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Can a Bell test with no detection loophole be demonstrated for multiphoton entangled states of light within the
current technology? We examine the possibility of a postselection-free Clauser-Horne-Shimony-Holt (CHSH)-
Bell inequality test with an unsymmetrical polarization singlet. To that end we employ a preselection procedure
which is performed prior to the test. It allows using imperfect (coarse-grained) binary photodetection in the
test. We show an example of a preselection scheme which improves violation of the CHSH inequality with the
micro-macro polarization singlet produced by the optimal quantum cloning. The preselection is realized by a
quantum filter which is believed not to be useful for this purpose.

DOI: 10.1103/PhysRevA.89.022119 PACS number(s): 42.50.Dv, 03.65.Ud, 42.50.Ex

I. INTRODUCTION

Quantum-mechanical laws apply to single particles, com-
plex molecules involving tens of atoms, as well as to living
organisms [1–4]. Recently, the first optical almost-loophole-
free Bell tests for a two-photon singlet, eliminating the famous
detection loophole, have been performed by the Zeilinger
and Kwiat groups [5,6]. Can this also be demonstrated
for systems with higher mean photon numbers using the
current technology? An indisputable Bell test [7,8] ultimately
rejects the local realistic description of the world in favor of
quantum mechanics. It is also of practical importance, allowing
for implementation of quantum technology protocols such
as device-independent quantum key distribution (QKD) [9],
randomness generation [10], and reduction of communication
complexity [11].

The detection loophole arises from inefficient (lossy)
photodetection. The local realistic models do not necessarily
satisfy the fair sampling assumption and they might exploit
the postselection, i.e., discarding some of the experimental
data, to mimic the violation of a Bell inequality. Closing the
detection loophole for a two-photon singlet was possible due
to employment of superconducting transition-edge sensors
[12,13], quantum detectors with a near-perfect efficiency.
However, if we examined states of light involving a large
number of photons, elimination of this loophole would be more
involved since the imperfect (coarse-grained) measurements
come into play [14].

Quantum phenomena on the macroscopic scale have been
intriguing and puzzling to physicists since the inception of
quantum theory. Recently, macroscopically populated entan-
gled states of light became available experimentally: the
micro-macro polarization singlet [15], the entangled bright
squeezed vacuum [16,17], and the displaced single-photon
path-entangled state [18,19]. An important question regarding
the possibility of performing a loophole-free Bell test [20,21]
for these states has been posed. The probability of a no-
detection event for these states is very low. This property gives
hope to close the detection loophole. In Ref. [21] we showed

that if the postselection is simply omitted, the micro-macro
polarization state fails to pass the Bell test with efficient coarse-
grained (binary) analog detection, although the loophole is
closed. We also emphasized that preselection can solve this
problem (it improves the visibility (distinguishability) of the
multiphoton qubit in analog detection [22]), but we did not
provide any example to support our claim. However, the
considerations in [23] contradict this statement: the authors
showed that all preselections tested thus far are not useful
for increasing the distinguishability of the micro-macro po-
larization singlet in analog detection. Additionally, the results
in Refs. [24,25] emphasized the significance of the detection
loophole for the test of macroscopic entanglement discussed
in Ref. [15]: it was demonstrated that in the presence of this
loophole, separable states may falsely reveal entanglement.
Moreover, in Ref. [14] it was demonstrated that a single-
photon resolution is essential in observing the micro-macro
entanglement with photon counting measurements.

Here we examine a loophole(postselection)-free Clauser-
Horne-Shimony-Holt (CHSH)-Bell inequality test with pres-
elected unsymmetrical polarization singlet states of light of
a general form and imperfect binary analog detection. We
explicitly show an example of a preselection scheme which
improves violation of the CHSH inequality with the micro-
macro polarization singlet produced by optimal quantum
cloning.

In the unsymmetrical singlets under consideration, one of
the modes is occupied by a single photon (the microqubit)
whereas the second one contains a pair of mutually orthogonal
multiphoton states (the multiphoton qubit). We assume that
the average photon number in the multiphoton qubit can be
controlled by some external parameter in an experimental
setup, and it may vary from a single photon to the macro-
scopic quantity of thousands of photons. Furthermore, we
consider a Bell test based only on linear optical elements.
The unsymmetrical singlet is prepared before the test by a
special filtering procedure applied to the mode containing the
multiphoton state. The filter is described by a positive operator
valued measure (POVM). For example, it may be realized by
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FIG. 1. (Color online) Bell inequality test involving a preselec-
tion strategy and un unsymmetrical singlet state of light.

the modulus of intensity difference filter [26,27]. Filtering
belongs to the conditional state preparation, not to the test.
Only if the state is successfully preselected is the Bell test
performed, where every measurement outcome is conclusive
and is taken into account. This eliminates the necessity of data
postselection and closes the detection loophole.

This paper is organized as follows: In Sec. II we discuss
a general scenario of the CHSH-Bell inequality test with
preselection strategy for an unsymmetrical singlet. Section III
is devoted to a short summary of the experimentally available
unsymmetrical polarization singlets of light. We further dis-
cuss the CHSH inequality violation for these states preselected
by the special case of the modulus of intensity difference
filter, namely, the corner filter, in Sec. IV. Finally, we discuss
the possible future steps towards genuine loophole-free Bell
testing for states of light with a large photon population.

II. CHSH-BELL TEST WITH PRESELECTION

The Bell inequality test with an unsymmetrical singlet
state and imperfect intensity measurements has to employ
a preselection strategy [21,22]. The role of preselection is
to prevent from deterioration the ability to witness quantum
correlations in the singlet state, resulting from coarse-graining
measurements. We call the singlet unsymmetrical if the
dimensions of the Hilbert spaces corresponding to its modes
are unequal.

Let us start our discussion with a two-mode unsymmetrical
polarization singlet state of a general form

|�−〉 = 1/
√

2(|1ϕ〉A|�̄〉B − |1ϕ⊥〉A|�〉B) (1)

and an arbitrary preselection strategy executed by a POVM P .
The states |1ϕ〉 and |1ϕ⊥〉 denote a microqubit, e.g., a single
photon in polarization ϕ and ϕ⊥, respectively, whereas |�〉
and |�̄〉 are multiphoton states which constitute a multiphoton
qubit. Of course, the two states of the qubits are pairwise
orthogonal 〈1ϕ|1ϕ⊥〉 = 0, 〈�|�̄〉 = 0.

A setup for the Bell test is depicted in Fig. 1. The
multiphoton part of the state (mode B) impinges on a beam
splitter (BS) with a low reflectivity r , e.g., 10%, which taps
only a small fraction of the state, leaving it almost unaffected.
Next, the preselection strategy is implemented by the analysis
of the reflected part; it is examined by a filter described
by a POVM P and the result is feed forwarded to the
transmitted beam. This procedure belongs to a conditional state
preparation before the test. After the successful preselection,

the Bell test consists of polarization rotations, by the angles
α, α′ on mode A and β, β ′ on mode B, and intensity
measurements of polarization components of both modes.

In general, the operator P may suffer from lack of the
rotational invariance being an important property of the
original singlet and thus, the form of the preselected state may
be basis dependent. For example, for the modulus of intensity
difference filter it is known that it improves the visibility of a
multiphoton state for a measurement in one polarization basis
but deteriorates for measurements in the other polarization
bases. Thus, such filtering strategies are believed to be
useless for preselection [23]. This problem arises if the usual
settings for the CHSH-Bell inequality are considered: α = 0,
α′ = π/2, β = −π/4, β ′ = π/4. However, it does not need
to be the case if nonorthogonal polarization directions in
measurements on the multiphoton mode are chosen, at the
expense of obtaining a nonmaximal Bell inequality violation.
Moreover, the visibility is not the only factor contributing
to the CHSH-Bell parameter computed for an unsymmetrical
singlet. The other parameter is a quantity which we call
antivisibility, and we explain its physical meaning below. In
order to maximize the value of the Bell violation, the rotation
angles on the multiphoton mode should optimize the two
parameters simultaneously.

We consider the CHSH inequality with Bell parameter

B = E(α,β) + E(α,β ′) + E(α′,β) − E(α′,β ′), (2)

and E(α,β) = 〈O(m)(α) ⊗ O(M)(β)〉 is the correlation function
where one observer, Alice, measures the microscopic part
(mode A) and the other, Bob, measures the multiphoton part
of the singlet (mode B). We assume the ideal measurement
operator O(m)(α) = |1α〉〈1α| − |1α⊥〉〈1α⊥ | for the microscopic
qubit. Rotating the polarization of the microscopic part by an
angle α yields

|1α〉 = cos(α/2)|1〉 + sin(α/2)|1⊥〉,
|1α⊥〉 = − sin(α/2)|1〉 + cos(α/2)|1⊥〉,

which allows expressing the micro-observable in terms of the
projectors in the reference basis ϕ = 0:

O(m)(α) = cos α(|1〉〈1| − |1⊥〉〈1⊥|)
+ sin α(|1〉〈1⊥| + |1⊥〉〈1|). (3)

For the multiphoton mode we take the binary threshold
detection operatorO(M)(β) adapted to the preselection strategy
P . The value +1 (−1) is assigned to this observable when the
state |�〉 (|�̄〉) is identified. We assume it belongs to a class of
diagonal observables such that Tr{O(M)(β)} = 0. The general
form of such an observable reads

O(M)(β) =
∞∑

k,l = 0
C(k,l)

|kβ,lβ⊥〉〈kβ,lβ⊥|, (4)

where the condition C(k,l) is such that it ensures the
observable to be traceless.

After a short algebra, we obtain the correlation function for
the state in Eq. (1),

E(α,β) = − cos α V θ (β) − sin α Aθ (β), (5)
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where V θ (β) = 〈�θ |O(M)(β)|�θ 〉 is the visibility and
Aθ (β) = 〈�̄θ |O(M)(β)|�θ 〉 is called the antivisibility of the
state � preselected in the polarization basis θ and observed
in the polarization basis β. The antivisibility quantifies the
ability of the observable O(M)(β) to erase the information
on which state of |�̄θ 〉 or |�θ 〉 entered the detector. In this
derivation, due to the condition Tr{O(M)(β)} = 0, we noticed
that V θ

⊥(β) = 〈�̄θ |O(M)(β)|�̄θ 〉 = −V θ (β). Without a loss
of generality, we also took that Aθ (β) is real valued. After
inserting Eq. (5) into Eq. (2) we obtain

B = − cos α [V θ (β) + V θ (β ′)] − sin α [Aθ (β) + Aθ (β ′)]

− cos α′ [V θ (β) − V θ (β ′)] − sin α′ [Aθ (β) − Aθ (β ′)].

(6)

We will first consider the following rotation angles θ = 0
for preselection, and α = 0, α′ = π/2, β ′ = −β for the Bell
test. This choice is quite natural, because in the limit of a small
photon population in mode B, i.e., for a two-photon singlet,
these are the optimal angles maximizing the value of the
CHSH-Bell parameter with β = −π/4. Later, we will show
that for the specific examples we examined it is also the optimal
set of angles even for amplified mode B; however, the optimal
value of β (βopt) changes with the mean number of photons in
the multiphoton qubit in the presence of preselection. In this
case, the Bell parameter reads

Bopt = −[V (βopt) + V (−βopt) + A(βopt) − A(−βopt)].

Due to the diagonal form of the multiphoton observable, the
visibility and antivisibility can be expressed as a convex sum
of contributions resulting from various photon-number sectors

V (β) =
∞∑

k=0

β2
k Vk(β), A(β) =

∞∑
k=0

β2
k Ak(β), (7)

where Vk(β) and Ak(β) are computed for the kth photon-
number sector of a multiphoton qubit. (We can always
decompose multiphoton states in the Fock basis as follows:
|�〉 = ∑∞

k=0 βk |�k〉 with |�k〉 = ∑k
j=0 ξk,j |k − j,j⊥〉, where

βk and ξk,j are certain probability amplitudes.) Thus, a similar
decomposition holds true for the Bell parameter:

B =
∞∑

k=0

β2
k Bk,

Bk = −[Vk(βopt) + Vk(−βopt) + Ak(βopt) − Ak(−βopt)]. (8)

Decompositions in Eqs. (7) and (8) give insight into the
contribution of each sector separately by taking into account
the structure of the multiphoton qubit. Due to this, we know
which photon numbers most often lead to the Bell violation
and which deteriorate it.

The above formula may be further simplified by noticing
that when ξk,j and ξ̄k,j fulfill additional conditions, e.g.,
ξk,j = 0 and ξ̄k,j 	= 0 for odd j but ξk,j 	= 0 and ξ̄k,j = 0 for
even j , then Vk(β) = Vk(−β) and Ak(β) = −Ak(−β) (see
Appendix A). In this case it is possible to write Eq. (8) as
Bk = −2[Vk(βopt) + Ak(βopt)].

III. EXAMPLE: UNSYMMETRICAL POLARIZATION
SINGLET STATES OF LIGHT EMERGING FROM

PHASE-COVARIANT QUANTUM CLONER

In this section we will discuss a specific example of the
experimentally available unsymmetrical polarization singlet
states of light. They are produced in the process of the
phase-covariant optimal quantum cloning. It is based on phase-
sensitive parametric amplification [15,24,28] and requires a
pair of linearly polarized photons in a standard singlet state,
obtained through parametric down conversion, as an input.
The single-photon seeding is coherently amplified to produce
a multiphoton state by an intensely pumped high-gain g

nonlinear medium (the cloner). The equatorial states of the
Poincaré sphere of all polarization states, parametrized by
the polar angle ϕ ∈ 〈0,2π ), are privileged for the phase-
covariant cloners, only for this subspace their Hamiltonian
H = iχ

2 (a†
ϕ

2 + a†
ϕ⊥

2
) + H.c. is rotationally invariant and they

work equally well for all the equatorial states. The operators
a†

ϕ and a†
ϕ⊥ denote the creation operators for the equatorial

polarization modes ϕ and ϕ⊥, respectively, and χ is the
coupling strength, proportional to the pumping power. We
restrict ourselves to the equatorial polarization state sub-
space for the seeding photon. The subspace basis is set by
two states, |1ϕ〉 = 1/

√
2(|1H 〉 + eiϕ |1V 〉) and its orthogonal

counterpart |1ϕ⊥〉, where |kH 〉 (|lV 〉) denote k (l) photons
polarized horizontally (vertically) and ϕ⊥ = ϕ + π . Due to
its rotational invariance, we express the initial singlet in this
basis: |ψ−〉 = 1/

√
2(|1ϕ〉A|1ϕ⊥〉B − |1ϕ⊥〉A|1ϕ〉B). Cloning is

a unitary process, and the original two-photon entanglement
is transferred to the unsymmetrical singlet with

|�〉 =
∞∑

i,j=0

γij |(2i + 1)ϕ,(2j )ϕ⊥〉,

|�̄〉 =
∞∑

i,j=0

γij |(2j )ϕ,(2i + 1)ϕ⊥〉. (9)

|�〉 and |�̄〉 are the amplified single photons,
with the real-valued probability amplitude γij =
cosh−2 g(tanh g/2)i+j

√
(1 + 2i)!(2j )!/i!/j !, where g is

the parametric gain. In the experiment, their average
population equals 4 sinh2 g + 1, varied from less than
one up to 104 of photons. Due to different parity of the
occupation number in the Fock-state basis, |�〉 and |�̄〉 are
orthogonal. However, in the high-photon-number regime,
photon detectors are not single-photon resolving [28] and
visibility of the multiphoton states is quite low [29,30],
making them inapplicable for quantum protocols and Bell
inequality testing.

A. Quantum filtering

Visibility of the multiphoton qubit can be improved by
quantum-state filtering performed by certain POVM filters.
They modify the state but preserve quantum superpositions.
Recently, such a filter has been proposed [26]: the modulus
of intensity difference filter selects two-mode states of light
whose mode populations differ by more than a certain
threshold δth. It estimates the absolute value of difference
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FIG. 2. (Color online) Realization and application of the modu-
lus of intensity difference and other quantum filters.

instead of the difference. It does not provide any information
on which polarization mode was more populated, and thus
it is not able to distinguish the multiphoton states and
preserves superpositions. It performs an almost nondestructive
measurement implemented by the tapping and feed-forward
loop, i.e., the filtered output state is almost pure. Qualitatively,
it approximates the following operation:

PMDF =
∞∑

k,l = 0
|k − l| � δth

|k,l〉〈k,l|, (10)

where |k,l〉 is a polarization two-mode Fock state. Below,
we will briefly discuss its physical implementation and the
principle of operation. More detailed discussion, including
action of the filter on multiphoton states from Eq. (9), is given
in [26], and a description of the first attempt of its experimental
realization can be found in [27].

The approximate realization and application of the quantum
filter is presented in Fig. 2. The state to be filtered enters a
feed-forward loop. It impinges on a highly unbalanced beam
splitter with a very small reflectivity r which splits the state
into the reflected ar (ar⊥) and transmitted modes at (at⊥).
The reflected mode is examined by the quantum filter. Since the
reflected and transmitted beams are correlated, estimating the
modulus of the population difference for the former gives an
estimate for the latter. Depending on the result of this analysis,
the transmitted mode is either passed or blocked by the shutter.
In this way, it is possible to block light of unwanted properties.
The quantum filter consists of a polarization beam splitter
(PBS), which works in a basis unbiased with respect to the
polarization basis of the incoming field [ad(⊥) = 1/

√
2(ar ±

ar⊥)], and the photon counting detectors. These may be the
superconducting transition-edge sensors (TESs) with a very
high quantum efficiency of ca. 95% [12,13]. In the up-to-date
experiments, they achieved an overall efficiency of 75% [5,6].
This result can be improved by using the integrated optics
setups. These detectors posses a single-photon resolution in
the range of ca. 0–23 photons. This makes quantum filtering

of the macroscopically populated superpositions of light
experimentally feasible, taking into account that the population
of the reflected mode may constitute, say, 1–10% of the total
population of the incoming field. In the higher photon number
range the detectors may also work quite well for filtering
purposes, since the relative error of the measurement (the
uncertainty in photon counting compared to the incoming
population) is pretty small: for 1000 incoming photons it is
ca. 30 photons.

The key property of the filter is that the more unequally
populated a two-mode Fock state entering the PBS, the more
equally populated are the output modes (and vice versa). This
effect is especially pronounced for highly populated states.
It allows one to estimate the population difference in the
reflected mode with high probability, and consequently, in the
transmitted mode as well.

IV. CHSH-BELL TEST FOR THE UNSYMMETRICAL
POLARIZATION SINGLET EMERGING FROM

PHASE-COVARIANT QUANTUM CLONER

In order to investigate the Bell inequality violation for the
unsymmetrical singlet described in Sec. III, we rewrite the
multiphoton states given in Eq. (9) as superpositions of states
of a fixed photon number 2k + 1 distributed over the two
polarization modes:

|�〉 =
∞∑

k=0

βk |�k〉,|�k〉 = 1√
Nk

(a†2 + a
†
⊥

2
)ka† |0〉,

|�̄〉 =
∞∑

k=0

βk|�̄k〉,|�̄k〉 = 1√
Nk

(a†2 + a
†
⊥

2
)k a

†
⊥ |0〉, (11)

where we took ϕ = 0, Nk = 4k k!2 (1 + k),

βk = cosh−2 g (tanh g)k
√

1 + k,

∞∑
k=0

β2
k = 1. (12)

We note that the visibility and antivisibility have the
following symmetry properties for states from Eq. (11):
V (β) = V (−β), A(β) = −A(−β), see Eqs. (16) and (17), and
Appendix A. They allow us to simplify the Bell parameter to
the following form:

B = −2[V (βopt) + A(βopt)]. (13)

It depends on two factors: the visibility V (βopt) and the an-
tivisibility A(βopt) measured in the same basis, rotated by βopt

with respect to the reference. A violation of Bell’s inequality
is obtained if |V (βopt) + A(βopt)| > 1. We emphasize that this
result holds true for any preselection strategy applied to states
in Eq. (11):

BP = −2[V P (βopt) + AP (βopt)], (14)

where the index P denotes the quantities evaluated for the
preselected multiphoton states.
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A. Bell test without preselection

In order to analyze the difficulties with Bell inequality violation we adapt the following observable:

O(M)(β) =

⎛
⎜⎜⎜⎝

∞∑
k,l = 0

k − l � 0

−
∞∑

k,l = 0
k − l < 0

⎞
⎟⎟⎟⎠ |kβ,lβ⊥〉〈kβ,lβ⊥|. (15)

This is a diagonal, traceless operator. It is well suited to the photon number distribution of the multiphoton qubit in Eq. (11): |�〉
and |�̄〉 have unequal average population in the two polarization modes. The mean photon number in polarization ϕ is three times
larger than the mean number of photons in polarization ϕ⊥ in |�〉 (the opposite relation holds true for |�̄〉) [31]. This property
allows us to distinguish these states in analog detection. Possible implementation of the measurement of the observable O(M)(β)
would require splitting the two-mode polarization multiphoton beam by a polarization beam splitter followed by TES detection.
We would assign +1 to the measurement outcome if the signal difference between polarizations β and β⊥ was positive and −1
if it was negative. The detectors composed of PIN diodes followed by charge-sensitive amplifiers, such as those used in [32] for
measuring uncertainties of the Stokes variables for a macroscopically populated squeezed vacuum, should also be sufficient for
adequate implementation of this measurement.

The visibility and antivisibility evaluated for this observable equal

Vk(β) = 1

Nk

[ ∑
u−w�0

−
∑

u−w<0

]
δu+w,2k+1

u! w!

⎧⎨
⎩

k∑
j=0

(
k

j

)
(2j + 1)! (2k − 2j )!

u∑
m=0

w∑
n=0

(
u

m

)(
w

n

)
(−1)n cosu−m

(
β

2

)
sinm

(
β

2

)

× sinw−n

(
β

2

)
cosn

(
β

2

)
δ2k−2j,m+n

⎫⎬
⎭

2

, (16)

Ak(β) = 1

Nk

[ ∑
u−w>0

−
∑

u−w<0

]
δu+w,2k+1

u! w!

⎧⎨
⎩

k∑
j=0

(
k

j

)
(2j + 1)! (2k − 2j )!

u∑
m=0

w∑
n=0

(
u

m

)(
w

n

)
(−1)n cosu−m

×
(

β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δ2k−2j,m+n

⎫⎬
⎭ ·

⎧⎨
⎩

k∑
j=0

(
k

j

)
(2j )! (2k + 1 − 2j )!

×
u∑

m=0

w∑
n=0

(
u

m

)(
w

n

)
(−1)n cosu−m

(
β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δ2k+1−2j,m+n

⎫⎬
⎭ , (17)

where δi,j denotes Kronecker’s δ, equal to 1 when i = j and
0 otherwise.

We now look for βopt, which maximizes the value of the
CHSH-Bell parameter in Eq. (13). We numerically checked
that regardless of the mean number of photons in the
multiphoton state, βopt = −π/4.

In Fig. 3 we depicted the visibility, the antivisibility, and
the Bell parameter for each 2k + 1-photon-number sector
separately, computed for the optimal set of angles. We note
that Vk and Ak both quickly tend to the value less than 1/2 for
increasing k and the Bell parameter Bk drops below 2 for k � 3.
The probability distribution β2

k depends on the amplification
gain g and gives a weight to each Bk contributing to the
Bell parameter B. Since the greatest weight is given to the
small values of k (see Fig. 4), it is possible to weakly violate
the CHSH-Bell inequality for a very small average photon
population, so for very small g. Note that the considered
state approaches the Bell singlet state in the limit g → 0.
For g = 0.8 (total mean number of photons equals 4.15),
B = 2.06, but for g = 1.1 (total mean number of photons
equals 8.13), we found B = 2.01. Thus, a Bell inequality
violation for the multiphoton unsymmetrical singlet with the
multiphoton qubit given in Eq. (11) and the population of a
few photons already, on average, is difficult to detect.

B. Bell test with a preselection strategy followed by imperfect
binary detection

A preselection strategy described by a POVM of the form

PC =
∞∑

k,l = 0
C(σ = k + l,� = l − k)

|k,l〉〈k,l|, (18)

with a general preselection condition C on σ and �, insignifi-
cantly influences the form of the convex sum in which the Bell
parameter is expressed in Eq. (7). The detailed calculations are
presented in Appendix B. Assuming that the condition C(σ,�)
is symmetric, i.e., C(σ,�) = C(σ, − �), we show that the
preselection modifies both multiphoton states from Eq. (11)
in the same way:

∣∣�P
k

〉 = 1√
N P

k

PC |�k〉,
∣∣�̄P

k

〉 = 1√
N P

k

PC |�̄k〉,

∣∣�P
〉 =

∞∑
k=0

βP
k

∣∣�P
k

〉
, |�̄P 〉 =

∞∑
k=0

βP
k

∣∣�̄P
k

〉
, (19)
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FIG. 3. (Color online) Plot of the visibility Vk from Eq. (16) (top
figure, red circles), antivisibility Ak from Eq. (17) (top figure, blue
triangles), and the Bell parameter Bk from Eq. (8) (bottom figure)
computed for βopt = −π/4 as a function of k corresponding to the
(2k + 1)-photon-number sector of the multiphoton states |�k〉 and
|�̄k〉 given in Eq. (11).

where N P
k [Eq. (B3)] is the new normalization constant

and βP
k [Eq. (B6)] is the new probability amplitude in the

decomposition of the states into the photon-number sectors.
We would like to mention that although preselection

may enable application of coarse-graining measurements in
observing quantum effects in the multiphoton superpositions
by increasing their visibility, e.g., in the Bell test, it will not

0 2 4 6 8 10 12 14 16 18 20

k
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0.1

0.2

0.3

0.4

β2
k

FIG. 4. (Color online) Plot of β2
k defined in Eq. (12) for g = 0.8

(red dots) and g = 1.1 (blue crosses).
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(d)
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FIG. 5. (Color online) Photon number distribution of multipho-
ton states (a) |�〉, (b) |�̄〉 before and after preselection (d) |�P 〉 and
|�̄P 〉 with the corner filter. The distributions are evaluated for g = 1.1
and δth = 30. Action of the filter in the photon number space is shown
in (c); only the components of filtered superposition which belong to
the blue area are preserved.

be a direct remedy to the deteriorating effect of losses in
an experimental setup. Preselection helps in conditional state
generation. Thus, the robustness of the new (preselected) state
will determine the robustness of the whole Bell test against
losses.

C. Example: The corner filter

We will now examine the preselection procedure PC for
the following preselection condition C(σ,�): σ − δth � |�|,
where δth is a threshold. This condition means that those
components of the multiphoton superpositions are selected
whose polarization mode’s population difference is higher than
the population sum reduced by δth. We call this kind of filtering
the corner filter, since the analysis of the modification of a
state in terms of its photon number distribution shows that
the filter preserves these components of a superposition which
belong to the region in the shape of a corner. Photon number
distributions for the original multiphoton states and for those
preselected with the corner filter are depicted in Fig. 5. The
filtering is most restrictive if δth = 0. Here |�| = σ and only
the N00N-like components are left from the initial polarization
singlet. The case of δth → ∞ corresponds to no filtering, since
0 � |�| is always fulfilled.

We will now focus on two cases: δth = 0 and δth = 2. Based
on the considerations presented at the beginning of Sec. IV,
we compute the visibility V P (β), antivisibility AP (β), and the
CHSH-Bell parameter BP for the preselected states in Eq. (19).
The formulas are lengthy and we display them in Appendix B,
Eqs. (B13)–(B18).

The optimal rotation angle βopt for the preselected states
depends on δth and varies with amplification gain g. Figure 6
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FIG. 6. (Color online) The optimal rotation angle βopt for the
multiphoton mode of an unsymmetrical singlet in the CHSH-Bell
inequality test, computed for the corner filter with δth = 0 (black
solid line) and δth = 2 (red dashed line) as a function of amplification
gain g.

depicts βopt as a function of g for δth = 0 and δth = 2. It can be
found numerically by solving d/dβ[V (β) + A(β)] = 0. The
nonorthogonal choice for the measurement settings on the
multiphoton mode indicates that the unsymmetrical singlet
looses the phase-covariant symmetry after preselection.

Figure 7 illustrates how the Bell parameter BP for the states
|�P 〉 and |�̄P 〉 preselected by the corner filter is constructed.
It simultaneously presents the values of the visibility V P

k from
Eq. (B14), antivisibility AP

k from Eq. (B16), the Bell parameter
BP

k from Eq. (B18), and (βP
k )2 from Eq. (B6), computed

for the first k = 0,...,20 sectors (each containing 2k + 1
photons), g = 0.8, and δth ∈ {0,2}. The particular choice of
the amplification gain g allows us to choose βopt = −0.17π

for both thresholds (see Fig. 6), making the comparison easier.
In the case of δth = 0 one may notice that V P

k = 1 and
AP

k = 0 for all k � 4, which results in BP
k = 2 for sectors

of nine or more photons. Moreover, for k ∈ {0,3} the sum
BP

k = 2(V P
k + AP

k ) is greater than 2 and, together with (βP
k )2

equal to 0.42 and 0.15, gives the maximal contribution to
the result. In case of k = 1 the value of Bk is below 2, but
due to a smaller value of (βP

2 )2 = 0.27, its negative influence
does not completely destroy the total Bell parameter. Finally,
BP = 2.26 > B = 2.06 for g = 0.8 (total mean number of
photons equals 4.15).

Similar behavior could be observed for other values of g and
δth = 0. Of course, βopt changes with g, but it is always possible
to find k for which (βP

k )2 is relatively large and BP
k > 2 at the

same time, thus resulting in the total Bell parameter which
exceeds the classical limit.

For δth = 2 in turn, setting the rotation angle at Bob’s side to
βopt gives a sawtooth shape of V P

k , AP
k and thus BP

k . The values
of visibility and antivisibility for the sectors lie between 0
and 1, but nevertheless, BP

k exceeds 2 for a few k, for which
(βP

k )2 is the greatest. The obtained Bell parameter equals BP =
2.08, which is less than for δth = 0 but still a bit more than for
not-preselected states and the same amplification gain.

The reason behind the shape of V P
k and AP

k and thus BP
k

for a given filter threshold is the structure of the preselected
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FIG. 7. (Color online) Plot of the visibility V P
k from Eq. (B14)

(top figure), antivisibility AP
k from Eq. (B16) (upper middle figure),

the Bell parameter BP
k from Eq. (B18) (bottom middle figure), and

(βP
k )2 from Eq. (B6), computed for the multiphoton states |�P

k 〉 and
|�̄P

k 〉 given in Eqs. (B1) and (B2), preselected by the corner filter
with threshold values δth = 0 (red dots) and δth = 2 (blue crosses) as
a function of k corresponding to the (2k + 1)-photon-number sector
of the multiphoton states.
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FIG. 8. (Color online) Bell parameter BP evaluated for the state
|�−

P 〉 from Eq. (20) as a function of losses in the micromode λA and the
macromode λB for three values of amplification gain: g = 1.1 (8.13
photons on average, thin green curves), g = 0.8 (4.15 photons on
average, thick black curves), and g = 0.05 (1.01 photons on average,
medium red curves). The left figure shows BP (λB ) for fixed values
of λA = 0% (solid line), λA = 10% (the dashed line), and λA = 20%
(dotted line). The right figure depicts BP (λA) for λB = 0% (solid
line), λB = 10% (the dashed line), λB = 20% (dotted line).

states obtained with the filter. Setting δth = 0 allows only the
N00N -like components of the original polarization singlet
to pass through. |�P 〉 and |�̄P 〉 become superpositions of
|2i + 1,0⊥〉 and |0,(2i + 1)⊥〉, respectively, with varying i.
Then the obtained preselected polarization singlet from Eq. (1)
takes the new form of a superposition of polarization N11N

states with odd N ,

|�−
P 〉 =

∞∑
i=0

γ̃i0(|1〉A|(2i + 1)⊥〉B − |1⊥〉A|2i + 1〉B), (20)

where N = 2i + 1 and γ̃i0 = √
cosh g/2γi0. One can notice

that BP � 2 regardless of the gain g for δth = 0, because for
β = 0, which is a suboptimal choice of angle, we have V P

k = 1
and AP

k = 0.
For δth = 2, the states |�P 〉 and |�̄P 〉 are superpositions not

only of |2i + 1,0⊥〉 and |0,(2i + 1)⊥〉, so N00Ns with odd N ,
but they also include terms like |1,(2j )⊥〉 and |2j,1⊥〉, i.e.,
superpositions of N11N states with even N . Depending on
the parity of k, the probability amplitudes are summed up with
different signs, resulting in the sawtooth shape of the plot.

At the end of this paragraph we would like to comment on
losses for the Bell test with the corner filter as a preselection
strategy. As expected, since the filter preselects the state in
the N00N -like form, the Bell test is quite fragile to losses in the
setup. Figure 8 depicts the Bell parameter computed for the
state |�−

P 〉 in Eq. (20) for g = 0.05 (1.01 photons on average),
g = 0.8 (4.15 photons on average), and g = 0.1 (8.13 photons
on average) as a function of losses in the multi-λB and the
single-photon mode λA for δth = 0. The violation is much
more robust to losses on the amplified-qubit side than on the
single-photon side. For example, if λA = 0, then for gain g =
1.1 losses on the multiphoton mode up to 20% can be tolerated
and BP > 2. As expected, the more the state is populated (gain
g increases), the less loss tolerant the Bell test becomes.

V. DISCUSSION AND CONCLUSIONS

We have discussed a possibility of performing a
postselection-free Bell test with the use of multiphoton quan-
tum states of light and coarse-grained measurements. For this
purpose, we examined the CHSH inequality and exemplary

unsymmetrical polarization singlet state with the multiphoton
states produced in optimal-phase-covariant quantum cloning.
Our work is a proof of principle: we show that it is possible
to apply a feasible quantum-state engineering to multiphoton
states and in this way to overcome the problem of imperfect
analog detection and violate the classical bound. For the states
we discussed, the corner filter is a good choice. It filters out
the N00N -like components from the initial superpositions.

We do not claim that the amplified single photons, the
CHSH-Bell inequality, and the modulus intensity filter are
the best strategy for obtaining the loophole-free violation for
multiphoton entangled states of light. The CHSH inequality
itself imposes the need for the coarse-grained measurements
in the case of the unsymmetrical singlets. Perhaps an inequality
with much less coarse graining, i.e., with nonbinary mea-
surement outcomes, would be required. Also, the analysis
of losses in the present model shows that amplification of
a two-photon singlet decreases the robustness of the state
against losses. Nevertheless, we think that our analysis is an
important result because, at least in the near future, it will be
difficult to increase arbitrarily the resolution of the measuring
devices with increasing population of the states; thus to some
extent the coarse graining is unavoidable. Generally, finding a
feasible preselection which both enables using coarse-grained
detection and creates a state robust against losses is a difficult
task. We conjecture that employing an amplified symmetrical
singlet state of light instead of the unsymmetrical one for
preselection and Bell testing will increase the robustness
against losses.

It is also worth noting that so far there is no proposal allow-
ing for a “genuine macroscopic” violation of a Bell inequality.
From Figs. 3 and 7 it is clear that the photon number sectors
which contribute most to the violation come from the small
photon numbers. The Bell parameter decreases with increasing
photon number 2k + 1. This is a general tendency one observes
also for the bright squeezed vacuum state and other Bell
inequalities, with observables which are dichotomic or not. In-
deed, the preselection helps to increase the values of Bk for all
k, but the question of what is the observable which will reverse
the decreasing trend presented in the figures, so that the high
photon numbers contribute to violation most, remains open.

At the end it is interesting to note that in Ref. [33] it
was shown that a Bell inequality violation may be achieved
with extremely coarse-grained measurement in the presence
of a nonlinear interaction. Our results seem to follow this
statement: quantum engineering may be viewed as a highly
nonlinear operation performed on multiphoton states.

We conclude that by taking into account the achievements
presented in [5,6], it is possible to demonstrate a loophole-free
Bell inequality violation for multiphoton singlet states of light
within the current technology in the near future.
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Appendix A

In a general case, one may decompose the state |�〉 into the k-photon sectors of the form |�k〉 = ∑k
j=0 ξk,j |k − j,j⊥〉

(|�̄k〉 = ∑k
j=0 ξ̄k,j |k − j,j⊥〉 for |�̄〉), where ξk,j (ξ̄k,j ) are certain probability amplitudes. A general form of observable O(M)(β)

is given by Eq. (4) and can be expressed as

O(M)(β) =
∞∑

u,w = 0 C(u,w)

u∑
m=0

w∑
n=0

(−1)n
u∑

m′=0

w∑
n′=0

(−1)n
′
√

u! (m + n)! w! (u + w − m − n)!

m! (u − m)! n! (w − n)!
cosu−m

×
(

β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)√
u! (m′ + n′)! w! (u + w − m′ − n′)!

m′! (u − m′)! n′! (w − n′)!
cosu−m′

×
(

β

2

)
sinm′

(
β

2

)
sinw−n′

(
β

2

)
cosn′

(
β

2

)
|u + w − m − n,(m + n)⊥〉〈u + w − m′ − n′,(m′ + n′)⊥|, (A1)

where C(u,w) represents a condition which ensures the observable to be traceless. The visibility evaluated for this observable
equals

Vk(β) = 〈�k|O(M)(β)|�k〉 =
∞∑

u,w = 0 C(u,w)

⎧⎨
⎩

k∑
j=0

ξk,j

u∑
m=0

w∑
n=0

(−1)n
√

u! w! (m + n)! (u + w − m − n)!

m! (u − m)! n! (w − n)!
cosu−m

×
(

β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δj,m+n

}2

. (A2)

Substituting −β as a rotation angle in Eq. (A2) gives a formula of a similar form, which differs only with the coefficient (−1)j

in the probability amplitude:

Vk(−β) =
∞∑

u,w = 0
C(u,w)

⎧⎨
⎩

k∑
j=0

ξk,j (−1)j
u∑

m=0

w∑
n=0

(−1)n
√

u! w! (m + n)! (u + w − m − n)!

m! (u − m)! n! (w − n)!
cosu−m

×
(

β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δj,m+n

}2

. (A3)

Equations (A2) and (A3) are equivalent [Vk(−β) = Vk(β)] when ξk,j = ξk,j (−1)j for all k and j . This is fulfilled when ξk,j = 0
for odd j .

Similarly, the antivisibility is computed as follows:

Ak(β) = 〈�k|O(M)(β)|�k〉 =
∞∑

u,w = 0
C(u,w)

{ k∑
j=0

ξk,j

u∑
m=0

w∑
n=0

(−1)n
√

u! w! (m + n)! (u + w − m − n)!

m! (u − m)! n! (w − n)!
cosu−m

×
(

β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δj,m+n

}

·
{ k∑

j=0

ξ̄k,j

u∑
m=0

w∑
n=0

(−1)n
√

u! w! (m + n)! (u + w − m − n)!

m! (u − m)! n! (w − n)!
cosu−m

(
β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δj,m+n

}
,

(A4)

Ak(−β) =
∞∑

u,w = 0
C(u,w)

{ k∑
j=0

ξk,j (−1)j
u∑

m=0

w∑
n=0

(−1)n
√

u! w! (m + n)! (u + w − m − n)!

m! (u − m)! n! (w − n)!
cosu−m

×
(

β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δj,m+n

}
·
{ k∑

j=0

ξ̄k,j (−1)j
u∑

m=0

w∑
n=0

(−1)n

×
√

u! w! (m + n)! (u + w − m − n)!

m! (u − m)! n! (w − n)!
cosu−m

(
β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δj,m+n

}
. (A5)
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Equations (A4) and (A5) are equivalent, i.e., Ak(−β) = Ak(β),
when for all k,j either ξk,j = ξk,j (−1)j and ξ̄k,j = ξ̄k,j (−1)j

or ξk,j = ±ξ̄k,j (−1)j . Similarly, Ak(−β) = −Ak(β) when for

all k,j ξk,j = ±ξk,j (−1)j and ξ̄k,j = ∓ξ̄k,j (−1)j . The last
condition is fulfilled, e.g., when ξk,j = 0 and ξ̄k,j 	= 0 for odd
j but ξk,j 	= 0 and ξ̄k,j = 0 for even j .

Appendix B

The preselection modifies the sectors of the fixed photon number states in the following way:

∣∣�P
k

〉 = 1√
N P

k

PC |�k〉 = 1√
N P

k

k∑
j = 0

C(σ = 2k + 1,� = 4j + 1 − 2k)

(
k

j

) √
(2j + 1)! (2k − 2j )!|2j + 1,(2k − 2j )⊥〉, (B1)

∣∣�̄P
k

〉 = PC |�̄k〉 = 1√
N̄ P

k

k∑
j = 0

C(σ = 2k + 1,� = 4j − 1 − 2k)

(
k

j

)√
(2j )! (2k + 1 − 2j )!|2j,(2k + 1 − 2j )⊥〉, (B2)

with normalization constants equal to

N P
k =

k∑
j = 0

C(σ = 2k + 1,� = 4j + 1 − 2k)

(
k

j

)2

(2j + 1)! (2k − 2j )!, (B3)

N̄ P
k =

k∑
j = 0

C(σ = 2k + 1,� = 4j − 1 − 2k)

(
k

j

)2

(2j )! (2k + 1 − 2j )!. (B4)

The multiphoton states equal

|�P 〉 =
∞∑

k=0

βP
k

∣∣�P
k

〉
, (B5)

βP
k =C−2

g

(
Tg

2

)k 1

k!

√
N P

k

N P
,

∞∑
k=0

(
βP

k

)2 = 1, (B6)

N P =C−4
g

∞∑
k=0

(
Tg

2

)2k 1

k!2 N P
k , (B7)

|�̄P 〉 =
∞∑

k=0

β̄P
k

∣∣�̄P
k

〉
, (B8)

β̄P
k =C−2

g

(
Tg

2

)k 1

k!

√
N̄ P

k

N̄ P
,

∞∑
k=0

(
β̄P

k

)2 = 1, (B9)

N̄ P =C−4
g

∞∑
k=0

(
Tg

2

)2k 1

k!2 N̄ P
k . (B10)

We now change the variable j to j ′ in N̄ P
k given in Eq. (B4), so j ′ = k − j (j = k − j ′). The sum over j ′ remains from 0 to

k:

N̄ P
k =

k∑
j ′ = 0

C(σ = 2k + 1,� = 4(k − j ′) − 2k − 1)

(
k

k − j ′

)2

[2(k − j ′)]! [2k + 1 − 2(k − j ′)]!

=
k∑

j ′ = 0
C(σ = 2k + 1,� = −(4j ′ + 1 − 2k))

(
k

j ′

)2

(2k − 2j ′)! (2j ′ + 1)!. (B11)
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Assuming that C(σ,�) is symmetric with respect to �, we got C(σ = 2k + 1,� = −(4j + 1 − 2k)) = C(σ = 2k + 1,� =
4j + 1 − 2k), so N̄ P

k = N P
k and therefore N̄ P = N P and β̄P

k = βP
k .

The observable O(M)(β) is given by Eq. (15) and can be expressed as

O(M)(β) =
[ ∑

u−w�0

−
∑

u−w<0

] u∑
m=0

w∑
n=0

√
u! (m + n)! w! (u + w − m − n)!

m! (u − m)! n! (w − n)!
(−1)n cosu−m

(
β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)

×
u∑

m′=0

w∑
n′=0

√
u! (m′ + n′)! w! (u + w − m′ − n′)!

m′! (u − m′)! n′! (w − n′)!
(−1)n

′
cosu−m′

(
β

2

)
sinm′

(
β

2

)
sinw−n′

(
β

2

)
cosn′

(
β

2

)

× |u + w − m − n,(m + n)⊥〉〈u + w − m′ − n′,(m′ + n′)⊥|. (B12)

Visibility takes the form

V P (β) =
∞∑

k,k′=0

βP
k βP

k′
〈
�P

k

∣∣O(M)(β)
∣∣�P

k′
〉 =

∞∑
k

(
βP

k

)2 〈
�P

k

∣∣O(M)(β)
∣∣�P

k

〉 =
∞∑

k=0

(
βP

k

)2
V P

k (β), (B13)

where

V P
k (β) = 1

Nk

[ ∑
u−w�0

−
∑

u−w<0

]
δu+w,2k+1

u! w!

{ k∑
j = 0

C(σ = 2k + 1,� = 4j + 1 − 2k)

(
k

j

)
(2j + 1)! (2k − 2j )!

×
u∑

m=0

w∑
n=0

(
u

m

)(
w

n

)
(−1)n cosu−m

(
β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δ2k−2j,m+n

}2

. (B14)

From the form of Eq. (B14) it is possible to derive the property V P
k (−β) = V P

k (β), which implies V P (−β) = V P (β). This is
consistent with the condition found in Appendix A, since probability amplitudes of |�P

k 〉 are nonzero only for even number of
photons in one of the polarizations. Similarly, the antivisibility equals

AP (β) =
∞∑

k,k′=0

βP
k β̄P

k′
〈
�P

k |O(M)(β)|�̄P
k′
〉 =

∞∑
k

βP
k β̄P

k

〈
�P

k |O(M)(β)|�̄P
k

〉 =
∞∑
k

(
βP

k

)2
AP

k (β), (B15)

where

AP
k (β) = 1

Nk

[ ∑
u−w>0

−
∑

u−w<0

]
δu+w,2k+1

u! w!

{ k∑
j = 0

C(σ = 2k + 1,� = 4j + 1 − 2k)

(
k

j

)
(2j + 1)! (2k − 2j )!

×
u∑

m=0

w∑
n=0

(
u

m

)(
w

n

)
(−1)n cosu−m

(
β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δ2k−2j,m+n

}

·
{ k∑

j = 0
C(σ = 2k + 1,� = 4j − 1 − 2k)

(
k

j

)
(2j )! (2k + 1 − 2j )!

u∑
m=0

w∑
n=0

(
u

m

)(
w

n

)
(−1)n cosu−m

×
(

β

2

)
sinm

(
β

2

)
sinw−n

(
β

2

)
cosn

(
β

2

)
δ2k+1−2j,m+n

}
, (B16)

which implies AP
k (−β) = −AP

k (β) and therefore AP (−β) = −AP (β). Again, it is consistent with the condition derived in
Appendix A, because for the same number of photons in both polarizations, probability amplitudes in AP

k (−β) and AP
k (β) have

the same modules and opposite signs. Finally, the Bell parameter [Eq. (6)] can be simplified for angles θ = 0, α = 0, α′ = π
2 ,

and β ′ = −β to

BP = 2V P (β) + 2AP (β), B = 2
∞∑

k=0

(
βP

k

)2
V P

k + 2
∞∑

k=0

(
βP

k

)2
AP

k , BP =
∞∑

k=0

(
βP

k

)2
BP

k , (B17)

where

BP
k = 2

[
V P

k (β) + AP
k (β)

]
. (B18)

The formulas in Eqs. (B1)–(B18) hold true also for the Bell test without preselection. In this case, the condition C(σ,�) is
always fulfilled and |�P 〉 = |�〉, |�̄P 〉 = |�̄〉, βP

k = βk , N P
k = Nk , N P = 1, and BP

k = Bk .
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[21] M. Stobińska, P. Sekatski, A. Buraczewski, N. Gisin, and
G. Leuchs, Phys. Rev. A 84, 034104 (2011).
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