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Steering, incompatibility, and Bell-inequality violations in a class of probabilistic theories
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We show that connections between a degree of incompatibility of pairs of observables and the strength of
violations of Bell’s inequality found in recent investigations can be extended to a general class of probabilistic
physical models. It turns out that the property of universal uniform steering is sufficient for the saturation
of a generalized Tsirelson bound, corresponding to maximal violations of Bell’s inequality. It is also found
that a limited form of steering is still available and sufficient for such saturation in some state spaces where
universal uniform steering is not given. The techniques developed here are applied to the class of regular polygon
state spaces, giving a strengthening of known results. However, we also find indications that the link between
incompatibility and Bell violation may be more complex than originally envisaged.
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I. INTRODUCTION

The Bell inequalities [1] provide constraints that certain
families of joint probability distributions must satisfy to admit
a common joint distribution. It is known that the satisfaction
of a full set of Bell inequalities in a probabilistic system is
equivalent to the existence of such a joint probability [2,3].1

It was observed subsequently that joint measurability (in the
sense that there exist joint probabilities of the usual quantum-
mechanical form for every state) entails an operator form of
Bell inequalities; therefore the Bell inequalities are satisfied
whenever the observables involved in an Einstein-Podolsky-
Rosen-Bell type experiment are mutually commutative [7].
In the case of “unsharp” observables, commutativity is not
required for joint measurability and the degree of “unsharp-
ness” of the observables required for joint measurability can
be determined; this value is more restrictive than is needed for
violations of the Bell inequalities to be eliminated in the case
of the singlet state [8–11].

The connection between joint measurability and Bell
inequalities—in the specific form of the Clauser-Holt-
Shimony-Horne (CHSH) inequalities [12], which apply to
experiments involving runs of measurements of two pairs
of dichotomic observables on a bipartite system—has been
further elucidated in two interesting recent publications by
Wolf et al. [13] and Banik et al. [14]. The former have shown
that for any pair of incompatible dichotomic observables in
a finite-dimensional quantum system, a violation of a CHSH
inequality will be obtained. Hence incompatibility is not only
necessary but also sufficient for obtaining Bell-inequality
violations. Wolf et al. [13] conclude that “if a hypothetical
no-signaling theory is a refinement of quantum mechanics (but
otherwise consistent with it), it cannot render possible the joint
measurability of observables which are incompatible within
quantum mechanics.” With this result a tight link has been es-
tablished between the availability of incompatible observables
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1As observed by Pitowsky [4], Bell-type inequalities had already

been formulated as early as 1854 by George Boole, who deduced
them as conditions for the possibility of objective experience [5,6].

and the possibility of violating a CHSH inequality. It is natural
to ask whether a quantitative connection can be found between
a degree of incompatibility and the strength of these violations,
and whether such a connection is specific to quantum mechan-
ics or holds in a wider class of probabilistic physical theories.

It is a well-known fact that two incompatible quantum
observables can be approximately measured together if some
unsharpness in the measurement is allowed. A measure of the
incompatibility of two observables can then be obtained by
quantifying the degree of unsharpness required to obtain an
approximate joint measurement. In the case of dichotomic
observables this can be achieved by mixing each observable
with a trivial observable [a positive operator-valued measure
(POVM) whose positive operators are multiples of the
identity],2 with relative weights λ, 1 − λ. The mixing weight
determines the degree of unsharpness of the resulting smeared
observable.

Banik et al. have shown that the degree of incompatibility
(they use the term complementarity) of two dichotomic
observables, quantified by the largest smearing parameter λ for
which the smeared versions are compatible, puts limitations on
the maximum strength of CHSH inequality violations available
in such a theory [14]. The Bell functionalB, a generalization of
what is known as the Bell operator in the quantum case, then
is bounded by the parameter λopt associated with the “most
incompatible” pair of observables, so that B � 2/λopt.

Here we study the connection between degrees of incom-
patibility and CHSH inequality violation in the context of
general probabilistic physical theories by way of unifying the
approaches of [13] and [14]. We will see that the degree
of incompatibility used by Banik et al. is closely linked
with an unnamed parameter used in [13] to characterize the
joint measurability of two dichotomic observables. Under an
additional assumption on the physical theory, namely, that
it supports a sufficient degree of steering, the construction
used to violate the CHSH inequality generalizes. This gives a
sufficient condition under which the maximal violation can
be saturated. This result can be rephrased by saying that
probabilistic theories can be classified according to the value

2Such mixing procedures and their connection with goal of
achieving joint measurability are investigated systematically in [15]).

1050-2947/2014/89(2)/022123(7) 022123-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.022123


NEIL STEVENS AND PAUL BUSCH PHYSICAL REVIEW A 89, 022123 (2014)

of the generalized Tsirelson bound, defined as the maximum
value of the Bell functional, and this bound can (under said
assumptions) be realized by suitable maximally incompatible
observables (see Theorem 1).

Finally we illustrate the link between incompatibility and
Bell violation in the class of regular polygon state spaces. It
turns out that this connection appears to hold generally in the
case of even-sided polygons but not, at least in the same form,
for odd-sided cases.

II. GENERAL PROBABILISTIC MODELS

We begin by presenting the basic elements of the standard
framework of probabilistic models. The framework was intro-
duced in the 1960s by researchers in quantum foundations who
used it to investigate axiomatic derivations of the Hilbert space
formalism of quantum mechanics from operational postulates.
Due to the emphasis on the convex structure of the set of
states and the use of operations to model state transformations,
the approach was called the convex state approach or opera-
tional approach. Some pioneering references are [16–20]. An
overview of the literature and of relevant monographs can be
obtained from [21] and [22]. Recently the approach has gained
renewed interest from researchers in quantum information
exploring the information theoretic foundations of quantum
mechanics. Accessible recent introductions can be found in,
e.g., [23–25].

The set of states � of a general probabilistic model is taken
to be a compact convex subset of a finite-dimensional vector
space V , where the convexity corresponds to the ability to
define a preparation procedure as a probabilistic mixture of
preparation procedures corresponding to other states. We write
A(�) for the ordered linear space of affine functionals on �,
with the ordering given pointwise: f � 0 if f (ω) � 0 for all
ω ∈ �. A(�) is also canonically an order unit space, with order
unit u defined by u(ω) = 1 for all states ω ∈ �. The (convex)
set of effects on � is then taken to be the unit interval [0,u]
inside A(�), i.e.,

E (�) = {e ∈ A(�)|0 � e(ω) � 1,∀ω ∈ �}. (1)

A discrete observable O is then a function from an outcome
set X into E (�) that satisfies the normalization condition∑

x∈X O[x] = u. The value (lying between 0 and 1) of
O[x](ω) denotes the probability of getting outcome x for a
measurement of the observable O in state ω.

Under the assumption of tomographic locality [26], the
state space of a composite system with local state spaces �1

and �2 naturally lives in the vector space V1 ⊗ V2. We then
write � = �1 ⊗ �2 = (V1 ⊗ V2)1

+, where the normalization
is given by the order unit u1 ⊗ u2 ∈ V ∗

1 ⊗ V ∗
2 , but in general

the positive cone is not unique [27].
Although there is much choice in general for the ordering

on V1 ⊗ V2, there are two canonical choices, the maximal and
minimal. As a minimal demand it is reasonable to expect v1 ⊗
v2 � 0 whenever v1,v2 � 0; therefore we make the definition

(V1 ⊗min V2)+

=
⎧⎨
⎩

∑
i,j

λij v
(i)
1 ⊗ v

(j )
2

∣∣∣∣∣∣λij ∈ R+,v
(i)
k ∈ (Vk)+

⎫⎬
⎭ . (2)

We can similarly make such demands on the order structure
on V ∗

1 ⊗ V ∗
2 , leading to the converse definition

(V1 ⊗max V2)+ = (V ∗
1 ⊗min V ∗

2 )∗+. (3)

Any cone on V1 ⊗ V2 which lies between the maximal and
minimal cones is then admissible as a viable order structure.
In general, the tensor product chosen is an important part
in defining a theory; the only time when there is no choice
(since maximal and minimal are the same) is when the local
state spaces are simplexes [27]. The case where both �1

and �2 are quantum state spaces provides a prime example
of a nonminimal, nonmaximal order structure, namely, the
standard quantum-mechanical tensor product. By definition
�1 ⊗min �2 contains only separable states, which form a
proper subset of all bipartite states; by contrast, �1 ⊗max �2

contains not only the usual quantum states, but also all
normalized entanglement witnesses.

A bipartite state ω ∈ �1 ⊗ �2 can also be viewed as a way
to prepare states in �1, via the measurement of an observable
on �2. In this way, for each state ω, we can define the
corresponding linear map ω̂ : V ∗

2 → V1 by

a(ω̂(b)) = ω(a,b), a ∈ V ∗
1 , b ∈ V ∗

2 .

III. FUZZINESS AND JOINT MEASURABILITY

Consider a system represented by a probabilistic model,
whose state space is given by the convex set �. Any dichotomic
(or two-outcome) observableO on � is determined by an effect
e =: O[+1] ∈ E (�), where for any ω ∈ �, the probability of
getting the outcome labeled by +1 in the state ω is given by
e(ω), and similarly for the outcome −1 associated with the
complement effect e′ := u − e = O[−1].

Two effects e and f are said to be jointly measurable if
there exists g ∈ A(�), satisfying

0 � g, g � e, g � f, e + f � g + u, (4)

where u is the order unit on �. This condition is equivalent
to the existence of a joint observable for the dichotomic
observables corresponding to e and f . In fact, if the system
of inequalities (4) is satisfied for some effect g, then the set
of effects g++ := g, g+− := e − g, g−+ := f − g, g−− :=
u − e − f + g defines an observable that comprises e,e′
and f,f ′ as marginals, in the sense that e = g++ + g+−,
f = g++ + g−+, etc.3

Given a two-outcome observable A determined by effect e,
one can introduce a corresponding fuzzy observable A(λ) as
a smearing (or fuzzy version) of A, whose defining effect is
given by

e(λ) = 1 + λ

2
e + 1 − λ

2
e′ = λe + 1 − λ

2
u, (5)

with smearing parameter λ ∈ [0,1] and complement effect
e(λ)′ = e′(λ).

Given any pair of two-outcome observables A1,A2, with
corresponding effects e,f , we can use the parameter λ to

3For more detail on the notion of joint observables in probabilistic
theories, we refer the reader to [28], where further relevant references
can be found.
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give a measure of how incompatible they are. First we note
that for λ = 1

2 , the choice of effect g = 1
4 (e + f ) generates a

joint observable for e and f since it satisfies (4), as is readily
verified. Thus the set of values of λ which make e(λ) and f (λ)

jointly measurable contains 1
2 . Further, if e(λ) and f (λ) are

jointly measurable, then for any λ′ � λ so are e(λ′) and f (λ′).
Hence the set lies inside the interval [0,λe,f ], where we define
λe,f to be the solution to the cone-linear program:

maximize : λ

subject to : g � e(λ)

g � f (λ) (6)

0 � g

e(λ) + f (λ) − u � g.

This measure of incompatibility of a pair of effects in turn
leads to a measure of the degree of incompatibility of a given
model by looking for the most incompatible pair:

λopt = inf
e,f ∈E (�)

λe,f . (7)

Following a path similar to [13], we can define a different
parameter te.f , which we will see is closely linked with λe,f .
For a given pair of effects e and f , we define te,f to be the
solution to the cone-linear program:

minimize : t

subject to : g � e + tu

g � f + tu (8)

0 � g

e + f − u � g.

As shown in [29], the optimal set for (8) is nonempty, so the
minimum can be achieved; hence e and f are incompatible if
and only if te,f > 0. Here we notice that the pair (λ,g) being
feasible for the problem (6) is equivalent to the pair ( 1−λ

2λ
,
g

λ
)

being feasible for the problem (8). Combining this with the fact
that the function 1−λ

2λ
is monotonically decreasing for λ ∈ [0,1]

brings us to the promised link

te,f = 1 − λe,f

2λe,f

. (9)

A. Examples

In a model of discrete classical probability theory, we take
the state space to be the set of all probability measures on some
countable set X, i.e.,

� =
{

(ωx)x∈X

∣∣∣∣∣ωx � 0 ∀x ∈ X,
∑

x

ωx = 1

}
. (10)

A functional e on � with action e(ω) = ∑
x exωx is easily seen

to be positive if and only if ex � 0 for all x ∈ X, and the order
unit satisfies ux = 1 for all x ∈ X.

Suppose we now have two effects e,f ∈ E (�). Taking g

to have components gx = min{ex,fx}, then since positivity is
determined componentwise, the inequalities (4) are immedi-
ately satisfied and hence e and f are jointly measurable. Since
this holds for arbitrary e and f , in this case we have λopt = 1.

As shown in [14], in any finite-dimensional Hilbert space
the value of the joint measurability parameter for a pair of
dichotomic observables is λopt = 1/

√
2.

A simple nonclassical, nonquantum example is that of the
squit. The two-dimensional state space is given by a square,
denoted �; it contains all points (x,y,1) with −1 � x + y � 1,
−1 � x − y � 1, and takes the shape of a square. As we will
see, the squit leads to maximally incompatible effects in the
sense that it leads to the smallest possible value of λopt.

First, we note that for any probabilistic model, λ = 1
2

provides a lower bound for λopt, since e( 1
2 ) = 1

2e + 1
4u and

f ( 1
2 ) = 1

2f + 1
4u are always jointly measurable. This can

be seen explicitly by setting g = 1
4e + 1

4f , and then the
corresponding equations (4) are satisfied.

As a convenient parametrization we can write a generic
affine functional g ∈ A(�) as a vector g = (a,b,c), with action
given by the canonical inner product scaled by a factor of
1
2 . In this case the order unit is given by u = (0,0,2). Since
the positivity of a functional g on a compact convex set is
equivalent to positivity on its extreme points, we can determine
the structure of the set of effects by demanding that its elements
g take values between 0 and 1 on the extreme points of the set
of states. In the case of the squit, E (�) is a convex polytope
with defining inequalities given by

u � g � 0 ⇐⇒
{

2 � c + a � 0, 2 � c + b � 0,

2 � c − a � 0, 2 � c − b � 0.

(11)

We note the extreme points: (0,0,2) = u, (0,0,0), (1,1,1),
(1, −1,1), (−1,1,1), (−1, − 1,1).

In an attempt to find the lowest possible value of λe,f ,
we consider the case of the two orthogonal extremal effects
e = (1,1,1) and f = (1, −1,1). In order for e(λ) and f (λ) to be
jointly measurable, we need to be able to find a g that satisfies
all the inequalities in (4). This entails, in particular,

g − e(λ) − f (λ) + u = (a − 2λ,b,c) � 0,

giving 2λ � a + c;

e(λ) − g = (λ − a,λ − b,1 − c) � 0,

giving λ � 1 + a − c;

f (λ) − g = (λ − a, − λ − b,1 − c) � 0,

giving λ � 1 − a − c;

g = (a,b,c) � 0,

giving a � c.

Combining these inequalities leads to 4λ � 2 + a − c � 2, so
for this choice of e and f we must have λe,f � 1

2 . Given that
1
2 is the lowest possible value, we conclude that in the case of
the squit, λopt = 1

2 .

IV. STEERING AND SATURATION OF
THE GENERALIZED TSIRELSON BOUND

In order to give conditions on a generalized probabilistic
model under which the bound on CHSH violations given
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in [14] can be achieved we need to introduce the notion of
steering, as given in [30].

Given two systems A and B, with state spaces �A and
�B , respectively, for any bipartite state ω ∈ �A ⊗ �B we can
define its A marginal, living in �A in an analog to the quantum-
mechanical partial trace:

ωA = ω̂(uB), (12)

where uB is the order unit on B, with a similar definition
for ωB .

Following this we say that a state ω ∈ �A ⊗ �B is steering
for its A marginal if for any collection of subnormalized
states that form a decomposition of that marginal, i.e.,
{α1, . . . ,αn|

∑
i αi = ωA,0 � uA(αi) � 1}, there exists an ob-

servable {e1, . . . ,en} ⊂ E (�B) with αi = ω̂(ei).
It was observed by Schrödinger that this property holds

in quantum mechanics for all pure bipartite states [31],
originally coining the term “steering,” which we generalize
now following [30]: A general probabilistic model of a system
A with state space �A supports uniform universal steering if
there is another system B with state space �B , such that for any
α ∈ �A, there is a state ωα ∈ �A ⊗ �B , with ωA

α = α that is
steering for its A marginal, and supports universal self-steering
if the above is satisfied with B = A. The existence of steering
in this manner is similar to the idea of purification to be found,
for example, in [32]. Indeed, any purification of a state will be
steering for its marginals; however, steering states being pure
is not required here.

The magnitude of maximal CHSH violations is quantified
in quantum mechanics by the norm of the Bell operator. We
take A1,A2,B1, and B2 to be ±1-valued observables, and define
following [14],

B := 〈A1B1 + A1B2 + A2B1 − A2B2〉ω,

where A1 := A1[+1] − A1[−1], etc., and 〈X〉ω := X(ω) for
any affine functional X. We will call the map ω �→ B the Bell
functional and refer to supω B as the (generalized) Tsirelson
bound.

In order to see where steering enters the picture, we follow
[14] to get a simple bound on the norm of B. In order to do
this we consider what effect smearing the observables of one
party has by defining

B(λ) = 〈
A

(λ)
1 B1 + A

(λ)
1 B2 + A

(λ)
2 B1 − A

(λ)
2 B2

〉
, (13)

where A
(λ)
1 = A(λ)

1 [+1] − A(λ)
1 [−1] etc., with the smearing

of the effects as defined as in (5). Because the choice of
observable that is mixed to form the smearing is an unbiased,
trivial observable, the resulting expectation scales with the
smearing parameter:

A
(λ)
1 = λA1[+1] + 1 − λ

2
u − λA1[−1] − 1 − λ

2
u = λA1.

(14)

Now since the Bell functional is bilinear and the same smearing
parameter is being used on all functionals on the first system,
the linear scaling carries over and we get B(λ) = λB.

As shown in the previous chapter, there always exists jointly
measurable fuzzy versions of any pair of observables, as long
as the value of the smearing parameter is small enough. Now

if we take any λ such that A
(λ)
1 and A

(λ)
2 are jointly measurable,

then we know that the corresponding Bell functional satisfies
the usual Bell inequality, and thus its value is bounded by
B(λ) � 2. Consequently, each such value of λ gives a bound on
the Bell functional of B � 2

λ
, and in order to obtain the lowest

such upper bound, we take the largest smearing parameter
which still results in joint measurability to get

B � 2

λA1[+1],A2[+1]
. (15)

Since every probabilistic model contains observables which
are jointly measurable with no smearing, and thus satisfying
the usual Bell inequality, knowing the above bound for a single
pair of observables will not necessarily yield information about
the structure of the system itself. A more general bound,
however, can be written down by simply taking the most
incompatible pair of observables:

B � 2

λopt
. (16)

Theorem 1. In any probabilistic model of a system A that
supports uniform universal steering, the Tsirelson bound is
given by the tight inequality that can be saturated:

B � 2

λopt
, (17)

with λopt defined in Eq. (7).
Proof. Suppose we have a model of a system A that supports

uniform universal steering, and that we have two effects e,f ∈
E (�A). The parameter introduced earlier, te,f , can now also
be calculated from the dual program to (8), which can be given
as [33]

maximize : μ3(e + f − uA) − μ1(e) − μ2(f )

subject to : (μ1 + μ2)(uA) = 1
(18)

μ1 + μ2 = μ3 + μ4

0 � μ1,μ2,μ3,μ4,

with μi ∈ A(�A)∗.
Writing μ1 + μ2 = ρ, for the μi that achieve the optimal

value for (18), we find that ρ � 0 and uA(ρ) = 1, so ρ ∈ �A.
By the assumption of uniform universal steering, therefore
we can find a state ω ∈ �A ⊗ �B with ωA = ω̂(uB) = ρ;
moreover, in {μ1,μ2} and {μ3,μ4} we have two different
decompositions of ρ, and we can thus find effects ẽ,f̃ ∈
E (�B) satisfying

ω̂(ẽ) = μ1, ω̂(f̃ ) = μ3. (19)

To achieve the maximum CHSH violations, we take
A1,A2,B1, and B2 to be ±1-valued observables defined by
effects f ′,e,ẽ′, and f̃ ′, respectively; we then have

A1 = uA − 2f, B1 = uB − 2ẽ,
(20)

A2 = 2e − uA, B2 = uB − 2f̃ .
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The value of the Bell functional can now be evaluated:

B = ω(uA − 2f,2uB − 2ẽ − 2f̃ ) + ω(2e − uA,2f̃ − 2ẽ)

= 2ω̂(uB)(uA − 2f ) + 4ω̂(ẽ)(f − e)

+ 4ω̂(f̃ )(f + e − uA)

= 2 + 4[(μ1 + μ2)(−f ) + μ1(f ) − μ1(e)

+μ3(f + e − uA)]

= 2 + 4[μ3(e + f − uA) − μ1(e) − μ2(f )]

= 2(2te,f + 1) = 2

λe,f

,

thus saturating the generalized Tsirelson bound as claimed. �
Not every probabilistic model may possess the property

of supporting uniform universal steering, and although it is
a sufficient condition to obtain the conclusion of the above
theorem, as the following example will show, it is not a
necessary one. Indeed, a model of “boxworld,” which contains
Popescu-Rohrlich (PR) box states exhibiting the maximum
possible CHSH violations, uses local state spaces that are
the squits introduced earlier, and composition is given by
the maximal tensor product. Despite the saturation of the
generalized Tsirelson bound, such a state space does not admit
uniform universal steering.

To see this, we consider a bipartite state ω ∈ � ⊗max �
with the corresponding map ω̂. Note that from the definition
of ω being a state, ω̂ will automatically be a positive map
sending V ∗

+ into V+. Now suppose ω is steering for its marginal
ρ, i.e., ω̂(u) = ρ, and choose a decomposition of ρ into
pure states, ρ = ∑

i αi . Since the subnormalized states in the
decomposition are pure and ω̂ is positive, the inverse images
ω̂−1(αi) must lie on extremal rays of the cone V ∗

+. Consider
the extremal ray effect e = (1,1,1) with its complement
e′ = (−1, − 1,1) (which is again extremal). With appropriate
labeling of the αi we can then write α1 = ω̂(e) and α2 = ω̂(e′);
however, since we have e + e′ = u,

α1 + α2 = ω̂(e + e′) = ω̂(u) = ρ,

and hence ρ can be written as a mixture of just two pure
states. Since there are many points in a square that can only
be written as a convex combination of a minimum of three
extreme points, we conclude that such a boxworld model does
not support universal uniform steering.

Remark 1. It is interesting to note that there is another set
of conditions sufficient to obtain the conclusion of the above
theorem. We say that a positive cone V+ is homogeneous if
the space of order automorphisms of V acts transitively on the
interior of V+, and (weakly) self-dual if there exists a linear
map η : V → V ∗ that is an isomorphism of ordered linear
spaces, i.e., η(V+) = V ∗

+. It is known that homogeneity follows
from uniform universal steering. Conversely, if the positive
cone V+ generated by the state space � of the probabilistic
model of a system A is homogeneous and weakly self-dual,
then uniform universal self-steering follows if the maximal
tensor product is adopted. Hence the conditions of Theorem
1 are fulfilled [30] and the Tsirelson bound in the inequality
B � 2/λopt can be saturated.

In the quantum probabilistic model, the tensor product
is not maximal but still uniform universal steering holds.

The classical model (trivially) satisfies the conditions of
weak self-duality and homogeneity, and the tensor product is
maximal. The squit is weakly self-dual but does not satisfy
uniform universal steering, so that homogeneity fails; but it
allows enough self-steering so that the maximal Bell-Tsirelson
bound of 4 can be realized.

V. GENERALIZED TSIRELSON BOUNDS
FOR POLYGON STATE SPACES

Work in [34] suggests that there is a spectrum of values for
the generalized Tsirelson bound in the case of two-dimensional
polygon state spaces (given as the convex hulls of regular
polygons). It is shown there that for a system composed of two
identical polygon state spaces with an odd number of vertices,
the maximally entangled state does not lead to a violation of
the standard Tsirelson bound of 2

√
2, whereas in the case of

an even number of vertices this bound can be exceeded. This
suggests that among the class of polygon state spaces, the
generalized Tsirelson bound can be either smaller or greater
than the standard Tsirelson bound.

Remark 2. We note that of the polygon state spaces, the
only cases in which homogeneity holds are the n = 3 triangle
and the n → ∞ circle. Hence uniform universal steering is
generally not available; however, it may still be possible to
saturate the generalized Tsirelson bound in some cases, but in
others this may not be possible.

As shown in [34], in the case of boxworld, where each
local state space is a square, the maximally entangled state is
a PR box and takes the maximum possible value for the Bell
functional of 4. This agrees with the result that the squit does
indeed lead to the maximum amount of incompatibility, and
shows that in this case the generalized Tsirelson bound can
be saturated. We have been able to show that this conclusion
holds also in regular polygon state spaces where the number of
vertices is a multiple of 8. We expect this result to extend to all
even-sided cases. This strengthens the expectation, expressed
in [34], that in these cases the Tsirelson bound is saturated
with the maximally entangled state.

Moving to the n = 5 case makes things a lot more
interesting, however. To see this we follow the notation in
[34] and define the family of state spaces �n to be the convex
hull of the points

ωi =

⎛
⎜⎝

rn cos
(

2πi
n

)
rn sin

(
2πi
n

)
1

⎞
⎟⎠ , i = 1, . . . ,n,

with rn = √
sec(π

n
).

The qualitative difference between the state spaces of odd-
and even-sided polygons first appears in the structure of the
set of effects. For the case of even n, along with 0 and u, there
are n extremal effects:

ei = 1

2

⎛
⎝rn cos

( (2i−1)π
n

)
rn sin

( (2i−1)π
n

)
1

⎞
⎠ , i = 1, . . . ,n,

and in this case all the ei lie on extremal rays of the cone V ∗
+.

This important fact occurs since for each of the ei we can find
another effect ej , also extremal, which is its complement, i.e.,
ej = e′

i = u − ei , namely, for j = i + n
2 mod n. For the case
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of odd n, a seemingly similar expression arises for the ray
extremal effects:

ei = 1

1 + r2
n

⎛
⎝rn cos

(
2πi
n

)
rn sin

(
2πi
n

)
1

⎞
⎠ , i = 1, . . . ,n.

On this occasion, however, the complements of the ei are
given by

e′
i = u − ei = 1

1 + r2
n

⎛
⎝−rn cos

(
2πi
n

)
−rn sin

(
2πi
n

)
r2
n

⎞
⎠ , i = 1, . . . ,n,

which do not coincide with the ei , and thus there are 2n

nontrivial extreme points of E (�n).
Now we can pose the question of what the value is for

λopt when the state space is �5, and whether is it possible to
achieve the corresponding Bell value B = 2/λopt. Since each
extreme two-valued observable is determined by a ray effect,
the largest value of incompatibility will come from one of the
possible pairs of the ei . However, due to the symmetry of the
state space, the affine transformation of rotating by π/5 serves
only to cyclically permute the indices of the ei modulo 5. This
means that there are only two possible values of λei ,ej

, those
for nearest neighbors and those for next-nearest neighbors.
Calculation shows that these values are, for example,

λe1,e2 = 3 + 2
√

5

11
≈ 0.679 28, λe1,e3 = 8 + 3

√
5

19
≈ 0.774 16,

and hence the value of λopt for the pentagon is 3+2
√

5
11 . From (16)

this gives the bound on the Bell functional as B � 4
√

5 − 6.
However, unlike in the case of the tensor product of two squits,
the maximally entangled state between two pentagonal state
spaces does not saturate the corresponding bound; instead we
get a value ofB = 6√

5
, strictly below that coming from the level

of incompatibility on one state space. This fact suggests that
either the chosen way of evaluating the level of incompatibility
in a system used does not capture everything, or that there is
some structural obstruction that prevents such a link from
holding that does not exist in other cases. Here we present
some evidence towards the former.

In order to improve the measure of incompatibility used,
we wish to modify the program used in Eq. (6). To do this we
relax the method of smearing used, still mixing in multiples
of the order unit corresponding to trivial observables, but we
now allow them to be possibly biased as follows:

e(λ,p) = λe + p(1 − λ)u. (21)

This definition encompasses the old, with e(λ) = e(λ, 1
2 ).

The updated measure of incompatibility of a pair of effects
e and f , which we denote λ̄e,f , is now given by the optimal
value of the optimization program:

maximize : λ

subject to : g � e(λ,p)

g � f (λ,q)

(22)
0 � g

e(λ,p) + f (λ,q) − u � g

0 � p,q � 1.

Solving this updated problem in the case of the pentagon
again gives the optimal value on, e.g., e1 and e2, with

λ̄opt = 5 + √
5

10
≈ 0.723 61,

which occurs for the values p = q = 1.
This is indeed a different value from earlier, but still we

have that 2
λ̄opt

�= 6√
5
; however, in this case the unbiased nature

of the observables mixed in means such a simple link is no
longer expected, and indeed we can see that there is a link to
the Bell value on the maximally entangled state as follows. As
in the previous, we can define a smeared version of the Bell
functional, where the smearing is all done on the functionals
of one party:

B(λ,1) = 〈
A

(λ,1)
1 B1 + A

(λ,1)
1 B2 + A

(λ,1)
2 B1 − A

(λ,1)
2 B2

〉
. (23)

But now instead of having the nice linear scaling in λ, we
gain an extra expectation term B(λ,1) = λB + 2(1 − λ)〈B1〉,
and again under the assumption that λ is small enough to
ensure joint measurability, and then taking the largest such
value, we can write the inequality

B � 2[1 − (1 − λ̄opt)〈B1〉]
λ̄opt

. (24)

The link to the maximally entangled state on two pentagons
now comes from noting that the expectation of any observable
B1, defined by an extreme effect on the maximally entangled
state, is 〈B1〉 = 5−2

√
5

5 . This means that if evaluated in the
maximally entangled state, the inequality in (24), for the value
of λ̄opt given above, is indeed saturated.

VI. CONCLUSION

By combining and developing ideas from the works of
Wolf et al. [13] and Banik et al. [14], we have shown that
probabilistic models can be classified according to their associ-
ated value of the generalized Tsirelson bound, which specifies
the maximum possible violation of CHSH inequalities. We
have given conditions (defined and studied in [30]), that
probabilistic models may or may not satisfy, under which the
maximal CHSH violations are attained for appropriate choices
of maximally incompatible dichotomic observables. Here the
degree of incompatibility of two observables is defined by the
minimum amount of smearing of these observables necessary
to turn them into jointly measurable observables.

The authors of [13] concluded that observables that are
incompatible in quantum mechanics remain incompatible in
any probabilistic model that serves as an extension of quantum
mechanics. Here we have shown that this conclusion applies to
extensions of any probabilistic model that allows for sufficient
steering.

As an illustration of the general results, we have considered
the squit system which underlies the PR box model, and have
identified the pair of maximally incompatible extremal effects
of the squit that give rise to the saturation of the largest possible
value (i.e., 4) of the Tsirelson bound. In addition, we have
obtained partial confirmation of the conjectured maximality
of the Bell functional if evaluated on the maximally entangled
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state in the class of regular polygon state spaces considered
in [34].

In the case of the pentagon state space, we discovered that
the connection between incompatibility and Bell violation is
not always of the simple form envisaged originally and used
through most of this paper; this suggests that the definitive
universal expression of this connection remains yet to be
found.

The methods used here are taken from among some of
the standard tools of quantum measurement and information
theory used in [13] and [14], and we have shown that they
apply equally well in a wide class of probabilistic models. This
insight may prove valuable in future investigations into the

characterization of quantum mechanics among all probabilistic
models.
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