) ≡ 〈αf |ρ(t)|α′

f 〉, one finds in the influence-
functional formulation the time evolution for the matrix
elements of the reduced density matrix,

ρ(α∗
f ,α′

f ; t) =
∫

d2αi

π

∫
d2α′

i

π
ρ(α∗

i ,α
′
i ; t0)

×K(αi,α
′
i ,αf ,α′

f ; t,t0), (8)

where the kernel K now incorporates the entire environmental
effects in the Hamiltonian (3) [28,35]. At zero temperature the
kernel is given by [29]

K(αi,α
′
i ,αf ,α′

f ; t,t0)

= A(t) exp{α∗
f u(t)αi + α′∗

i B(t)αi + α′∗
i u∗(t)α′

f } (9)

with [36]

A(t) = e−(1/2)(|αi |2+|α′
i |2+|αf |2+|α′

f |2), B(t) = 1 − |u(t)|2.
(10)

Here u(t) follows the equation of motion

d

dt
u(t) + iω0u(t) +

∫ t

t0

dτg(t − τ )u(τ ) = 0 (11)

subject to the initial condition u(t0) = 1. As we will notice in
the following, u(t) plays an essential role in the dynamics of
coherent-state qubits. In Eq. (11) we have introduced the noise
correlation function

g(t) =
∫ ∞

0

dω

2π
J (ω)e−iωt , (12)

where J (ω) is the spectral function for the CS mode-
environment coupling in Eq. (3),

J (ω) =
∑

k

|Vk|2δ(ω − ωk). (13)

Namely, it is the density of the environment modes weighted
with the squared modulus of the coupling amplitude. For
explicit calculations of the problem, one must have an explicit
expression for the spectral function. We will defer such
calculations to later and focus for the moment on establishing
general formulations for the problems that will concern us.

Let us now apply the formulation above to study the
decoherence dynamics of a single coherent-state qubit. In the
coherent-state encoding, the initial density matrix for a single
qubit has the general form

ρ(t0) =
2∑

m,n=1

cmn|αm〉〈αn|, (14)

where cmn are time-independent coefficients and αm,n take
values at the encoding amplitudes. Throughout this work
we will adopt coherent states with opposite phases as the
encoding basis. Therefore, for instance, with the encoding
basis |±α0〉, one would have in the equation above α1,2 = ±α0.
From (14), it is clear that the time evolution of the density
matrix is entirely delegated to the elements |αm〉〈αn|. Our first
task is therefore to work out the time evolution of such an
element.

Let us consider an arbitrary element σ (t0) ≡ |α〉〈β|. In the
coherent-state representation, its matrix elements are

σ (α∗
i ,α

′
i ; t0) = 〈αi |(|α〉〈β|)|α′

i〉 = 〈αi |α〉〈β|α′
i〉

= e−(1/2)(|αi |2+|α|2−2α∗
i α)e−(1/2)(|β|2+|α′

i |2−2β∗α′
i ).

(15)

The time evolution of the matrix element (15) can be found
using (8), with σ here in place of the reduced density matrix
ρ. The integrals over αi and α′

i are Gaussian integrals which
can be dealt with easily and yield

σ (α∗
f ,α′

f ; t) = e−(1/2)(|α|2+|β|2)+α[1−|u(t)|2]β∗

× e−(1/2)(|αf |2+|α′
f |2)+αu(t)α∗

f +β∗u∗(t)α′
f . (16)

Substituting (16) back into (7) and, as above, replacing ρ with
σ , one can carry out the integrals over αf and α′

f , and arrive
at the following prescription for the exact dynamics for the
element |α〉〈β| in the presence of environmental noise:

|α〉〈β| −→ e−{[1−|u(t)|2]/2}(|α|2+|β|2−2αβ∗)|αu(t)〉〈βu(t)|, (17)

where the arrow indicates time evolution. Equipped with
(17), we are now able to find the exact time evolution for
a coherent-state qubit with any initial density matrix. We
will therefore refer to this result repeatedly in the rest of this
paper.

As an example, let us consider a coherent-state qubit
initially in the cat state in the basis {|±α0〉}

|Q〉 = 1√
N

(c1|α0〉 + c2|−α0〉) , (18)

where |c1|2 + |c2|2 = 1 and N = 1 + e−2|α0|2 (c∗
1c2 + c1c

∗
2) is

a normalization factor (note that it depends on c1 and c2 and
thus cannot be absorbed into them). Following the prescription
(17), the time evolution of the state (18) subject to dissipations
due to the Hamiltonian (3) can be obtained easily:

ρ(t) = 1

N
[|c1|2|αt 〉〈αt | + |c2|2|−αt 〉〈−αt |

+ e−2(|α0|2−|αt |2)(c1c
∗
2|αt 〉〈−αt | + c∗

1c2|−αt 〉〈αt |)].
(19)

Note that, for brevity here we have denoted

αt ≡ α0u(t), (20)

which will also be used in the rest of this paper. Since the
absolute value of u(t) turns out to be always less than 1
for t > t0, the environmental noise thus causes amplitude
reduction in the coherent-state qubit [37] and induces phase
damping through the off-diagonal elements of the density
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matrix. In the limit of weak coupling, or when the coupling has
a broad spectrum, the spectral function J (ω) will have weak
frequency dependence, so that the noise correlation function
(12) becomes a sharp function in time. Taking t0 = 0, one can
find from (11) in this limit [29,34]

u(t) � e−[iω′
0+J (ω0)/2]t (21)

with ω′
0 = ω0 + P

∫ ∞
0 dω J (ω)

ω−ω0
, where P denotes the principal

value of the integral. Therefore, in this limit the coherent-state
amplitude decays exponentially with time and Eq. (19) reduces
to the Markovian result obtained in Ref. [12]. For general
coupling strength, however, u(t) can have a quite different
time dependence and different qubit dynamics can emerge, as
we will soon discover.

It is interesting to note that the result (19) can be expressed
in the form of an operator sum [22,38]

ρ(t) = (1 − pe)|Qt 〉〈Qt | + peẐ|Qt 〉〈Qt |Ẑ†, (22)

where pe ≡ (1 − e−2(|α0|2−|αt |2))/2 and |Qt 〉 is the state |Q〉 of
(18) with |±α0〉 replaced by |±αt 〉 (the factor N remains the
same; thus |Qt 〉 is not normalized), and we have introduced
the “Pauli-Z” operator Ẑ such that

Ẑ|±αt 〉 = ±|±αt 〉. (23)

Note that here Ẑ is neither Hermitian nor unitary [39]. It
follows immediately from (22) that the dynamical map induced
by the environmental noise consists of two parts: the mapping
of |Q〉 to |Qt 〉 (or damping of α0 to αt ) and the random
application of the Pauli-Z operator. We therefore recognize
that the decoherence due to the interaction Hamiltonian in
Eq. (3) has a twofold effect over the coherent-state qubit [14]:

(a) reduction of the coherent-state amplitude through u(t),

(b) generation of random phase-errors with probability pe.

(24)

As we shall find out, this is a crucial observation, since it
suggests the appropriate error-correcting code to be employed
when one wishes to recover the coherence of the qubit [22],
which we shall discuss in Sec. IV.

III. EXACT DYNAMICS OF TWO QUBITS

Let us now turn to the problem of two coherent-state qubits
under the influence of environmental noise. In this case, it
would be interesting to look into a quantum channel formed
by two entangled qubits and examine how its quality degrades
under the action of environmental noise. For this purpose, let
us consider an initial state which has been of experimental
interest (the cluster-type entangled coherent state) [21,40]

|C〉 = 1√
M

(|α0,α0〉 − z|α0,−α0〉 − z|−α0,α0〉

− z2|−α0,−α0〉), (25)

where M = 4(1 + e−4|α0|2 ), z = −i (which is kept implicit
here for later convenience), and |α0,α0〉 = |α0〉 ⊗ |α0〉, etc.,
denote coherent states of the two CS modes in question.
Here, again, each qubit is encoded with the {|±α0〉} basis
states. When the two CS modes are subject to independent
dissipations induced by the Hamiltonian (3) with the same
spectral function, the time evolution of the CS modes can then
be found in accordance with the single-qubit case. Namely,
with each mode following the prescription (17), we have the
following for the time evolution of any element in a two-qubit
density matrix:

|α,α′〉〈β,β ′| = |α〉〈β| ⊗ |α′〉〈β ′|
→ e−{[1−|u(t)|2]/2}[|α|2+|α′|2+|β|2+|β ′|2−2(αβ∗+α′β ′∗)]

× |αu(t),α′u(t)〉〈βu(t),β ′u(t)| . (26)

It is then easy to work out the exact dynamics for the initial
state (25). Its density matrix at any time t > t0 is found to be

ρ(t) = 1

M
[ |αt ,αt 〉〈αt ,αt | − ic|αt ,αt 〉〈αt ,−αt | − ic|αt ,αt 〉〈−αt ,αt | + c2|αt ,αt 〉〈−αt ,−αt |

+ ic|αt ,−αt 〉〈αt ,αt | + |αt ,−αt 〉〈αt ,−αt | + c2|αt ,−αt 〉〈−αt ,αt | + ic|αt ,−αt 〉〈−αt ,−αt |
+ ic|−αt ,αt 〉〈αt ,αt | + c2|−αt ,αt 〉〈αt ,−αt | + |−αt ,αt 〉〈−αt ,αt | + ic|−αt ,αt 〉〈−αt ,−αt |
+ c2|−αt ,−αt 〉〈αt ,αt | − ic|−αt ,−αt 〉〈αt ,−αt | − ic|−αt ,−αt 〉〈−αt ,αt | + |−αt ,−αt 〉〈−αt ,−αt | ]. (27)

Here M is the same as in Eq. (25) and we have denoted
c ≡ 1 − 2pe = exp{−2(|α0|2 − |αt |2)}. Note that this result
can also be obtained using the operator-sum formulation by
extending (22) to two CS modes subject to independent,
identical dissipations [27]. Equation (27) thus describes the
exact time evolution of a noisy quantum channel initially in
the state (25) with each CS mode under the action of the
Hamiltonian (3).

To examine the quality of the noisy quantum channel,
we shall study the change of its entanglement property and
teleportation ability with time. To this end, we shall calculate
the time evolution of the concurrence [41] and maximal
teleportation fidelity [42] for the density matrix (27). For

bipartite two-state systems, the concurrence for a density
matrix ρ is defined as

C ≡ max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (28)

where λi are eigenvalues of ρ(Ŷ1 ⊗ Ŷ2)ρ∗(Ŷ1 ⊗ Ŷ2) with
λ1 being the largest one. Here Ŷj are Pauli-Y operators
for subsystem j and ρ∗ is the complex conjugate of the
density matrix ρ [41]. To find the concurrence for ρ(t) of
(27), it is thus necessary to have first a matrix represen-
tation for the density matrix with respect to an orthonor-
mal basis for the restricted two-mode space spanned by
{|±αt 〉 ⊗ |±αt 〉}. Let us consider the following “even” and
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“odd” states:

|e〉 = 1√
Ne

(|αt 〉 + |−αt 〉) and

(29)

|o〉 = 1√
No

(|αt 〉 − |−αt 〉),

where Ne,o = 2(1 ± e−2|αt |2 ) are normalization factors. One
can easily check using (2) that |e〉 and |o〉 consist of number
states with, respectively, even and odd numbers of photons, and
hence are orthogonal to each other. We can therefore employ

the basis set {|ee〉,|eo〉,|oe〉,|oo〉} for the two CS modes and
arrive at the following matrix representations for the original
basis states:

|αt , ± αt 〉 =

⎛
⎜⎝

a2

±ab

ab

±b2

⎞
⎟⎠ , |−αt , ± αt 〉 =

⎛
⎜⎝

a2

±ab

−ab

∓b2

⎞
⎟⎠ . (30)

Here we have denoted

a =
√

1 + e−2|αt |2

2
and b =

√
1 − e−2|αt |2

2
. (31)

Using (30) in Eq. (27), we arrive at the matrix representation
for the density matrix in the basis {|ee〉,|eo〉,|oe〉,|oo〉},

ρ(t) = 4

M

⎛
⎜⎜⎜⎝

a4(1 + c2) 0 0 2ica2b2

0 a2b2(1 − c2) 0 0

0 0 a2b2(1 − c2) 0

−2ica2b2 0 0 b4(1 + c2)

⎞
⎟⎟⎟⎠ . (32)

We note that the density matrix takes an X-form [43]. Its
concurrence can thus be found relatively easily. We get

C = 2a2b2

1 + e−4|α0|2 max{0,c2 + 2c − 1}. (33)

The maximal teleportation fidelity (henceforth “teleporta-
tion fidelity” for short) for a quantum channel with density
matrix ρ is defined through its fully entangled fraction

fmax ≡ max
|ψ〉

〈ψ |ρ|ψ〉, (34)

where the maximum is taken over all possible maximally
entangled states |ψ〉. For two-state systems, the teleportation
fidelity is then given by [42]

F = 2fmax + 1

3
. (35)

To find the fully entangled fraction for the noisy channel (27),
one can first recast the density matrix in terms of the following
orthonormal basis set:

|φ1〉 ≡ |+〉 = 1√
2

(|ee〉 + |oo〉) ,

|φ2〉 ≡ i|−〉 = i√
2

(|ee〉 − |oo〉) ,

(36)

|φ3〉 ≡ i|�+〉 = i√
2

(|eo〉 + |oe〉) ,

|φ4〉 ≡ |�−〉 = 1√
2

(|eo〉 − |oe〉) ,

where |±〉 and |�±〉 are the usual Bell states in the even-odd
basis. The fully entangled fraction fmax then corresponds to the
largest eigenvalue for the real part of the transformed density
matrix [44]. This calculation leads to

fmax = 1

2(1 + e−4|α0|2 )
[c2 − 2a2b2(1 − c)2 + 1]. (37)

Because here each qubit is restricted to a two-dimensional state
space, the teleportation fidelity for the noisy channel (27) can
thus be obtained by substituting (37) back into (35).

We shall now proceed with explicit calculations for noise
models for the results above. This requires a specific form for
the spectral function J (ω). Here we will consider the following
form of a power law with an exponential cutoff [33]:

J (ω) = 2πηsω

(
ω

ωc

)s−1

exp

(
− ω

ωc

)
, (38)

where (cf. Ref. [33])

ηs = η0

(
e

s

)s

. (39)

Here η0 is the coupling strength and ωc the cutoff frequency,
which is much larger than any other frequency scales in the
problem. It is common to categorize the spectral function (38)
into three classes according to the power s of the frequency
variable ω: the sub-Ohmic (0 < s < 1), Ohmic (s = 1), and
super Ohmic (s > 1) ones [33]. Note that unlike in the earlier
literature, here we have defined ηs in the form (39) so that
for the same η0 and ωc, the spectral function (38) will have
the same peak height 2πη0ωc for all s > 0; Fig. 1 illustrates
a comparison for J (ω) without scaling and with scaling. This
makes the meaning of “coupling strength” less ambiguous
when one compares results for J (ω) with different power s.
This is because for given s the peak position of J (ω) occurs at
ω = sωc; its coupling is therefore “detuned” by sωc − ω0 from
the CS mode frequency ω0. Now that J (ω) for different s have
the same peak height (for the same η0 and ωc), by comparing
the detuning, one can have a clear picture as to which power s

would generate stronger coupling for the CS mode.
For the spectral function (38), it is not possible to obtain

an analytic solution for u(t) from the equation of motion
(11). Using techniques of Laplace transformation, however,
one can express u(t) as Bromwich integrals involving special
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FIG. 1. (Color online) Spectral function J (ω) for η0 = 0.5 (a)
without scaling [i.e., ηs = η0 in Eq. (38)] and (b) with scaling [i.e.,
with ηs given by (39)] for sub-Ohmic (s = 1/2; blue dashed curves),
Ohmic (s = 1; red dot-dashed curves), and super-Ohmic (s = 3;
green solid curves) cases. Here the horizontal axes are plotted in
units of ωc, which is taken to be 1 in all plots throughout this paper.

functions (such as exponential integrals and error functions).
Besides contribution from contours around the branch cut
for the integrand, depending on the coupling strength η0,
the integral can also receive contributions from poles of the
integrand. When the pole contribution exists, u(t) will tend to
a nonzero steady value at long times [30]. We relegate details
of these calculations to the Appendix. Figure 2 illustrates
our results for |u(t)| for the coupling strengths η0 = 0.01
and η0 = 0.5 for different powers s in the spectral function
(38). Here, following Ref. [29] we consider s = 1/2 for
sub-Ohmic coupling, and s = 3 for super-Ohmic coupling.
We note that at weak coupling (η0 = 0.01), |u(t)| decays
exponentially with time, while at strong coupling (η0 = 0.5),
after a sharp drop initially it recovers gradually and eventually
saturates at a nonzero value at long times. The weak coupling
result [Fig. 2(a)] exhibits typical Markovian dynamics [45].
For the strong-coupling result [Fig. 2(b)], the sharp decay
is due to the large coupling between the qubit and the
environment modes, which leads to a stronger decay initially
than that at weak coupling. However, feedback from the
environment modes subsequently brings |u(t)| back and a
long-time correlation between the qubit and the environment
modes is gradually established, leading to nondissipative |u(t)|
evolution at long times [29]. In view of Eq. (24), this means that
at strong coupling the amplitude decay of the qubit saturates
in the long-time limit. Some natural questions thus arise: For
the noisy quantum channel (27), would we have a robust,
nondissipative quantum channel at long times? Namely, would
the concurrence and the teleportation fidelity of the noisy
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FIG. 2. (Color online) The absolute value of u(t) for coupling
strength (a) η0 = 0.01 and (b) 0.5 for sub-Ohmic (s = 1/2; blue
dashed curves), Ohmic (s = 1; red dot-dashed curves), and super-
Ohmic (s = 3; green solid curves) cases. Note that here and in all
subsequent plots, we take t0 = 0 and use a logarithmic scale for the
time axis, which is in units of 1/ωc.
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FIG. 3. (Color online) Concurrence C and teleportation fidelity
F for the noisy quantum channel (27) at weak coupling [η0 = 0.01;
(a) and (b)] and strong coupling [η0 = 0.5; (c) and (d)] for sub-Ohmic
(s = 1/2; blue dashed curves), Ohmic (s = 1; red dot-dashed curves),
and super-Ohmic (s = 3; green solid curves) cases. The horizontal
dashed lines in (b) and (d) indicate the classical limit F = 2/3 for the
teleportation fidelity. In all panels, the time axes are plotted in units
of 1/ωc.

quantum channel possess, respectively, nonzero steady values
and better-than-classical values in the long-time limit?

To answer the questions above, we supply the numerically
obtained u(t) to formulas for the concurrence (33) and the
teleportation fidelity (35) [by way of (37)] for the noisy
quantum channel (27). For the CS mode, we shall consider
an experimentally realistic initial amplitude α0 = 1.2 [17–20]
and the frequency ω0 = 0.1ωc, since the cutoff frequency ωc is
the largest frequency scale in the problem. The results for our
calculation are demonstrated in Fig. 3 for weak (η0 = 0.01)
and strong (η0 = 0.5) couplings with sub-Ohmic (s = 1/2),
Ohmic, and super-Ohmic (s = 3) spectral functions. From
Fig. 3(a), we see that at weak coupling the concurrence decays
monotonically to zero for all three cases, with the sub-Ohmic
case having the largest decay rate and the super-Ohmic one
the smallest. This can be understood easily because the
super-Ohmic case has the largest detuning (with its peak at
ω = 3ωc) from the CS mode frequency (ω0 = 0.1ωc), while
the sub-Ohmic case has the smallest (with peak position at
ω = 0.5ωc). In the long-time limit, as Fig. 3(b) shows, the
teleportation fidelities of all three cases drop to the classical
value 2/3 � 0.667 [46]. Thus, as anticipated, at weak coupling
the quality of the noisy channel (27) does degrade with time.

For strong coupling, despite the nondissipative evolution
of u(t) at long times, we see in Figs. 3(c) and 3(d) that the
concurrence decays monotonically to zero at even faster rates
than at weak coupling, and the teleportation fidelity even falls
below the classical value at long times. In other words, in terms
of the two figures of merit considered here, at strong coupling
the quantum channel has a lower quality than that at weak
coupling. This is surprising because the long-time correlation
in u(t) turns out not helpful in preserving the quantum channel
at long times, in spite of the nondissipative time evolution.
Nevertheless, if one recalls from Eq. (24) that the effects of the
environmental noise on the qubits are in fact twofold, it is then
clear why such results emerge: The nondissipative evolution

022301-6



EXACT DYNAMICS FOR OPTICAL COHERENT-STATE . . . PHYSICAL REVIEW A 89, 022301 (2014)

at long times is not enough to support the quantum channel
because effect (b) in Eq. (24) is still in action here. Namely, it
is the random phase errors between the two qubits that disrupt
the quantum channel at strong coupling. Therefore, in order
to sustain a robust quantum channel at long times, we need to
take care of both effects in Eq. (24) properly. This is the task
to which we shall now turn.

IV. EXACT DYNAMICS OF TWO QUBITS WITH
ERROR CORRECTIONS

In order to combat effect (b) in Eq. (24) due to the
environmental noise, we shall resort to schemes of quantum
error correction. Now that we have identified these errors
as being due to random phase flips, it is natural to adopt
phase-flip error-correcting codes [14,22]. In Sec. IV A, we will
therefore examine the exact dynamics of the noisy quantum
channel when a phase-flip error-correcting code is applied.
As a comparison, in Sec. IV B we will also consider an
encoding scheme (the “bit-flip encoding”) that was previously
proposed for constructing quantum channels using coherent-
state qubits [21].

A. Phase-flip error correction

To correct the random phase-flip error, we shall employ
a scheme proposed by Glancy et al. [14] for coherent-state
qubits. Take three-bit encoding as an example, in this scheme
the signal qubit is sent at the encoding stage together with two
ancilla modes in vacuum states from the sender’s side. Making
use of two sets of beam splitters simulating two controlled-NOT

(CNOT) operations, one subsequently applies three Hadamard
gates so that the qubits can be protected against phase-flip
errors. Here the Hadamard gate operates in such a way that
(up to normalization factors) [47]

|±α〉 Hadamard−−−−−→ |α〉 ± |−α〉 (40)

with |±α〉 the basis states for the qubit. After passing through
the noisy region, the encoded qubit first passes through another
three Hadamard gates for decoding and then a sequence of
beam splitters and photodetectors for syndrome detection.
According to the error syndromes, one can apply corrective
operations to recover the signal qubit at the receiving end. In
this way, one would be able to correct one phase-flip error in
the qubits [3]. More errors can be corrected similarly when
more encoding ancilla modes are added. In general, an n-bit
encoding in the present scheme can correct up to (n − 1)/2
phase errors (n must be an odd number) and the probability
for an error-free transmission is [3,14]

ps =
n−1

2∑
k=0

(
n

k

)
(1 − pe)n−kpk

e , (41)

where pe is the probability for one phase-flip error in each
mode. Note that when pe < 1/2, the success probability ps

can be made arbitrarily close to 1 with sufficiently large n.
To incorporate the error-correcting scheme above into our

calculation for the exact dynamics of the noisy quantum
channel (27), we note that the probability pe for phase-
flip errors in our calculation is given by that in Eq. (22).

10
-2

10
0

10
2

10
4

t

0

0.5

1
C

10
-2

10
0

10
2

10
4

t

0

0.5

1
C

10
-2

10
0

10
2

10
4

t

0

0.5

1
C

10
-2

10
0

10
2

10
4

t

0.5

0.75

1
F

10
-2

10
0

10
2

10
4

t

0.5

0.75

1
F

10
-2

10
0

10
2

10
4

t

0.5

0.75

1
F

(a) (b) (c)

(f)(e)(d)

FIG. 4. (Color online) Concurrence C and teleportation fidelity
F for the noisy channel at weak coupling (η0 = 0.01) for sub-Ohmic
[s = 1/2; (a) and (d)], Ohmic [s = 1; (b) and (e)], and super-Ohmic
[s = 3; (c) and (f)] cases without encoding (blue dashed curves), and
with phase-flip encoding using 3-bit (red dot-dashed curves), 9-bit
(green solid surves), and 101-bit (purple dotted curves) codes. In
each of (d)–(f), the horizontal dashed line signifies the classical limit
F = 2/3.

Thus, according to (41), with an n-bit error-correcting code
implemented the error probability becomes p′

e = 1 − ps . This
corresponds to changing the previously defined c in Eq. (27)
into

c′ = 1 − 2p′
e = 2ps − 1. (42)

The time evolution for the concurrence and the fully entangled
fraction for the error-corrected noisy quantum channel can
now be obtained from (33) and (37) by simply replacing c

with c′ above.
The results for these calculations are shown in Fig. 4 for

weak coupling (η0 = 0.01) and Fig. 5 for strong coupling
(η0 = 0.5). One can notice immediately that at weak coupling
the concurrences for all three cases have now attained longer
life spans, and the teleportation fidelity can go above the
classical limit after error correction is applied. These gains,
however, do not seem to be very impressive as even with a
101-bit encoding the enhancement in the teleportation fidelity
is still rather limited (F � 0.727 at large times for all three
cases). Such limited gain at so high cost does not seem
practical.
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FIG. 5. (Color online) As Fig. 4 but for strong coupling (η0 =
0.5).
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At strong coupling, however, the situation turns out quite
differently. We see from Fig. 5 that in this case, error
correction can improve the concurrence and the teleportation
fidelity quite significantly. For super-Ohmic coupling, with
3-bit encoding the noisy channel can maintain a nonzero
concurrence [�0.237; see Fig. 5(c)] and a better-than-classical
teleportation fidelity [�0.747; see Fig. 5(f)] at long times. With
9-bit encoding, we find that the concurrences for all three
classes of spectral functions attain finite steady values and the
teleportation fidelities are all raised above the classical value at
long times. In the limit of large n encoding (illustrated with n =
101 here), even for the sub-Ohmic case (which would induce
the strongest environment coupling due to its small detuning),
the concurrence can recover to 0.796, and the teleportation
fidelity to 0.958. Therefore, at strong coupling, the phase-flip
error-correcting code can recover the noisy channel signifi-
cantly and result in a robust quantum channel at long times.

To understand the results above, let us recall from (24)
the two effects (a) amplitude reduction and (b) random phase
errors due to the environment noise. As noted above, for error
probability pe < 1/2 the present error-correcting code can
correct phase-flip errors very efficiently. For coherent-state
qubits, from (22), since pe < 1/2 always, the error-correcting
code can protect the noisy channel against effect (b) very
well. The difference between the weak-coupling and the
strong-coupling results, therefore, is primarily due to effect (a).
At weak coupling, since |u(t)| decays with time monotonically

to zero [see Fig. 2(a)], effect (a) persists all the way until
the qubit is completely damped away. At strong coupling,
however, |u(t)| saturates at long times and thus effect (a) is
entirely removed when this steady state is reached. Therefore,
for strong coupling, when the phase-flip error-correcting code
is implemented, both effects from the environmental noise can
be accounted for and a robust quantum channel can persist at
long times.

B. Bit-flip encoding

In the preceding section, we have seen that when u(t)
becomes non-dissipative in the long-time limit, applying
phase-flip error-correcting code can help preserve the quantum
channel. As a comparison, here we shall consider a different
encoding scheme for coherent-state qubits. In Ref. [21], a
repetition encoding was proposed for the quantum channel (25)
and its performance under photon loss has been analyzed in the
Markovian limit. With exact dynamics for the coherent-state
qubits available, here we reconsider this problem in partic-
ular for strong environment coupling when nondissipative
dynamics of u(t) is present. Since this encoding scheme is
identical to that in bit-flip error-correcting codes [3], in the
following we will refer to it as “bit-flip encoding” (note that
no error correction is attempted in this scheme [21]). Following
Ref. [21], an n-bit encoding in this scheme yields for the state
(25)

|Cn〉 = 1√
Mn

(|α0〉⊗n|α0〉⊗n − zn|α0〉⊗n|−α0〉⊗n − zn|−α0〉⊗n|α0〉⊗n| − z2n|−α0〉⊗n|−α0〉⊗n
)
, (43)

where the normalization factor

Mn =
{

4 for even n,

4(1 + e−4n|α0|2 ) for odd n,
(44)

and as in Eq. (25) z = −i; here |α〉⊗n ≡ |α〉 ⊗ · · · ⊗ |α〉, etc., denote direct products of n coherent states. Since each basis state
|±α0〉⊗n consists of n independent modes, the time evolution for an element of the density matrix for the encoded state (43) at
zero temperature can be generalized straightforwardly from (17):

|α〉⊗n〈β|⊗n → e−{[1−|u(t)|2]/2}(|α|2+|β|2−2αβ∗)n|αu(t)〉⊗n〈βu(t)|⊗n (45)

with u(t), as before, determined from (11). The time evolution of the initial density matrix |Cn〉〈Cn| for (43) then follows easily
from the prescription (45)

ρ(t) = 1

Mn

[|αt 〉⊗n|αt 〉⊗n〈αt |⊗n〈αt |⊗n − z∗ncn|αt 〉⊗n|αt 〉⊗n〈αt |⊗n〈−αt |⊗n

− z∗ncn|αt 〉⊗n|αt 〉⊗n〈−αt |⊗n〈αt |⊗n − z∗2nc2n|αt 〉⊗n|αt 〉⊗n〈−αt |⊗n〈−αt |⊗n

− zncn|αt 〉⊗n|−αt 〉⊗n〈αt |⊗n〈αt |⊗n + |αt 〉⊗n|−αt 〉⊗n〈αt |⊗n〈−αt |⊗n

+ c2n|αt 〉⊗n|−αt 〉⊗n〈−αt |⊗n〈αt |⊗n + z∗ncn|αt 〉⊗n|−αt 〉⊗n〈−αt |⊗n〈−αt |⊗n

− zncn|−αt 〉⊗n|αt 〉⊗n〈αt |⊗n〈αt |⊗n + c2n|−αt 〉⊗n|αt 〉⊗n〈αt |⊗n〈−αt |⊗n

+ |−αt 〉⊗n|αt 〉⊗n〈−αt |⊗n〈αt |⊗n + z∗ncn|−αt 〉⊗n|αt 〉⊗n〈−αt |⊗n〈−αt |⊗n

− z2nc2n|−αt 〉⊗n|−αt 〉⊗n〈αt |⊗n〈αt |⊗n + zncn|−αt 〉⊗n|−αt 〉⊗n〈αt |⊗n〈−αt |⊗n

+ zncn|−αt 〉⊗n|−αt 〉⊗n〈−αt |⊗n〈αt |⊗n + |−αt 〉⊗n|−αt 〉⊗n〈−αt |⊗n〈−αt |⊗n] , (46)

where αt is, as previously, given by (20) and c the same as in Eq. (27). To find the concurrence and teleportation fidelity for the
noisy channel (46), again one has to express ρ(t) in terms of orthonormal basis sets. As in Eq. (29), we adopt the n-bit repetition
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even-odd states

|en〉 = 1√
Me

(|αt 〉⊗n + |−αt 〉⊗n) and |on〉 = 1√
Mo

(|αt 〉⊗n − |−αt 〉⊗n), (47)

where Me,o = 2(1 ± e−2n|αt |2 ). The calculation then proceeds in close parallel with that for the nonencoded case in Sec. III,
except that care must be taken over the distinction between n being even or odd. In the basis {|enen〉,|enon〉,|onen〉,|onon〉}, one
finds for even n

ρ(t) =

⎛
⎜⎜⎜⎝

a4
n −ina3

nbnc
n −ina3

nbnc
n −a2

nb
2
nc

2n

−ina3
nbnc

n a2
nb

2
n a2

nb
2
nc

2n inanb
3
nc

n

−ina3
nbnc

n a2
nb

2
nc

2n a2
nb

2
n inanb

3
nc

n

−a2
nb

2
nc

2n inanb
3
nc

n inanb
3
nc

n b4
n

⎞
⎟⎟⎟⎠ , (48)

and for odd n

ρ(t) = 4

Mn

⎛
⎜⎜⎜⎝

a4
n(1 + c2n) 0 0 2ina2

nb
2
nc

n

0 a2
nb

2
n(1 − c2n) 0 0

0 0 a2
nb

2
n(1 − c2n) 0

−2ina2
nb

2
nc

n 0 0 b4
n(1 + c2n)

⎞
⎟⎟⎟⎠ . (49)

In both (48) and (49), we have denoted

an =
√

1 + e−2n|αt |2

2
and bn =

√
1 − e−2n|αt |2

2
. (50)

Accordingly, in the same manner as before, one can find for the bit-flip encoded noisy channel the concurrence

C = 8a2
nb

2
n

Mn

max{0,c2n + 2cn − 1} (51)

and the fully entangled fraction

fmax =
⎧⎨
⎩

1
4

[
1 + 4a2

nb
2
nc

2n +
√(

a2
n − b2

n

)4 + 16a2
nb

2
nc

2n
]

for even n,

1
2(1+e−4n|α0 |2 )

[
c2n − 2a2

nb
2
n(1 − cn)2 + 1

]
for odd n.

(52)

As usual, using (52) in Eq. (35), one can obtain the teleporta-
tion fidelity for the encoded noisy channel.

Figure 6 illustrates our results for the above calculations
with the CS mode frequency ω0 = 0.1ωc and initial amplitude
α0 = 1.2 at strong coupling (η0 = 0.5). Surprisingly, we find
that the bit-flip encoding turns out to further degrade the
quantum channel. With increasing bit redundancy in the
encoding, the concurrence tends to have a shorter life span
and the teleportation fidelity drops further below the classical
value, despite the nondecaying u(t) at long times. The bit-flip
encoding here thus not only would not help recover the
quantum channel, but would actually further disrupt it.

In order to see the reason for the deterioration caused by
bit-flip encoding, let us apply this encoding to the cat state
(18). This yields

|Qn〉 = 1√
Nn

(c1|α0〉⊗n + c2|−α0〉⊗n), (53)

where Nn = 1 + e−2n|α0|2 (c∗
1c2 + c1c

∗
2). Using the prescription

(45) for the time evolution of the density matrix |Qn〉〈Qn|
and expressing the result as an operator sum similar to (22),
one finds that the phase-error probability after the bit-flip
encoding becomes

p(n)
e = 1

2 (1 − e−2n(|α0|2−|αt |2)). (54)

It is then clear that with increasing bit redundancy n in the
encoding, the phase error actually increases. In other words, the
bit-flip encoding would in fact enhance effect (b) in Eq. (24) for
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FIG. 6. (Color online) Concurrence C and teleportation fidelity
F for the noisy channel at strong coupling (η0 = 0.5) for sub-Ohmic
[s = 1/2; (a) and (d)], Ohmic [s = 1; (b) and (e)], and super-Ohmic
[s = 3; (c) and (f)] cases without encoding (blue dashed curves),
and with bit-flip encoding using 3-bit (red dot-dashed curves), 6-bit
(green solid curves), and 9-bit (purple dotted curves) codes. As in
previous figures, the horizontal dashed lines in (d)–(f) indicate the
classical limit F = 2/3.

022301-9



MING-JAY YANG AND SHIN-TZA WU PHYSICAL REVIEW A 89, 022301 (2014)

coherent-state qubits. Therefore, instead of reducing environ-
mental noises, the bit-flip encoding induces additional sources
for phase errors, which further corrupt the noisy channel.

V. CONCLUSIONS AND DISCUSSION

In summary, we have studied the exact dynamics of optical
coherent-state qubits when they are exposed to environmental
noises. The environment is modeled with a collection of
simple harmonic oscillators which interact with the qubit by
exchanging energies. Making use of a coherent-state path-
integral formulation for this model [28,29], we are able to study
nonperturbatively feedback effects on the qubit dynamics due
to strong environment coupling. In particular, we examine
the dynamics of a noisy quantum channel that consists of two
entangled qubits which are coupled independently to their local
environments. Due to feedback from the qubit-environment
interaction at strong coupling, the time evolution of the
qubit can become nondissipative at long times. We study the
concurrence and teleportation fidelity of the noisy channel
and show that, by incorporating a phase-flip error-correcting
code, a robust quantum channel can be achieved when the
qubit-environment interaction is strong. As a comparison, we
also consider a bit-flip encoding scheme, which turns out to
further degrade the noisy channel.

In addition to demonstrating an approach for studying the
exact dynamics of coherent-state qubits subject to environmen-
tal noise, a key finding of this work is the possibility for achiev-
ing a robust quantum channel despite strong qubit-environment
interactions. This relies not only on applying appropriate error-
correcting code, but also on occurrence of the nondissipative
dynamics of u(t) at long times, which depends strongly on
the structure of the spectral function [30]. For instance, for a
Lorentzian spectral function, u(t) would not exhibit nondissi-
pative dynamics in the strong-coupling regime [27]. Therefore,
in this case even when a phase-flip error-correcting code is
implemented for the noisy channel, its concurrence cannot
have a nonzero steady value, and its teleportation fidelity
always stays below the classical value at long times [48].

Although the robust quantum channel described in this
paper has been demonstrated for a specific initial state (25),
we believe that the result should be fairly general. This is
because the robust quantum channel would emerge as long
as one can deal properly with both amplitude reduction and
phase errors due to the environment noise. Since the dynamics
of u(t) depends solely on the Hamiltonian (3), and not on the
initial state, whenever u(t) attains a nonzero steady value at
long times, amplitude reduction will cease to exist. For phase
errors, as noted in Sec. IV A, the phase-flip error-correcting
code can work efficiently since the error probability pe here is

always less than 1/2, irrespective of the initial state. Therefore,
a robust quantum channel can survive in the long-time limit for
any initially entangled states for suitably chosen parameters
(e.g., the coupling strength). Of course, the quality of the
quantum channel will certainly depend on the specific initial
state, but the essence of our conclusions should remain valid in
general.

Finally, we would like to point out that it would be
interesting to try to understand the deeper reason underlying
the emergence of the robust quantum channel. For instance,
can we understand it in terms of the interplay between different
dynamical maps? And if so, can we extend these results to more
general settings? We hope to pursue these lines of investigation
in future work.
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APPENDIX: THE CALCULATIONS FOR
SOLVING u(t) FROM EQ. (11)

In this Appendix we explain briefly how to solve for u(t)
from (11) when the spectral function is given by (38). Taking
the Laplace transform of (11) and using the initial condition
u(0) = 1 (we take t0 = 0 throughout), one can obtain the
Laplace transform for u(t),

û(z) = 1

iω0 + z + ĝ(z)
. (A1)

Here z is the Laplace variable and ĝ stands for the Laplace
transform of g(t) in Eq. (12). Using (38) in Eq. (12), one can
find easily

ĝ(z) = −iηsτc

∫ ∞

0
dx

xs

x − iτc z
e−x, (A2)

where we have denoted τc = 1/ωc. The x integral here can then
be spelled out in full using special functions. For example, for
s = 3 one can express the x integral in terms of the exponential
integral E1 [49] and find

ĝ(z) = −iηsτc[2 + iτc z − (τc z)2

− i(τc z)3e−iτc zE1(−iτc z)]. (A3)

Substituting (A3) back into (A1), one can then write u(t) as
the following Bromwich integral:

u(t) = 1

2πi

∫ ζ+i∞

ζ−i∞
dz û(z) ezt = 1

2πi

∫ ζ τc+i∞

ζ τc−i∞
dz′ ez′t ′

i(ω0τc − 2ηs) + (1 + ηs)z′ + iηsz′2 − ηsz′3e−iz′
E1(−iz′)

(A4)

with t ′ ≡ t/τc. Here ζ is a real number such that any pole of û(z) will lie to the left of the contour z = ζ and we have made the
change of variable z′ = zτc in going from the first to the second equation. Since the exponential integral E1(z) has a branch cut
along the negative real axis, the integral in Eq. (A4) can thus be separated into two parts, one coming from the pole contribution
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and the other from the branch cut:

u(t) =
∑

residues + 1

π

∫ ∞

0
dω Im

{
1

(ω0τc − 2ηs) − (1 + ηs)ω − ηsω2 − ηsω3e−ω[−Ei(ω) + iπ ]

}
e−iωt ′ . (A5)

Here the first term indicates a summation over all pole contributions, and the second term arises from the deformed contour
around the negative imaginary axis. In arriving at the last expression, we have used E1(xe±iπ ) = −Ei(x) ∓ iπ for x > 0 [49].
The integral in Eq. (A5) is now a (half-range) Fourier integral, which can be evaluated very efficiently using fast Fourier transform
techniques [50]. We note that when û(z) has any pole, it invariably lies over the imaginary z axis and gives rise to a nondecaying
term in Eq. (A5) [30]. It is the interference between this term and the ω-integral term that gives rise to the time evolution of |u(t)|
at strong coupling shown in Fig. 2(b).

For the sub-Ohmic case with s = 1/2 considered in this paper, the calculation proceeds similarly to that above and we find

u(t) =
∑

residues + 1

π

∫ ∞

0
dω Im

{
1

(ω0τc − √
πηs) − ω − iπηs

√
ω

[
e−ω + i 2√

π
F (

√
ω)

]
}

e−iωt ′ , (A6)

where F (z) is Dawson’s integral

F (z) = e−z2
∫ z

0
ex2

dx, (A7)

which can again be evaluated numerically with high efficiency [50]. For Ohmic coupling, setting s = 1 in Eq. (A2), one can
carry out the calculation similarly and obtain

u(t) =
∑

residues + 1

π

∫ ∞

0
dω Im

{
1

(ω0τc − ηs) − ω{1 + ηse−ω[−Ei(ω) + iπ ]}
}

e−iωt ′ . (A8)

The results (A5), (A6), and (A8) are in complete agreement with those found in Ref. [30].
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Ẑ2 = Î , it implies that Ẑ† �= Ẑ.
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