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Symmetries and conserved quantities in Lindblad master equations
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This work is concerned with determination of the steady-state structure of time-independent Lindblad master
equations, especially those possessing more than one steady state. The approach here is to treat Lindblad systems
as generalizations of unitary quantum mechanics, extending the intuition of symmetries and conserved quantities
to the dissipative case. We combine and apply various results to obtain an exhaustive characterization of the
infinite-time behavior of Lindblad evolution, including both the structure of the infinite-time density matrix and
its dependence on initial conditions. The effect of the environment in the infinite-time limit can therefore be
tracked exactly for arbitrary state initialization and without knowledge of dynamics at intermediate time. As a
consequence, sufficient criteria for determining the steady state of a Lindblad master equation are obtained. These
criteria are knowledge of the initial state, a basis for the steady-state subspace, and all conserved quantities. We
give examples of two-qubit dissipation and single-mode d-photon absorption where all quantities are determined
analytically. Applications of these techniques to quantum information, computation, and feedback control are
discussed.
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Environment/reservoir interaction features rather promi-
nently in the design, engineering, and realization of quantum
systems. Many models exist for simulating the environment,
with the most prominent being the framework of Gorini-
Kossakowsi-Sudarshan-Lindblad (GKS-L, or just Lindblad)
master equations [1]. Such master equations are valid only for
specific Markovian environments (e.g., [2,3]). Nevertheless,
Lindblad master equations continue to be implemented in a
multitude of systems, lying in a nexus between quantum optics,
quantum information, mesoscopic physics, and dynamical
systems theory. We briefly list some notable works.

While system-environment interaction in the case of cavity
(circuit) quantum mechanics usually consists of optical (mi-
crowave) photon loss, recent efforts have been to design the
cavity such that other forms of dissipation can be realized.
This can be done in order to control the state of either the
qubit [4] or the cavity [5]. There is much interest in designing
dissipative mechanisms in other areas as well, e.g., trapped
ions [6] and optomechanics [7]. Novel theoretical work has
applied dissipation to topological systems, e.g., a class of
fermionic Lindblad systems [8], optical lattices [9], atomic
superfluids [10], the Creutz model [11], and the Haldane
model [12]. Other prominent Hamiltonian systems have been
studied with the addition of dissipation, e.g., various spin
chains [13–16], the Bose-Hubbard model [17], the Ising model
[18], and cold-atom systems [19]. A current topic in quantum
control is the design of a Lindblad operator to obtain a desired,
often exotic, steady state [20–22] or steady-state property [23].
Recent developments are summarized in [24] and references
therein.

Regarding open systems with multiple (degenerate) steady
states, work has been spearheaded by the concepts of pointer
states or subspaces [25], noiseless quantum codes [26],
decoherence-free subspaces [27–29], and noiseless subsys-
tems [30]. The latter two structures have been realized
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experimentally in several systems [31] and continue to be
a promising avenue for storing and processing quantum
information. Proof-based works [32,33] characterize these
broad concepts as they relate to quantum information and
quantum control. Recent efforts have begun studying transport
properties in such degenerate Lindblad systems [34,35]. Fi-
nally, there have been several pioneering mathematical works
on generic Lindblad evolution operators [36], also known as
quantum dynamical semigroups ([37] and references therein),
with research continuing in this domain [38].

The intractable literature on Lindblad systems begs the
question of why this work is useful. While the properties of ab-
stract Lindblad systems are garnering interest from physicists
due to increasing ability to engineer previously unphysical
Lindblad models, a gap in accessibility and nomenclature
nevertheless remains (resonating with note 1.4 in [39]). In the
spirit of bridging this gap using physical intuition, this work
points out the utility of symmetries and conserved quantities
from ordinary quantum mechanics in the Lindblad formalism.
We answer the following questions. (1) How are symmetries
and conserved quantities different in Lindblad systems when
compared to unitary systems? (2) Despite Lindblad evolution
being irreversible, what information from an initial state
is preserved in the infinite-time limit? In answering these
questions, we apply previous results, develop our own when
necessary, and provide physical examples.

Section I addresses question (1), where we follow and
elaborate on discussions of symmetries and/or conserved
quantities from [34,40]. In short, the correspondence between
a continuous symmetries and conserved quantities (akin to
Noether’s theorem from field theory) is broken. The formula-
tion here clarifies the relationship between symmetries and
conserved quantities, provides conditions on when and/or
how the two are related, and applies them to physical
dissipative systems. Continuous and some discrete symme-
tries are discussed. The comparison to unitary evolution is
made in order to make technical results of Lindblad theory
accessible to an audience with only a background in quantum
mechanics.
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Section II begins to address question (2), whose full answer
(given in Sec. IV) is related to the structure of the limit set
[41] (also set of asymptotic states or invariant set) of the
Lindblad evolution operator, i.e., the set of density matrices
evolving under the Lindblad operator in the infinite-time
limit. The limit set consists of the set of steady states of
the Lindblad operator and any surviving density matrices
undergoing unitary rotations induced by the Lindblad operator.
Results used here in the determination of the limit set can be
organized by the following chain of subsets:

Hamiltonians ⊆ diagonalizable Lindblad operators [42–44]

⊆ Lindblad operators [22,40,45,46]

⊆ linear operators [47]

⊆ generators of continuous dynamical systems [41].

Since a Lindblad evolution operator is completely positive
(roughly speaking, Hermiticity-preserving; see Sec. B.3.3 of
[48] for a precise definition) and trace preserving at any
given time, results regarding such CPTP maps (also quantum
channels) [33] will also apply. When a Lindblad equation has
more than one steady state, the information that is preserved
in the infinite-time limit is dependent on the initial density
matrix. A major utility of conserved quantities is to determine
this information. This utility, described in Eqs. (2.1)–(2.2),
is in the form of a correspondence between steady states
and conserved quantities that completely characterizes the
dependence of the steady state on the initial state (i.e., when
no oscillating coherences are present). This result can be
derived from the generalized eigenvector decomposition of
exponentials of linear operators (Eq. (10.23) in [47]; see
also [49,50]). It is proven here using properties of Lindblad
operators and linear algebra. The correspondence is then
extended to include oscillating coherences and combined
with statements about CPTP operators [33] to provide an
exhaustive characterization of the limit set of Lindblad
master equations (Sec. IV). This characterization complements
results for general [22,40,45,46] and fermionic or bosonic
[51–53] Lindblad operators by explicitly determining the
corresponding asymptotic state for arbitrary initial conditions.
It is related to the discovery of a complete basis for a class
of Lindblad operators [42] (later called a damping basis)
that has been utilized to solve Lindblad master equations in
quantum optics [43,44]. Previous efforts have attempted to
extend this framework to the degenerate case [54], but an
explicit mathematical demonstration was not provided. While
one cannot always obtain a complete eigenvector basis for the
entire space, we show that such a basis exists for elements of
the limit set. Therefore, this procedure bypasses the need to
consider dynamics in intermediate time.

Section III presents examples of qubit and oscillator
(photonic) systems with the goal of revealing the physical
significance of the information preserved in the steady state.
The considered family of photonic master equations allows one
to store the phase of a coherent state while qubit systems store
coherences between certain Bell states. While the application
in mind here is the preservation of quantum information, the
results apply to all finite-dimensional and some physically
relevant infinite-dimensional Lindblad models.

Section IV characterizes the full limit set of Lindblad
master equations, including both steady states and any unitary
evolution induced in the infinite-time limit. We discuss how
the tools developed here relate to quantum information and
quantum control in Sec. V and provide an outlook in Sec. VI.

I. UNITARY VS DISSIPATIVE SYSTEMS

To better understand the effects of dissipation, it is
worthwhile to compare it to unitary evolution. Since we
consider decoherence, we discuss both systems from the point
of view of density matrices living in an N2-dimensional
matrix Hilbert space L (Liouville space [55,56]) with inner
product 〈〈ρ|σ 〉〉 = Tr{ρ†σ } for ρ,σ∈L. We emphasize that ρ

are matrices and restrict a modified bra-ket notation to the
appendixes. Throughout the paper, ρin and ρss are states in L,
capital symbols are operators in L, calligraphic symbols (e.g.,
L) are (super-)operators on L, indexed lower-case symbols
are coefficients, and bosonic operators are [â,â†] = I and
n̂ = â†â. Greek indices enumerate the steady-state subspace.

Unitary systems evolve in time under a one-parameter
continuous group generated by the system Hamiltonian H .
Dissipative systems evolve in time under a one-parameter
semigroup {eLt ,t � 0} generated by the Liouvillian L. Since
the time-evolution operator eLt is no longer unitary, a state
may undergo additional trajectories associated with negative
real eigenvalues (decay) and complex pairs of eigenvalues with
negative real parts (spiraling; see Fig. 1) [40]. Since it is not
Hermitian, L may no longer be diagonalizable. Naturally, time
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FIG. 1. (Color online) While L may not be diagonalizable, one
can still obtain information about the dynamics by observing its
eigenvalues λ in the complex plane. All eigenvalues lie on the
nonpositive plane and nonreal eigenvalues exist in complex conjugate
pairs (blue). Solid circles depict eigenvalues that cause a loss of
portions of the initial density matrix (decay in red and spirals in blue).
Open circles represent λ whose eigenstates survive in the infinite-time
limit (steady states/steady-state coherences in red and oscillating
coherences in dashed blue). The gray arrow symbolizes time evolution
towards the infinite time λ. The value � is the dissipation/spectral
gap [16,51], the slowest nonzero rate of convergence toward the
infinite-time states.
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evolution under L,

ρ̇ = L(ρ) = −i[H,ρ] +
N2−1∑
l=1

2FlρF
†
l − F

†
l Flρ − ρF

†
l Fl,

(1.1)

is generally not reversible (formally, L generates a contraction
semigroup [37]). In the above equation, {Fl}N2−1

l=1 are the
dissipation-inducing “jump” operators and each Fl can depend
on a parameter. Examining the expectation value of an operator
J (Tr{Jρ}), one can use the cyclic property of the trace to
obtain its equation of motion (the Heisenberg picture),

J̇ = L†(J ) = i[H,J ] +
N2−1∑
l=1

2F
†
l JFl − F

†
l FlJ − JF

†
l Fl.

(1.2)

A. Steady states and oscillating coherences

Steady-state density matrices are constructed of eigenvec-
tors of L whose eigenvalue is zero (i.e., the kernel of L).1

Those eigenvectors consist of two types of elements: steady
states and steady-state coherences. Adapting discussion from
[46], we first describe them for unitary evolution (noting that
these definitions are basis dependent).

When there are no degeneracies, steady states (also sta-
tionary states or fixed points) of a unitary time-evolution
operator are constructed of pure states (i.e., projections) that
commute with the Hamiltonian H . The set {|Ei〉〈Ej |}Ni,j=1 with
H |Ei〉 = Ei |Ei〉 is a basis for the space of operators L. There
will be at least N steady-state basis elements since all |Ei〉〈Ei |
commute with H . If there is additionally a degeneracy between
levels k �= l, then |Ek〉〈El| will be a steady-state coherence
between steady states |Ek〉〈Ek| and |El〉〈El|. In that case, it is
easy to see that density matrices written with |Eι〉〈Eι′ | (where
ι,ι′ = k,l) can be unitarily manipulated without leaving the
steady-state subspace. Finally, any coherence |Em〉〈En| with
m �= n and no degeneracy (Em �= En) will be an oscillating
coherence, i.e., will rotate with a phase i(En − Em)t .

Using the same intuition, we now discuss the three
aforementioned italicized concepts for the dissipative case.
Due to decay, dissipative systems may have less than N

steady states and those states may not be pure. However, a
finite dissipative system will have at least one steady state
(e.g., Proposition 5 in [40]) and many infinite systems with
physical relevance and/or reasonable finite limits do also.
In other words, the dimension of the steady-state subspace
Lss ⊆ L, the eigenspace of eigenvalue zero of L, is between
1 and dim{L} = N2.2 There may be steady-state coherences
(also stationary phase relations [40]) under Lindblad evolution
when dim{Lss} � 4. The space Lss is, in general, determined
by both H and Fl from Eq. (1.1).

1Note that in the case when L has no zero eigenvalues, the steady
state is unique [45].

2While all steady states are elements of Lss, not all elements of
Lss are states since the set of density matrices is not closed under
addition.

Just as with unitary evolution, oscillating coherences are
induced by unitary rotations on steady-state coherences. Two
important statements about oscillating coherences are in order:
(1) they are induced only by a Hamiltonian part of L [40] and
(2) not all Hamiltonians induce them. Statement (1) implies
that oscillating coherences can be rotated out by going into the
rotating frame of the Hamiltonian that induces them. Thus, we
focus on steady states and steady-state coherences throughout
the paper, mentioning oscillating coherences only in the
general characterization in Sec. IV and Appendix C. Regarding
statement (2), the forthcoming example in Sec. III C is of a
system with a Hamiltonian and no oscillating coherences.

The above introduction can be summarized in Fig. 1, where
a possible spectrum of L is plotted. Open circles completely
characterize unitary evolution while the addition of negative
real parts generalizes the analysis to Lindblad equations.

B. Steady-state structures

For dissipative systems with no oscillating coherences,
an initial density matrix ρin ∈ L will evolve under eLt in
the infinite-time limit into the corresponding asymptotic or
steady-state density matrix ρss ∈ Lss (with ρss in general
depending on ρin):

eLt : ρin
t→∞−−−→ ρss. (1.3)

If one assumes that the exponential convergence is fast
compared to all other relevant time scales (i.e., the dissipation
gap � from Fig. 1 is large; details in Sec. V), then one
can interpret L as a black box that transforms ρin into ρss.
Below are five examples of structures of ρss that can occur in
dissipative systems:⎛

⎜⎝
1 · ·
· · ·
· · ·

⎞
⎟⎠ ,

⎛
⎜⎝

1
3 · ·
· 1

3 ·
· · 1

3

⎞
⎟⎠ ,

⎛
⎜⎝

ρ00 · ·
· ρ11 ·
· · ·

⎞
⎟⎠ ,

⎛
⎜⎝

ρ00 ρ01 ·
ρ10 ρ11 ·
· · ·

⎞
⎟⎠ ,

⎛
⎜⎝

ρ00 ρ01 ·
ρ10 ρ11 ·
· · ρ22

⎞
⎟⎠ . (1.4)

In the above list, dots indicate the portions of L unavailable
to Lss and do not represent single zeros in a matrix. The
dimension of Lss is 1, 1, 2, 4, and 5 in the respective structures.
Of course, the complex coefficients ρμν obey the well-known
properties that make ρss a density matrix, Tr{ρss} = 1,
ρνμ = ρ�

μν , and (by the Cauchy-Schwarz inequality) ρμμρνν �
|ρμν |2. The number of independent real parameters is thus
dim{Lss} − 1. Since they contain independent parameters, the
third through fifth structures are information preserving [33].
What is meant by information in this work is simply any
parameter that characterizes ρin.

First structure: Unique pure steady state. A relevant
physical system is single photon loss in a nondriven zero-
temperature cavity,

L(ρin) = 2âρinâ
† − â†âρin − ρinâ

†â, (1.5)

with [â,â†] = 1. While this example is infinite, one can apply
the techniques here rigorously for any reasonable finite photon
number limit. The damping sets the steady state to be the
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vacuum |0〉〈0| (where |n〉 is a Fock state) and the addition of
a resonant drive or pump (e.g., Sec. 9.1 in [57]) will set the
steady state to be a coherent state independent of ρin. As a
more general fact, irrespective of the form of the drive H , the
steady state of a system with dissipation governed by Eq. (1.5)
will always be unique and dependent only on the parameters
in L (Sec. IV B in [22] or Eq. (27) in [53]).

Second structure: Unique mixed steady state. In this and
the previous structure, the state is said to be attractive (i.e., all
initial states converge to it). A related example is the damped
harmonic oscillator (Eq. (6.1.3) in [58]). Its steady state is a
Boltzmann distribution, i.e., a (thermal) equilibrium steady
state. Relevant examples of unique nonequilibrium steady
states exist in open Hubbard and Heisenberg spin chains [13]
as well as models of photosynthetic transport [35].

Third structure: Steady state is a mixed state with ρμμ

dependent on ρin (Sec. III A or Sec. 5.2 in [40]). This is an
example of a classical bit (with ρμμ being probabilities of a
“0” or a “1”) or, alternatively, a pointer basis made up of two
pointer states [33]. While there are infinitely many possible
states due to the degree of freedom in ρμμ, the dimension of
the steady-state space is just two.

Fourth structure: Qubit steady state; i.e., a steady-state
coherence develops between two of the ρμμ (e.g., Sec. 5.3
in [40]). The steady-state subspace is four-dimensional and
ρss can be expanded in terms of four basis matrices Mμν

(with μ,ν = 0,1). It is important to note that Mμν do not have
to be of the form |μ〉〈ν|. All Mμν may share a nontrivial
common matrix factor T such that each Mμν is unitarily
equivalent to |μ〉〈ν| ⊗ T [33,40]. This tensor product structure
occurs if, for example, the jump operators Fl ∈ L can be
unitarily decomposed into I ⊗ fl , where I is the identity on
the space of |μ〉〈ν| and fl is a jump operator on the space of
T [28]. Whenever T is two by two or greater, the above is an
example of a noiseless subsystem (NS; also decoherence-free
subsystem) [28,30]. For a trivial T , this is a decoherence-free
subspace (DFS) [27,29]. In Sec. III, we provide specific
manifestations: examples in Secs. III B, III D, and III E are
DFSs while the example in Sec. III C is an NS.

Fifth structure: hybrid quantum memory consisting of a
classical and a quantum bit [59]. Note that steady states in the
last three structures can be either pure or mixed, depending on
ρin. This example is most representative of the general structure
of a steady state, a matrix of blocks of varying sizes with each
block sharing a potentially nontrivial matrix factor (Theorem 7
in [46] or Theorem 5 in [33]). This general structure becomes
relevant in Secs. III C and IV.

C. Symmetries and conserved quantities

In a unitary system, an (explicitly time-independent)
observable J = J † is a conserved quantity (i.e., constant of
motion) if and only if it commutes with the Hamiltonian
(e.g., angular momentum of the hydrogen atom). In the spirit
of Noether’s theorem, one can then generate a continuous
symmetry U = exp(iφJ ) (for real φ) that leaves the Hamilto-
nian invariant. There is thus the following set of equivalent
statements for continuous symmetries in unitary evolution
(with one-sided arrows depicting an “if-then” statement, two-
sided arrows depicting “if and only if,” and the dot being total

time derivative):

(1.6)

A conserved quantity in dissipative systems is one where
L†(J ) = 0. One needs to introduce the adjoint representation
[55,56] to discuss symmetries on the superoperator level:

U †FlU = U†(Fl). (1.7)

The superoperator U = exp(iφJ ), where J = J † is the
superoperator analog of J . The precise relation between J and
J is in Eq. (A3) and we consider only superoperators U which
can be written in terms of a J on the operator level. Using
this notation, one can map an analogous set of statements for
dissipative systems:

(1.8)

Four arrows are lost. First, there exist conserved quantities
which do not commute with everything in L but are conserved
“as a whole” (see Sec. III E).3 Second, the U (and therefore
U) generated by such quantities are not always symmetries of
the system. Third, a symmetry generator J does not have to be
a conserved quantity. Fourth, a symmetry generator does not
have to commute with everything in L. The third and fourth
points stem from conservation being on the superoperator
level, i.e., stemming from a J and not necessarily a J .
Examples of all four cases and conditions on when J is a
symmetry for simple L are in Appendix A. Finally, note that
the identity I , while not necessarily proportional to a steady
state, is always conserved (since L is trace preserving).

As seen above, symmetries and conserved quantities are
generally independent in dissipative systems (and overlapping
when J commutes with everything in L). Since it seems that
adding dissipation only reduces the utility of a symmetry-based
analysis, it begs to question what conserved quantities and
symmetries are useful for. In short, conserved quantities
correspond to the ρμν from Eq. (1.4) while symmetries
can be used to block diagonalize L and perform unitary
transformations on ρss. We discuss these uses below.

II. UTILITY OF SYMMETRIES AND CONSERVED
QUANTITIES

A. Conserved quantities

In duality to elements of Lss being eigenmatrices of L
with right eigenvalue zero, conserved quantities J are right
eigenmatrices of L† (or, alternatively, adjoints of the left
eigenmatrices of L) with eigenvalue zero [40]. Note that in
unitary systems, the sets of left and right eigenmatrices are

3While our definition of a conserved quantity matches the invariant
observable of [40], it is more specific than the strong symmetry of
[34] precisely due to conservation not implying commutation. What
this work refers to as a symmetry is called a dynamical symmetry in
[40] and a weak symmetry in [34].
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identical and this analysis is not necessary. The number of
linearly independent (not always Hermitian) J is the same as
the dimension of Lss (Sec. 2.2.3 in [60]). Moreover, there is
a correspondence between the steady-state basis elements and
the conserved quantities. We state the result below, with proof
in Appendix B. Oscillating coherences have a similar relation,
proved in Appendix C.

Conserved quantity – steady state correspondence. Assume
a Lindblad system L has no purely imaginary eigenvalues and
let {Mμ}Dμ=1 be an orthonormal basis for the D-dimensional
steady-state subspace Lss ⊆ L. Then, corresponding to any
ρin ∈ L,

ρss = lim
t→∞ eLt (ρin) =

D∑
μ=1

ρμMμ, (2.1)

and there exist D linearly independent conserved quantities
Jμ such that

ρμ = Tr{J †
μρin}. (2.2)

Once again note that each Mμ need not be a pure state
projection (see Sec. III C), a density matrix, or even Hermitian.
In this convention, they should be thought of as vectors:
Tr{M†

μMν} = δμν and Tr{Mμ} is not always 1. However,
the Jμ are normalized such that ρss is a density matrix.
The Mμ can be thought of as the basis elements of each
of the entries in Eq. (1.4) and interpreted as independently
collecting information from ρin without exchanging informa-
tion with each other [40]. In unitary systems, Jμ = M†

μ. To
outline the proof for dissipative systems, since L†(Jμ) = 0
and thus

Tr{J †
μρin} = Tr{J †

μρss}, (2.3)

the Jμ can be arranged and normalized in such a way that each
one will reveal the contribution of Mμ to ρss. They can be
thought of as Lindblad analogs of pointer observables [25]. In
the trivial case when the steady state is unique [first structure
in Eq. (1.4)], no information about ρin is preserved and the
identity is the unique conserved quantity.

The above correspondence has exclusively utilized the
vector nature of both Mμ and Jμ and the additional property
that both Mμ and Jμ are † closed ({M†

μ} = {Mμ} and similarly
for {Jμ}). As matrices, conserved quantities form useful Lie
algebras in unitary systems [e.g., angular momentum su(2)
Lie algebra for the Hydrogen atom]. Unfortunately, due to the
presence of decay, the Jμ may not form a Lie algebra (e.g.,
Sec. 5.3 in [40]). A much simpler picture is obtained when
decay is removed and Jμ are restricted to Lss. Letting �ss be
the projection onto Lss, the set of jμ ≡ �ss(Jμ) does form a
Lie algebra.4 The structure of the set of jμ replicates (but is not
identical to) the block-diagonal structure of Lss (Theorem 5-iii
in [33]), thereby relating steady states to conserved quantities

4Since eLt is a completely positive trace-preserving map for any t ,
the results of [33] regarding invariant spaces apply. The result states
that jμ form a matrix algebra, a vector space of matrices closed under
† and multiplication. A Lie algebra can be built out of a matrix algebra
by simply adding the commutation operation [61].

in another way. Going backwards, eL
†t jμ → Jμ as t → ∞

[40]. A more convenient way to determine Jμ for finite systems
is simply to find the null space of L†.

B. Symmetries

As mentioned in Eq. (1.8), a (global) continuous symmetry
U is a unitary operator whose corresponding superoperator
U = eiφJ is such that U†LU = L, or equivalently [J ,L] = 0.
It is therefore easy to see that both U and U† are symmetries of
both L and L†. To state in a different way, U commutes with
time evolution generated by L,

eLt (U †ρinU ) = U †eLt (ρin)U, (2.4)

for any ρin ∈ L. Examples of symmetries include any U such
that UHU † = H and UFlU

† = eiφl Fl [8] or any permutations
among the jump operators Fl from Eq. (1.1) that leave L
invariant [34]. The Liouvillian can be block diagonalized by U
in the same way that a Hamiltonian can be block diagonalized
by U (with each block corresponding to an eigenvalue of U ).
Symmetries can thus significantly reduce computational cost,
with the additional complication that the blocks of L may not
be further diagonalizable. However, symmetries by themselves
do not determine the dimension of Lss because some blocks
may contain only decaying subspaces and no steady states.
Diagonal parts of ρin will always be in blocks with steady
states since the trace is preserved. For a unitary U such that
[U,H ] = [U,Fl] = 0, dim{Lss} will be at least as much as the
number of distinct eigenvalues of U (Theorem A.1 in [34]).

An example of a symmetry is invariance of the zero-
temperature cavity from Eq. (1.5) under bosonic rotations
V = eiφn̂ (with n̂ = â†â). This is an example of a continuous
symmetry which does not stem from a conserved quantity
in L. Instead, this symmetry stems from the generator N of
the corresponding V = eiφN , which commutes with L. The
generator acts as N (ρin) = n̂ρin − ρinn̂ and its commutation
with L can be checked by writing both in the notation from
Appendix A. The block diagonalization of L stemming from
this symmetry corresponds to equations of motion for matrix
elements 〈n|ρin|m〉 with m − n = r being decoupled from
those with m − n �= r (Eq. (6.1.6) in [58]). This is also true
in Secs. III D and III E and is used to calculate conserved
quantities. In this way, symmetries can help compartmentalize
evolution of both states and operators.

Whenever a steady state is unique, any symmetry will also
be a symmetry of the steady state. Symmetries can thus be used
to classify [8] or determine properties [15] of classes of unique
steady states. For the example of the previous paragraph, the
vacuum |0〉〈0| is rotationally invariant under V . When Lss
is not one dimensional, symmetries will rotate Lss into itself
[40]. Symmetries can thus be used to perform unitary rotations
on the steady-state subspace. Finding global symmetries, i.e.,
all operators commuting with L, is often intuitive in physical
systems and some conditions are given in Appendix A. One
can also use the brute-force approach of finding the null space
of the commutator operator [L,·] described in the appendix of
[62].

We briefly mention the existence of anticommuting sym-
metries such as chiral [8] or parity time [63,64] for dissipative
dynamics. These can reveal symmetries in the spectrum of L
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and L† [63], similar to the spectrum of a chirally symmetric
Hamiltonian being symmetric around zero.

C. Subspace symmetries

In case a global symmetry necessary to perform a desired
operation on ρss either does not exist or is not easily obtainable,
one can perform that operation directly using a steady-state
subspace symmetry (also symmetry for stationarity [40]).
Subspace symmetries are all Uss such that

U
†
ssρssUss ∈ Lss. (2.5)

In other words, after enough time has passed and a given ρin
has asymptotically approached ρss, a subspace symmetry will
commute with L restricted to Lss:

eLt (U †
ssρssUss) = U

†
sse

Lt (ρss)Uss. (2.6)

Global symmetries are also subspace symmetries. While
global symmetries are usually closely related to H and
Fl , nonglobal subspace symmetries relate directly to the
dimension and structure of Lss. In the general block-diagonal
structure of ρss [e.g., the fifth structure from Eq. (1.4)], blocks
can be rotated within themselves via unitary operations and
blocks of the same size can be exchanged with each other via
discrete operations. Since conserved quantities determine the
size of the blocks of ρss and since the Lie algebra of subspace
symmetries also depends on respective block size, the number
of conserved quantities is equal to the dimension of the Lie
algebra of subspace symmetries. Illustrating this for the fifth
structure from Eq. (1.4), there are five conserved quantities and
the Lie algebra of subspace symmetries is u(2) ⊕ u(1) (whose
dimension is 22 + 1 = 5).

Subspace symmetries that lie exclusively in Lss can be
extended to L as long as they maintain the condition from
Eq. (2.5). These operations are precisely what allow one to
control DFSs and NSs in quantum computation. Subspace
symmetry generators can also be approximated with physically
realizable operations [65]. By duality, it is possible to have
subspace symmetries of L†. While all global symmetries are
subspace symmetries of both L and L†, there is no guarantee
that subspace symmetries of either L or L† are global.

D. Parity and discrete rotations

Having omitted discrete symmetries (U where φ takes
discrete values), we expound on parity since it is the simplest
discrete symmetry and it is a good starting point for the further
examples in the paper. Equation (1.8) shows that if one can find
a nontrivial operator that commutes with everything in L, then
one is lucky to have found both a symmetry and a conserved
quantity of a system. It turns out that systems with parity
conservation necessarily have such an operator and parity can
be thought of as a symmetry almost in the unitary sense of
Eq. (1.6):

(2.7)

In the above, P(Fl) = PFlP . The proof is simple. Assuming
L†(P ) = 0, it is possible to construct conserved positive- and

negative-parity projections �± = 1
2 (I ± P ), which in turn

must commute with all operators in L (Lemma 7 of [40]).
Therefore, P must commute with everything as well. �

As shown above, systems with parity conservation will
always have a global parity symmetry. The converse is not
true, e.g., symmetry under photon number parity P = eiπn̂ of
single photon loss in Eq. (1.5) does not imply that photon
number parity is a conserved quantity. In general, any set
of d conserved projection operators will partition L into d2

subspaces which will evolve independently under L (Theorem
3 in [40]), with at least d of the subspaces having their
own steady state. One can extend the proof above for any
idempotent linear superposition of conserved quantities. For
example, the oscillator rotation ei 2π

d
n̂ generates Zd and can be

used to write the d projection operators in Eq. (3.16). These
projectors, by the above proposition, will commute with all
operators in L.

While parity conservation is sufficient for the existence of
multiple invariant subspaces (a quantum memory), it is not
sufficient (Sec. III A) or even necessary for the existence of
steady-state coherences. In other words, steady-state coher-
ences ρμν [fourth structure from Eq. (1.4)] can exist with or
without a discrete symmetry (e.g., Sec. 5.3 in [40]). Both of
these cases are demonstrated pictorially via the two types of
ρss below:

⎛
⎜⎝

ρ00 ρ01 ←
ρ10 ρ11 ←
↑ ↑ ↖

⎞
⎟⎠ ,

⎛
⎜⎜⎜⎝

ρ00 ← ρ01 ←
↑ ↖ ↑ ↖

ρ10 ← ρ11 ←
↑ ↖ ↑ ↖

⎞
⎟⎟⎟⎠ . (2.8)

In the above list, arrows represent parts of the space which
converge to ρμν . In the left example, the entire space converges
to a two-by-two Lss, symbolizing a system with no parity
symmetry. In the right example of a system with parity
symmetry, the full space is “cut up” into four independent
subspaces, each of which converges to a steady state or
coherence. In general, the existence of coherences does not
depend on how ρin converges to Lss. The examples presented
below will all converge to Lss in a way similar to the right
example from Eq. (2.8).

III. EXAMPLES

We present four examples of physical systems which do
not have a unique steady state. We direct the interested
reader to further examples from fermionic systems [52] and
multilevel atoms [40,54]. The example in Sec. III A is that of
a single-qubit dephasing model (specific case of Sec. 3.8.3
in [3] or Sec. 10.3.3 of [48]), the simplest version of an
information-preserving structure. The next two examples deal
with two-qubit systems. That in Sec. III B is taken from recent
experimental work that stabilizes Bell states using trapped ions
[6]. In the example in Sec. III C, a Hamiltonian is added to the
previous case.

The examples in Secs. III D and III E deal with single-mode
two-photon [66,67] and d-photon [68] absorption, respec-
tively. A sample calculation of ρss is provided in Sec. III E for
ρin being a coherent state. These prominent quantum optical
systems [69] have been gaining interest from the quantum
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information [5,70] and optomechanics [71] communities.
Generalized versions of two-photon absorption have recently
been investigated in the context of nanomechanical [72] and
superconducting qubit [65] systems.

A. Single-qubit dephasing

Consider one qubit undergoing dephasing on two of the
three axes of the Bloch sphere. In this case, there is one
jump operator F = Z in Eq. (1.1) and no Hamiltonian (with Z

representing the corresponding qubit Pauli matrix). The master
equation simplifies to

L(ρin) = 2 (ZρinZ − ρin) . (3.1)

Picking the eigenbasis of Z, Z|μ〉 = (−)μ|μ〉 with μ = 0,1,
one can see that the states Mμ = |μ〉〈μ| will be steady but
the coherence |0〉〈1| will not survive. The steady-state density
matrix is then

ρss = lim
t→∞ eLt (ρin) = ρ0|0〉〈0| + ρ1|1〉〈1|. (3.2)

Naturally, one expects the system to remember the initial Z

component of ρin. One can see that L† = L since the jump
operator is Hermitian, so the conserved quantities Jμ = Mμ =
|μ〉〈μ|. Letting vZ = Tr{Zρin} and using the correspondence
from Eq. (2.2), one indeed determines that the Z component
is preserved and ρμ = 1

2 [1 + (−)μvZ].

B. Two-qubit dissipation

In Ref. [6], an L comprising two jump operators (which
are closely related to stabilizer generators of qubit codes [73])
will have a unique Bell state as its steady state. We study a
system with one of those jump operators whose ρss will be of
the form of the fourth structure from Eq. (1.4), i.e., a DFS.

Let L be the space of matrices acting on the Hilbert space of
two qubits. Take an L from Eq. (1.1) with sole jump operator
(c in Box 1 of [6]),

F = 1
2 (I − Z1Z2) X2, (3.3)

where Xi , Yi , and Zi are usual Pauli matrices for the ith qubit.
The steady-state space Lss is spanned by Mμν with μ,ν = 0,1
and

M00 = 1
4 (I + Z1)(I − Z2),

M11 = 1
4 (I − Z1)(I + Z2), (3.4)

M01 = 1
4 (X1 + iY1)(X2 − iY2).

Intuitively, Lss is equivalent to the space spanned by |
p〉〈
q |,
where p,q = ± and the Bell states |
±〉 = 1√

2
(|01〉 ± |10〉).

Also, M10 = M
†
01 and Mμμ sum up to the identity on Lss.

The Mμν are orthonormal in the sense that Tr{M†
μνMαβ} =

δμαδνβ . One can check that L(Mμν) = 0. By duality, there
must exist quantities Jμν such that L†(Jμν) = 0. In this
case, one can easily determine the conserved quantities by

seeing that

J00 = 1
2 (I + Z1),

(3.5)
J01 = 1

2 (X1 + iY1)X2,

commute with F . We also have J11 = I − J00 (since identity
is always conserved) and J10 = J

†
01 (since {J †

μν} = {Jμν}).
Notice that since Jμν commute with everything in L, unitary
operators built out of them will be (global) symmetries of
the system. Both Jμν and Mμν form the Lie algebra u(2).
Finally, using the correspondence from Eq. (2.2), the steady
state ρss ∈ Lss for initial state ρin ∈ L can be expressed as

ρss =
1∑

μ,ν=0

ρμνMμν,

(3.6)
ρμν = Tr{J †

μνρin}.
Notice that Z1 is a parity operator, meaning that the analysis

from Sec. II D holds. We depict the scenario in the following
matrix, written in the {|00〉,|01〉,|10〉,|11〉} basis:⎛

⎜⎜⎜⎜⎝
1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

⎞
⎟⎟⎟⎟⎠ . (3.7)

In the above, solid lines divide the space into four subspaces
which evolve independently underL. In each subspace we have
written the corresponding conserved quantity Jμν . Dashed
boxes are around those parts of the respective subspaces that
belong to Lss.

As a final note, if one adds another jump operator F2 =
1
2 (I − Z1Z2) Y2, then the two-by-two structure of Lss will
remain, but with J01 = M01 being the new off-diagonal con-
served quantity. This quantity now has one less nonzero entry,
signaling that an L with both jump operators will no longer
preserve all information about the coherence between the other
Bell states |�+〉 and |�−〉 [with |�±〉 = 1√

2
(|00〉 ± |11〉)].

C. Driven two-qubit dissipation

The assumption that L does not have purely imaginary
eigenvalues does not mean that L cannot have a Hamiltonian.
We add H = ωX2 (with real parameter ω) to the example
in Sec. III B in order to be able to pump some steady-state
populations into the matrix subspace spanned by the other set
of Bell states |�±〉. Notice that H can also be introduced by
letting F → F + iωI . The full evolution is now

L(ρin) = −iω[X2,ρin] + 2FρinF
† − F †Fρin − ρinF

†F,

(3.8)

with F defined in Eq. (3.3). All Jμν from the previous Example
commute with H , so the parity structure of Eq. (3.7) remains
and there will be steady-state coherences. However, [H,F ] �=
0 and there is competition between drive out of and dissipation
into the |
p〉〈
q | subspace (with p,q = ±). The old Mμν are
now modified to include parts of the space |�p〉〈�q | and the
overlapping spaces |
p〉〈�q | and |�p〉〈
q |. The steady states
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and steady-state coherences M̄μν for this example are

M̄00 = 1

ζ

[
M00 + ω

2
(I + Z1)(ωI + Y2)

]
,

M̄11 = 1

ζ

[
M11 + ω

2
(I − Z1)(ωI − Y2)

]
, (3.9)

M̄01 = 1

ζ

[
M01 + ω

2
(X1 + iY1)(ωX2 − iZ2)

]
,

where M̄10 = M̄
†
01 and normalization ζ = √

2ω4 + 4ω2 + 1. It
is clear that the M̄μν → Mμν as ω → 0. In the ω → ∞ limit,
the drive balances the dissipation and all M̄μν are equally
distributed over both Bell-state subspaces. All that is left to do
is to normalize Jμν to ensure that Tr{J̄ †

μνM̄αβ} = δμαδνβ :

J̄μν = ζ

2ω2 + 1
Jμν. (3.10)

Finally, noticing that F + iωI is factorizable reveals that
this example is a NS. From Sec. I, we know that the M̄μν

will share a common matrix that can be factored out via
a unitary transformation. Applying the transformation U =
1
2 [I + Z1 (X2 − I ) + X2] to M̄μν , one obtains

UM̄μνU = |μ〉〈ν| ⊗ 1

ζ

(
1 + ω2 iω

−iω ω2

)
,

(3.11)

UJ̄μνU = |μ〉〈ν| ⊗ ζ

2ω2 + 1

(
1 0

0 1

)
.

One can see that subspace symmetries on this transformed
Lss will simply be unitary combinations of |μ〉〈ν| ⊗ I .
Additionally, it is clear that the transformed J̄μν form the Lie
algebra u(2) (up to a constant).

D. Single-mode two-photon absorption

Consider bosonic systems with jump operator F = â2 with
[â,â†] = I . While this system is infinite, one can successfully
analyze them for finite energy using a large finite Fock
space spanned by {|n〉}Nn=0 (where N � 1) [22]. This case is
highlighted because it is an infinite counterpart to the example
in Sec. III B and has the same four-dimensional structure of
Lss, with basis Mμν = |μ〉〈ν| in Fock space (with μ,ν =
0,1). The diagonal conserved quantities Jμμ correspond to
projectors on the even and odd subspaces, respectively:

Jμμ = �μ ≡
∑

n

|2n + μ〉〈2n + μ|. (3.12)

One can construct the photon number parity,

P = �0 − �1 = (−1)n̂, (3.13)

which commutes with â2. Therefore, L is once again split into
four independent subspaces. The conserved quantity for the
off-diagonal subspace,

J01 = (n̂ − 1)!!

n̂!!
�0â, (3.14)

where m!! = m(m − 2)!! is the double factorial [74], was
first discovered by Simaan and Loudon in Ref. [67], which
motivated this work. It is an example of a conserved quantity

that does not commute with operators in L. One can obtain
such quantities by first isolating the space where they exist
and then applying L†. Due to the parity structure, we know
that J01 is off-diagonal in the sense that J01 = �0J01�1.
Furthermore, J01 has to overlap with its corresponding
steady-state coherence |0〉〈1|. With those two constraints and
symmetry ofL under V = eiφn̂ (see Sec. II B), J01 must consist
only of elements of the form |2n〉〈2n + 1| with n = 0,1, . . ..
Assuming a solution of the form J01 = j (n̂)�0â and plugging
into L†(J01) = 0 yields a recursion relation for j (n̂), whose
solution is Eq. (3.14).

Physically, J01 represents how the environment distin-
guishes components of ρin. It will preserve information only
from elements |2n〉〈2n + 1| since, in that case, the same
number of photon pairs is lost in relaxing to |0〉〈1|. In all other
even-odd basis cases, e.g., |2n〉〈2n − 1|, different numbers of
photon pairs are lost (n vs n − 1 pairs for the example).

E. Single-mode d-photon absorption

As a generalization of the example in Sec. III D, let d > 0
and

L(ρin) = 2âdρinâ
†d − â†d âdρin − ρinâ

†d âd . (3.15)

The dynamics of these systems have been analytically solved
for all time [66–68]. However, the advantage of this analysis
allows one to bypass that tedious algebra and obtain the steady
state directly using conserved quantities. In related work, a
system is presented which has not been solved but for which all
conserved quantities have been analytically determined [65].

Note that the d = 1 case is simply Eq. (1.5), which has a
unique steady state. For the general case, let

�μ =
∑

n

|dn + μ〉〈dn + μ| = 1

d

d−1∑
ν=0

ei 2π
d

(n̂−μ)ν (3.16)

be d different projectors with μ,ν = 0,1, . . . ,d − 1. Noting
the cyclic relationship among projection operators,

�μâ = â�(μ+1)modd = �μâ�(μ+1)modd , (3.17)

one can see that [�μ,âd ] = 0. According to Sec. II D, the
Fock space is then partitioned into d2 subspaces, each evolving
independently. We can thus write

ρss =
d−1∑

μ,ν=0

ρμν |μ〉〈ν|, (3.18)

with ρμν = Tr{J †
μνρin}. Extending the recipe of the previous

example, there are d2 conserved quantities,

Jμν = jμν (n̂)√
(ν)ν−μ

�μâν−μ, (3.19)

where the square root is from normalization, Jνμ = J †
μν ,

jμν(n̂) =
1
d

(n̂−μ)−1∏
p=0

2(dp + ν)ν−μ

(dp + ν)ν−μ + (dp + ν + d)ν−μ

, (3.20)

and the falling factorial (x)n = x(x − 1) · · · (x − n + 1).
Since (x)0 = 1, the diagonal conserved quantities simplify to
Jμμ = �μ. Since

∑
μ Jμμ = I , only d2 − 1 quantities are
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independent. The off-diagonal quantity simplifies to Eq. (3.14)
for d = 2 and only the identity remains for d = 1. The Jμν are
reducible into a direct sum of u(d) Lie algebras. There exists
one algebra for each value of n̂. In other words,

∑
μ,ν Jμν

forms an infinite block-diagonal matrix with blocks of length
d, diagonal entries of 1, and off-diagonal entries depending
on jμν(n̂). Finally, note that only the piece of ρin that initially
lives in a given subspace (�μρin�ν) will contribute to the
corresponding ρμν in ρss.

As an example calculation, we determine ρss when ρin =
|α〉〈α|, a coherent state â|α〉 = α|α〉 with α ∈ C. Since a
coherent state fills the entire Fock space, all subspaces have
nontrivial evolutions and equilibrate to

ρμν = α�ν−μe−|α|2√
(ν)ν−μ

∞∑
n=0

jμν(dn + μ)

(dn + μ)!
(|α|2)dn+μ. (3.21)

Since Pn = jμν(dn + μ)/(dn + μ)! are polynomials in n, ρμν

are generalized hypergeometric functions whose arguments
will be roots of Pn+1/Pn [75]. The diagonal elements simplify
if instead we express �μ using the right-hand side of
Eq. (3.16),

ρμμ = 1

d

d−1∑
ν=0

e−i 2π
d

μν exp[|α|2(ei 2π
d

ν − 1)]. (3.22)

In the large |α| limit, ρμμ → 1/d, distributing populations
equally among the diagonal steady states and retaining no
information about α. For μ �= ν in this limit, ρμν converges to
a constant times eiθ(μ−ν), thus storing the phase θ = arg(α) of
the initial coherent state for any d.

Taking a look at specific cases, for d = 1, Eq. (3.21) is just
ρ00 = 1. For d = 2, expressing in the |μ〉〈ν| basis,

ρss =
(

1
2 (1 + e−2|α|2 ) α�e−|α|2I0(|α|2)

c.c. 1
2 (1 − e−2|α|2 )

)
,

where I0 is the modified Bessel function of the first kind [76].
In the large |α| limit, ρ01 → e−iθ /

√
2π . For d = 3,

ρ01 = α�e−|α|2
0F2

[
2
3 , 5

6 ;
( |α|2

3

)3
]

|α|→∞−→ e−iθ �( 2
3 )�( 5

6 )
2π

,

ρ12 = α�e−|α|2 |α|2√
2 0F2

[
7
6 , 4

3 ;
( |α|2

3

)3
]

−→ 3√
2
e−iθ �( 7

6 )�( 4
3 )

2π
,

ρ02 = α�2e−|α|2 1√
2 0F2

[
1 +

√
2

3 i,1 −
√

2
3 i;

( |α|2
3

)3
]

−→ e−2iθ
csch

(√
2

3 π
)

2
√

3
.

In the above, � is the Gamma function and qFp is the gener-
alized hypergeometric function [76]. In summary, Eqs. (3.21)
and (3.22) match the steady-state result of [66,67] for d = 2
and generalize it to arbitrary d.

IV. CHARACTERIZATION OF STEADY-STATE AND
INFINITE-TIME DENSITY MATRICES

We are now ready to combine previous developments
regarding the structure of ρss (Theorem 7 in [46] and Theorem
5 in [33]) with the work here regarding the specific coefficients
ρμν . Remembering Sec. I, ρss is unitarily equivalent to a

block-diagonal form with blocks indexed, say by κ . Each
block will be of dimension nκ and each basis element in
each block, M (κ)

μν , will share an mκ -dimensional factor density
matrix T (κ) (with nκ,mκ � 1). The matrix T (κ) is factored out
via a unitary transformation, so all operators in this section are
written in a frame unitarily equivalent to the one in Eq. (1.1).
According to the correspondence from Eq. (2.1), each entry
in each block will depend on the expectation value of ρin with
a corresponding conserved quantity J (κ)

μν . The characterization
of ρss with no oscillating coherences is then

ρss =
⊕

κ

⎡
⎣ nκ∑

μ,ν=1

ρ(κ)
μν |μ〉κ〈ν| ⊗ T (κ)

⎤
⎦ ,

ρ(κ)
μν = Tr{J (κ)†

μν ρin},
(4.1)

L(|μ〉κ〈ν| ⊗ T (κ)) = 0,

L†(J (κ)
μν

) = 0.

The steady states M (κ)
μν = |μ〉κ〈ν| ⊗ T (κ) are such that

Tr{T (κ)} = 1 (so they are no longer a normalized ba-
sis as in previous sections; Tr{M (κ)†

μν M (κ)†
μν } �= 1). There-

fore,
∑

μ,κ ρ(κ)
μμ = 1, ρ(κ)

νμ = ρ(κ)�
μν , and ρ(κ)

μμρ(κ)
νν � |ρ(κ)

μν |2. The
|μ〉κ〈ν| means that the |μ〉〈ν| basis is different for each block
κ . Conserved quantities J (κ)

μν are organized such that

Tr
{
J (κ)†

μν |σ 〉λ〈τ | ⊗ T (λ)
} = δκλδμσ δντ . (4.2)

Notice that the shape of the preserved space is determined
solely by the set of dimensions nκ . The total capacity (number
of independent variables) is

∑
κ n2

κ − 1. If one further wants
to characterize how information is preserved, i.e., the detailed
structure of ρss, then knowledge of the null spaces of L
(steady states and steady-state coherences) and L† (conserved
quantities) is sufficient [33]. Finally, if one wants to know what
information is preserved upon initialization of the system with
some ρin, then one needs to evaluate the expectation values of
the initial density matrix with all conserved quantities.

We now relax the assumption of no oscillating coherences.
In this case, one needs to consider the infinite-time density
matrix ρ∞ consisting of all pure imaginary eigenvectors of
L. From Appendix C, we see that oscillating coherences are
induced by rotations on steady-state coherences, meaning that
inclusion of oscillating coherences will move some of the
zero eigenvalues from Fig. 1 onto the nonzero parts of the
imaginary axis. Those rotations are caused by a Hamiltonian
H∞ [contained in H from Eq. (1.1)] acting on each block κ

(but not acting on T (κ)),

ρ∞(t) = e−iH∞t ρsse
iH∞t ,

(4.3)

H∞ =
⊕

κ

⎡
⎣ nκ∑

μ=1

E(κ)
μ |μ〉κ〈μ| ⊗ I (κ)

⎤
⎦ ,

where I (κ) are identity matrices on the respective spaces of
T (κ). For ease of presentation, it is assumed that |μ〉κ is the
eigenbasis of H∞. Thus, ρ(κ)

μν with μ �= ν may begin to rotate
at frequencies λ(κ)

μν that consist of energy differences of H∞.
Conserved quantities may no longer be conserved due to the
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induced rotations, so they are renamed J → S. The complete
characterization is then

ρ∞(t) =
⊕

κ

⎡
⎣ nκ∑

μ,ν=1

ρ(κ)
μν eiλ(κ)

μν t |μ〉κ〈ν| ⊗ T (κ)

⎤
⎦ ,

ρ(κ)
μν = Tr{S(κ)†

μν ρin},
L(|μ〉κ〈ν| ⊗ T (κ)) = iλ(κ)

μν |μ〉κ〈ν| ⊗ T (κ), (4.4)

L†(S(κ)
μν

) = −iλ(κ)
μνS

(κ)
μν ,

λ(κ)
μν = E(κ)

ν − E(κ)
μ .

With this convention, it is easy to see that oscillating coher-
ences can be removed by going into the rotating frame of
H∞. The form of H∞, up to an arbitrary energy shift, can
be obtained by determining all eigenvalues of L lying on the
imaginary axis.

The analogy with unitary evolution is strikingly straight-
forward. When there is no dissipation, given a ρin and the
eigenvalues or vectors of the superoperator −i[H,·], one can
determine dynamics of the system for all time. Analogously,
when dissipation is present, ρin and selected eigenvalues or
vectors of L will determine the complete dynamics of the
system after the dissipative behavior has subsided. In both
cases, the relevant eigenvalues are only those on the imaginary
line (open circles in Fig. 1). The additional complication of
dissipation is that there will be two sets of eigenvectors, left
and right, due to the lack of a Hermiticity condition on L.

V. DISCUSSION

An often-discussed application of dissipative systems with
many steady states is quantum information storage and compu-
tation. Unitary symmetries, both global and subspace, provide
gates that can be performed on the steady-state space without
leaving the space. The capacity of Lss as a computational
space, i.e., noiseless code (and unitarily noiseless code in the
case of ρ∞ [33]), has been thoroughly studied [28,29,77].
Conserved quantities, on the other hand, can reveal how
the information provided by an input state is stored in the
output. This eliminates the need for any constraints on state
initialization or the operators in L [78], tracking dissipative
evolution without error. Not all ρin /∈ Lss will completely
lose all of their information; an apt example of this is the
encoding of the phase of a coherent state in ρss using d-photon
absorption from the example in Sec. III E. Although difficult
to physically interpret, Hermitian combinations of Jμν are
formal observables which can potentially be experimentally
realizable. The application is illustrated in Fig. 2 (for one
block), where the storage and/or readout of information is
depicted in (a) and manipulation in (b). The only requirement
for (a) is dim{Lss} > 1, regardless of the dimension nκ of
individual blocks, so Lss does not have to be an NS or DFS
for storage purposes. Note that this scheme is different from
earlier work [21] which utilized unique steady states to store
information. In [21], the unique steady state is independent of
ρin and stores information about L. In this case, populations
and coherences ρμν store information about ρin and the

FIG. 2. (Color online) Process of utilizing the steady-state sub-
space of a Lindblad system L for quantum computation. Initial
information is fed in via an initial density matrix ρin which then
equilibrates to a steady-state density matrix ρss in the multidi-
mensional steady-state space Lss. (a) The coefficients ρμν storing
information about ρin can be read out using conserved quantities Jμν .
(b) Steady-state subspace symmetries Uss, conserved on Lss, can be
used to manipulate ρss.

information stored in the steady-state basis elements about
L is not used.

The above characterization also offers a slightly different
framework for dealing with a subtle issue with DFS or NS.
Strictly speaking, DFSs (Theorem 4 in [29]) and NSs [28]
for Lindblad systems are defined in terms of only the jump
operators. While parts of H can sometimes be absorbed into the
jump operators (see Eq. (3.73) in [2]), this may not always be
the case. This ambiguity has spurred much work in determining
different conditions on Hamiltonians H in L such that the
respective DFS or NS is not broken [28,32,78,79]. In short,
H can have multiple functions, including determining Lss
(along with Fl) and inducing oscillating coherences on ρss.
Since H is included in the formulation presented here, one
does not have to worry about putting any constraints on the
Hamiltonian. If one wants to additionally manipulate ρss, one
can generate subspace symmetries via control Hamiltonians
Hss(t) in the following way. First, let ρin equilibrate to ρss.
After that, we know that the two evolutions generated by L
and Hss(t) commute [see Eq. (2.6)]. Thus, it is possible to
combine the time-evolution generators into

Lss(ρss) = L(ρss) − i[Hss(t),ρss]. (5.1)

Loosely speaking, if one can adiabatically turn on Hss(t) after
ρss has been formed, then one can use Hss(t) to perform
operations on ρss with the only restriction being the condition
on the unitary of Hss(t) from Eq. (2.5). While exact gate
Hamiltonians are guaranteed to exist due to subspace symme-
tries, they can also be approximated with realizable physical
operations (e.g., in superconducting qubit systems [65]).

Another area of investigation involving Lindblad generators
is Markovian quantum feedback [3,48,80], the study of using
the output of an open quantum system to control its dynamics.
Since experimental monitoring of a quantum system is often
done almost continuously, much work has been done on
simulating Lindblad master equations (or unraveling) with
stochastic master equations (SMEs). A typical SME is a
Lindblad equation with Gaussian noise terms for those Fl

which are deemed as the experiments’ observed channels
(see Sec. 7.1.2 of [48]). Therefore, the average evolution of
all experimental runs (or numerical simulations of the SME)
will follow the dynamics of the original Lindblad equation.
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However, individual simulations may not converge to exactly
the Lindblad steady state. For example, when Lss consists of
two steady states and no steady-state coherences (e.g., the
dephasing case of Sec. III A), individual trajectories converge
to one of the two possible states while the Lindblad steady
state is a classical mixture of the two states and depends on
initial conditions (see [81] for related simulations). Of course,
conserved quantities can determine the averaged asymptotic
state without having to run any simulations. Additionally,
conserved quantities can help analyze the relative stability
of various points in the steady-state space. While no state in
a nontrivial Lss is globally attractive (since one can end up
in any steady state by simply starting in it; also see Corollary
1 in [22]), states in Lss can have varying degrees of local
attraction. Conserved quantities will help chart this attraction
landscape. In other words, one can determine the values of
parameters in ρin that would make ρss a specific pure state (the
stable set [41]). Such analysis was done for a driven version
of Sec. III D, which exhibits two locally attractive pure steady
states for some values of parameters in L [65].

It is worth discussing two physical requirements for the
above applications to be realizable. First, one must wait for
some time in order for information from ρin to fully flow into
Lss (unless of course ρin ∈ Lss). Eigenvalues of L make up
the rates of exponential decay of states outside Lss (which
will be multiplied by powers of time t in case of degeneracy;
see Eq. (10.23) in [47]). The slowest rate of decay will be
the eigenvalue of L whose real part is closest to zero (the
dissipation gap � from Fig. 1). The dissipation gap will govern
equilibration dynamics and should be large compared to the
time scale of the experiment. Second, the time scales from
other sources of dissipation that destroy Lss should be small
compared to the time one needs to store the information. For
example, single-photon loss in a cavity will always ruin any
multidimensional Lss (see Sec. I A). The rates at which states
approach Lss and at which Lss breaks down will depend on ρin,
so not all ρin may be practical even though the theory works
for arbitrary initial state. One will have to determine how
sensitive ρin and states in Lss are to all forms of malevolent
decoherence present in the setup. Finally, note that even though
Lss is decoherence free, it does not mean that ρss will be a pure
state since |ρμν | can vary between 0 and

√
ρμμρνν , depending

on ρin. However, whether ρss is pure, slightly impure, or totally
mixed, purity will be conserved under Uss.

VI. SUMMARY & OUTLOOK

This work answers the question regarding what information
is preserved when a density matrix evolves under a Lindblad
generator. The paper provides a pedagogical explanation of the
utility of symmetries and conserved quantities in dissipative
Lindblad systems, showing that a symmetry-based analysis
can be comparably as powerful and useful as it is with
Hamiltonian systems despite the absence of a Noether-type
theorem. We determine the utility of conserved quantities
in obtaining the infinite-time density matrix. Analogous to
unitary evolution, dissipative evolution in the infinite-time
limit can be completely characterized by the initial state and
purely imaginary eigenvalues of the Lindblad operator L. The
major difference from unitary evolution is that there are two

sets of eigenvectors—those of L and those of its adjoint—due
to non-Hermiticity of L.

Practically speaking, conserved quantities and symmetries
provide both an intuitive physical framework and a set of tools
to understand and manipulate steady-state density matrices
carrying information. These tools should prove useful in
theoretical formulations of decoherence-free subspaces and
noiseless subsystems and further experimental developments
of systems with multiple steady states.
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APPENDIX A: NOTATION AND COUNTEREXAMPLES

While in the text it is emphasized that Mμ are matrices, in
the appendixes we switch to “bra-ket” notation for L:

L(ρin) ←→ L̂|ρin〉〉,
Tr{J †

μMν} ←→ 〈〈Jμ|Mν〉〉, (A1)

FρinF
† ←→ (F ⊗ F�)|ρin〉〉.

Note that the isomorphism induces an additional transposition
on operators acting from the right on ρin (see Sec. 2.1.4.5 of
[55] for details). The ket |ρin〉〉 is simply the N -by-N ρin written
as an N2-by-1 vector. In this equivalent form, L̂ is a matrix
acting on |ρin〉〉 from the left and is written as

L̂ = −i(H ⊗ I − I ⊗ H�)

+
N2−1∑
l=1

2Fl ⊗ F�
l − F

†
l Fl ⊗ I − I ⊗ (F †

l Fl)
�. (A2)

The generator of a continuous symmetry U is written as

Ĵ = J ⊗ I − I ⊗ J �. (A3)

One can obtain conditions on J for which Ĵ is a symmetry
generator from [Ĵ ,L̂] = 0:

N2−1∑
l=1

[Fl,J ] ⊗ F�
l − Fl ⊗ [F�

l ,J �] = 0,

(A4)
N2−1∑
l=1

[F †
l Fl,J ] = [H,J ] = 0.

If we assume one Fl , then the top condition becomes [F,J ] =
ξF , with ξ ∈ R. When ξ �= 0, the symmetry generates
rotations on F . A simple example of a symmetry that neither
commutes with F nor is conserved is Eq. (1.5): F = â, H = 0,
and J = n̂. An example of a conserved quantity that neither
commutes with F nor is a symmetry is found in Sec. III D:
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F = â2, H = 0, and J = J01 + J
†
01. Ref. [40] provides other

interesting examples.

APPENDIX B: PROOF OF CORRESPONDENCE

Following Appendix A, notation is continued. The adjoint
L̂† is defined for |ρ〉〉,|σ 〉〉 ∈ L as

〈〈σ |L̂ρ〉〉 = 〈〈L̂†σ |ρ〉〉. (B1)

Taking the adjoint of Eq. (A2) obtains the bra-ket form of L
from Eq. (1.2). The adjoint has the same set of eigenvalues
and eigenspaces of the same dimension as L̂. Therefore, there
exist D linearly independent conserved quantities |Jμ〉〉 such
that 〈〈Jμ|L̂ = 0. Since they are conserved, one can write

〈〈Jμ|ρin〉〉 = 〈〈Jμ|ρss〉〉 =
D∑

ν=1

ρν〈〈Jμ|Mν〉〉. (B2)

The matrix L̂ can be put into Jordan normal form via a
nonunitary similarity transformation S,

L̂ = S−1�S. (B3)

Since the |Jμ〉〉 and |Mμ〉〉 are proper eigenvectors and there are
no generalized eigenvectors (Lemma 17 of [40]), the Jordan
block with eigenvalue zero of � will be simply a D-by-D
matrix of zeros. The respective transformed left and right
eigenvectors, |M̃μ〉〉 = S|Mμ〉〉 and 〈〈J̃μ| = 〈〈Jμ|S−1, will be
linearly independent and orthogonal to all other basis vectors
of L. Thus, they are dual bases and can be made to be
biorthogonal [50], i.e., such that 〈〈J̃μ|M̃ν〉〉 = δμν . It is clear
that once the transformed vectors are biorthogonal, the original
ones are also: 〈〈Jμ|Mν〉〉 = δμν . Plugging that into Eq. (B2)
obtains the desired result of Eq. (2.2). �

APPENDIX C: OSCILLATING COHERENCES

An oscillating coherence |O〉〉 (also undamped oscillating
phase relation [40] or rotating point [33]) is an eigenvector of
L̂ with a nonzero purely imaginary eigenvalue, i.e.,

eL̂t |O〉〉 = eiλt |O〉〉, (C1)

for real λ. The presence of such an eigenvalue allows an initial
density matrix to converge to a unitarily evolving state, i.e.,
a limit cycle [22,41] (also circular path [45]). The source of
oscillating coherences is an important nontrivial result from
Theorem 18-3 of [40], where any pure imaginary nonzero
eigenvalue is shown to stem only from the Hamiltonian part of
L̂. In other words, if H = 0, the limit set will consist entirely
of steady states (with the converse being false; see Sec. III C).

Another way to illustrate that oscillating coherences, steady
states, and steady-state coherences form a complete basis for

the limit set is by extending the proof from Appendix B
to eigenvalues on the imaginary axis. The fact that all such
eigenvalues are proper (as opposed to generalized [47]) was
proven in Lemma 2.3-ii of [52] for quadratic fermionic L̂
and in Sec. 5 of [22] or Theorem 18 of [40] for general
Lindblad equations. The idea of the proofs is as follows. By
contradiction, if one assumes that L̂ is not diagonalizable in
the subspace of the Jordan normal form with diagonals of zero
real part, then exponentiating the Jordan matrix of Eq. (B3),
eL̂t = S−1e�tS, will cause the dynamics to diverge as t → ∞.
For example,

� =
(

i 1

0 i

)
−→ e�t =

(
eit teit

0 eit

)
.

It is instrumental to think of oscillating coherences as
rotating steady-state coherences. To illustrate this, let Lss
be D-dimensional with steady states |Mμμ〉〉 (with μ =
1,2, . . . ,D) and let |Oμν〉〉 be oscillating coherences on all of
the off-diagonals between the steady states, i.e., eL̂t |Oμν〉〉 =
eiλμν t |Oμν〉〉 for some real λμν . In the infinite-time limit,

|ρ∞〉〉 =
D∑

μ=1

ρμμ|Mμμ〉〉 +
∑
μ �=ν

ρμν(t)|Oμν〉〉. (C2)

Unlike the unitary case, purity of |ρin〉〉 may not be preserved:
|Oμν〉〉 collect information from ρin just like |Mμμ〉〉, ρμν(t) may
depend on the structure of ρin, and |ρμν(t)| � √

ρμμρνν . The
method to determine ρμν(t) is similar to the use of conserved
quantities to determine ρμν from Eq. (2.2), but this time the
quantities 〈〈Sμν | corresponding to |Oμν〉〉 are also rotating:

eL̂
†t |Sμν〉〉 = e−iλμν t |Sμν〉〉. (C3)

These quantities are unique dual eigenvectors such that

〈〈Sμν |ρ∞〉〉 = ρμν(t). (C4)

However, it is also true that

〈〈Sμν |ρ∞〉〉 = 〈〈Sμν | lim
t→∞ eL̂t |ρin〉〉 = eiλμν t 〈〈Sμν |ρin〉〉, (C5)

obtaining

ρμν(t) = eiλμν t 〈〈Sμν |ρin〉〉. (C6)

It is clear from the above that as λμν → 0, |Oμν〉〉 become
steady-state coherences, 〈〈Sμν | become conserved quantities,
ρμν(t) stop rotating, and |ρ∞〉〉 → |ρss〉〉. Since the λμν stem
from a part in the Hamiltonian of L̂, one way to eliminate
oscillations is to go into the rotating frame of the generating
Hamiltonian.
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P. Zoller, Nat. Phys. 4, 878 (2008); W. Yi, S. Diehl, A. J. Daley,
and P. Zoller, New J. Phys. 14, 055002 (2012).

[20] A. Pechen and H. Rabitz, Phys. Rev. A 73, 062102 (2006); B.
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