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It has long been known that a free electron in an intense plane-wave field has a mass shell that differs from
the usual free-electron mass shell, with a form that implies that an intensity-dependent increase in mass occurs.
It has been an attractive but elusive goal to observe this mass shift. Many schemes have been proposed by which
a definitive measurement might be made, and some claims of success exist, but these tests are not conclusive. It
is shown here that the intense-field mass shell is not the result of a change in mass. Rather, it is a consequence of
the potential energy that a charged particle must possess in the presence of a plane-wave field. When the effects
of this potential are incorporated in a properly covariant form, the mass shift no longer appears and kinematic
relations are conventional. If the plane-wave pulse is sufficiently long to allow the electron to exit the field
adiabatically, then there is no alteration at all of the mass shell expression. Other aspects of the role played by a
ponderomotive 4-potential are examined. It is also shown that the putative “relativistic mass” of the electron is
illusory when confronted with covariance requirements. Both “mass increases” of the free electron are thereby
nullified by fundamental principles.
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I. INTRODUCTION

It has been known since the earliest nonperturbative
treatments of Compton scattering [1] and of pair production
from the vacuum [2,3] that a charged particle (hereafter
referred to generically as an “electron”) immersed in an intense
plane-wave field exhibits an intensity-dependent alteration of
its mass shell condition. The field-free mass shell of ordinary
quantum electrodynamics (QED),

pμpμ = (mc)2, (1)

is replaced by the mass shell of strong-field QED (SFQED),

pμpμ = (mc)2(1 + zf ), (2)

where

zf := 2Up/mc2. (3)

The quantity Up is the ponderomotive potential of the electron
in the plane-wave field. The terminology of Ref. [3] is used,
since the conclusion of Ref. [3] that zf is the coupling constant
of the electron to the plane-wave field is relevant here. (In [2,3],
the zf parameter was designated as z without a subscript.)
Equation (2) appears to indicate that the mass of the electron
has increased as a result of interaction with the strong field.

A problem of interpretation arises because Eq. (2) can be
placed in the form

pμpμ = (m2 + �m2)c2, (4)

whereas a simple shift in mass �m would lead to

pμpμ = (m + �m)2c2. (5)

A considerable literature has arisen with respect to this
revision of the mass shell condition. An alteration of the mass
of the electron that is dependent on the intensity of the field
in which it is immersed has implications for the foundations
of QED. For example, Ref. [4] examines the effects on basic
symmetries suggested by an intense-field mass shift.

Within the growing body of literature on the subject of the
intensity-dependent mass, differences of opinion inevitably

arise [5,6]. From very early on, ways to observe the mass shift
by laboratory measurements have been suggested [7,8]. These
suggestions continue to the present day [9]. Most of these
proposals amount to a quest for an alteration in kinematics
following from the presence of the ponderomotive potential
Up. A study of the implications of the ponderomotive potential
is a focus of this article.

Possibly the earliest attempt to measure the mass shift was
in 1971 [10]. Claims have been made [11–13] that the mass
shift was observed, although these include the caution that the
evidence may not be decisive [12].

A direct approach is taken here to understanding the origin
of the free-electron mass shell condition of SFQED. It is found
that it is a straightforward matter to trace the origins of this
alteration, with the result that one can assign a simple meaning
to it. Rather than focusing on mass per se, it is more fruitful to
consider energy and momentum conditions. The result is that
the ponderomotive potential provides the essential key to the
explanation of the electron’s modified kinematic properties.
The ponderomotive potential has several aspects to its physical
significance that will be explicated after revealing its mass shell
implications.

Section II analyzes the mass shell condition in terms of
the requirement for a potential energy due to the interaction
of a charged particle with the plane-wave field in which it is
immersed. When this potential energy is explored in covariant
terms, it is found to provide a complete explanation for the
modified mass shell condition (2) or (4).

An analog to the ponderomotive potential of transverse
(i.e., plane-wave) fields is the so-called “quiver” energy
of an electron in a longitudinal field. Despite an apparent
equivalence, the two concepts are fundamentally different, as
is explained in Sec. II.

The quantity zf may be regarded as a dimensionless
expression of Up. All investigators of free electrons in strong
fields have encountered the equivalent of the zf parameter,
albeit expressed with a multitude of different notations. Some
authors prefer a parameter that is proportional to the strength
of the electric field, apparently seeking an equivalence with
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longitudinal field quantities where only the electric field is
of significance. The parameter thus defined is proportional
to z

1/2
f . As explained in Sec. III, this reasoning is regarded

as misleading. The quantity zf is the coupling constant of
SFQED, and its relation to the perturbative coupling given
by the fine-structure constant α is very instructive. The
ponderomotive potential Up and its covariant extension to a
ponderomotive 4-potential lie at the heart of SFQED.

Section IV examines the concept of a so-called “relativistic
mass” that has previously been discredited [14]. However,
the notion continues in general use, and a simple covariance
argument is used here to show how unphysical that concept
actually is. The conclusion is that neither the intense-field mass
shift nor the relativistic mass shift actually exists.

Section V gives a brief summary.

II. INTENSE-FIELD MASS SHELL

A. Ponderomotive 4-momentum

The structure of the mass shell expressed by Eq. (2) is
open to an interpretation quite apart from any change of mass.
With the left-hand side expanded, and Eq. (3) inserted on the
right-hand side, the expression becomes(

E

c

)2

− p2 = (mc)2 + 2Upm. (6)

A simple rearrangement gives

E2 = (mc2)2 + 2Upmc2 + p2c2. (7)

The mass shell condition follows from the expression for the
minimum value that E can have. The ponderomotive potential
Up is a true potential energy. If the electron were to emerge
adiabatically from the plane-wave field, only then would that
energy become a kinetic energy. The electron cannot exist
as a physical particle within the plane-wave field unless it
possesses the ponderomotive potential energy Up . The electron
must acquire the energy Up from the electromagnetic field.
In a uniform-intensity monochromatic field, photons of that
field are unidirectional, and an amount of field energy Up

is associated with a field momentum Up/c in the direction of
propagation. Therefore, the minimum energy of the electron is,
from (7) with the minimal 3-momentum |p| = Up/c inserted,

E2
min = (mc2)2 + 2Upmc2 + U 2

p. (8)

The minimum energy condition is thus

Emin = mc2 + Up. (9)

This is an expression of the requirement that the electron in
the field must have, at minimum, the rest energy mc2 plus the
ponderomotive potential Up. An important additional concept
is that the energy Up acquired from the field comes with the
photon momentum Up/c associated with that amount of field
energy. The analysis [15,16] of recent experiments [17] that
observed radiation pressure confirms the Up energy and Up/c

momentum assignments.
An alternative approach starts with the knowledge that an

electron in a transverse field must possess an energy Up.
Covariance requires that an energy must be the time part of a

4-momentum,

Uμ : (Up,Upk̂), (10)

where k̂ is a unit 3-vector in the direction of field propagation.
The direction and relative amplitude of the space part of
Eq. (10) come from the fact that the 4-potential Uμ arises from
interaction with the plane-wave field. That is, the 4-potential
Uμ is a lightlike 4-vector that is parallel to the propagation
4-vector:

kμ :

(
ω

c
,k

)
, (11)

with the equivalence

Uμ = Up

ω/c
kμ. (12)

The mass shell is then found from the scalar product(
pμ + 1

c
Uμ

)(
pμ + 1

c
Uμ

)
, (13)

where pμ is the free-particle 4-momentum that satisfies Eq. (1).
Carrying out the multiplication indicated in Eq. (13) gives

pμpμ + 2

c
pμUμ + 1

c2
UμUμ = (mc)2 + 2Up

ω
pμkμ (14)

using (12) and the fact that Uμ is on the light cone. The
expressions (13) and (14) are Lorentz-invariant, so they must
be true in the frame where pμ → p

μ

0 : (mc,0), so the product
(13) is(

pμ + 1

c
Uμ

)(
pμ + 1

c
Uμ

)
= (mc)2 + 2mUp. (15)

This result corresponds exactly to Eqs. (2) and (3).
The conclusion is that the free-electron canonical 4-

momentum must be supplemented by the ponderomotive 4-
potential because the electron exists in the presence of a plane-
wave field. The intense-field mass shift has now vanished,
since the modified mass shell condition arises entirely from
the known presence of the ponderomotive potential when the
electron is in interaction with the field. The full mass-shell
condition (15) contains no added-mass considerations.

The mass shell condition (2) is straightforward. The kinetic
energy T is found from

T = E − Emin =
√

(mc2)2 + 2Upmc2 + p2c2 − (mc2 + Up)

(16)

= mc2

√
1 + 2Up

mc2
+ p2

m2c2
− (mc2 + Up) (17)

≈ p2

2m
, (18)

where the approximation in the last step (18) corresponds to
the nonrelativistic limit

mc2 � Up, m2c2 � p2. (19)

If that nonrelativistic assumption is not justified, then the full
expression (16) or (17) must be used.

The conclusion is that there is nothing out of the ordinary
about the kinematics. There need not be any allowance for
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a shifted mass. The appearance of Up in Eqs. (16) and (17)
is due simply to the well-known ponderomotive potential of
a charged particle in a plane-wave field. The nonappearance
of Up in Eq. (18) means that the ponderomotive potential
of a free-particle interaction is very difficult to observe in a
nonrelativistic situation.

There is, however, the caveat that return of the pondero-
motive energy to the emergent particle is possible if the laser
pulse is sufficiently long that the electron can exit adiabatically
from the field. If Up is returned from the field to the electron,
then so is the associated momentum of magnitude Up/c

in the direction of laser propagation, and the simple mass
shell condition (1) would then be recovered. (This long-pulse
behavior might be the cause of the null result of the experiment
reported in Ref. [10], designed to detect the presence of Up.)

The conclusion just reached about the ponderomotive
potential being the real source of the SFQED mass shell has
not required any alteration of that expression. Rather, it is
a statement that provision for Up must be a part of kinematic
considerations. From this point of view, the putative mass shift
is not a supportable concept.

The qualitative puzzle about why the mass shell of SFQED
has the form of Eq. (2) or (4) and not the simple mass-shift
form of Eq. (5) can now be answered. The connection between
the ponderomotive energy Up supplied by the field, and the
momentum Up/c acquired in that transfer, is related to the
zero-mass property of the photon rather than the nonzero-mass
energy-momentum relationship of the electron. This precludes
the form (5).

B. Lorentz and gauge invariance

These conclusions are both Lorentz-invariant and gauge-
invariant because the ponderomotive energy Up is both
Lorentz-invariant and gauge-invariant [18]. Lorentz invariance
follows immediately from the fact that Up arises from the
product AμAμ of the 4-vector potential of the field with itself,
as is evident from the defining relation

Up = e2

2mc2
〈|AμAμ|〉, (20)

where the angle brackets denote a cycle average, and the
absolute value brackets are necessary because Aμ is a spacelike
4-vector. Gauge invariance of AμAμ is less obvious, but it
can be shown [18] to follow from the requirement for a
plane-wave field that dependence on the spacetime 4-vector
xμ can only be in the form of the covariant phase kμxμ, where
kμ is the propagation 4-vector of the plane-wave field. This
requirement is imposed as an ansatz by Schwinger [19] and by
Sarachik and Schappert [20], and is shown to be a necessity
in Ref. [18].

Gauge invariance is so easily demonstrated and so basic
that the proof is replicated here from Ref. [18]. Since Aμ can
depend on xμ only in the form of the covariant phase kμxμ,
then the generating function � of the gauge transformation
must also have that property, giving

Aμ → Ãμ = Aμ + ∂μ� = Aμ + (∂μϕ)
d

dϕ
�

= Aμ + kμ�′, (21)

where

ϕ := kμxμ, (22)

and �′ is the total derivative of � with respect to ϕ. The inner
product of Ãμ with itself is thus

ÃμÃμ = (Aμ + kμ�′)(Aμ + kμ�′) = AμAμ (23)

since kμkμ = 0, and kμAμ = 0 for a transverse field.
Equation (23) is an expression of gauge invariance of Up in
view of (20).

C. Ponderomotive potential versus quiver energy

Some further remarks are important for the necessary
identification of Up as a true potential energy. In nonrelativistic
laser physics, Up is often referred to as a “quiver energy”
associated with an oscillatory motion of an electron in an
oscillating field. That identification would mean that Up is a
kinetic energy and not a potential energy. The reason for this
is the fact that most nonrelativistic theory and interpretation is
done in terms of the Göppert-Mayer (GM) gauge (also called
the length gauge), which treats a transverse laser field as if it
were a longitudinal field. In a longitudinal field, the potential
energy of a particle of charge q in the field is given by −qr · E
(where E is the electric field vector), and not by Up. The
ponderomotive potential Up does not exist in the GM gauge
as a true potential. It does occur, but in the guise of a kinetic
energy. Its existence as a kinetic quiver energy arises from the
presence of apparent charge and current sources in the GM
gauge that do not actually exist in the laboratory [21]. The
equations employed [22] for the motion of an electron within
the GM gauge predict the quiver energy, but these equations
of motion arise from the virtual sources that are a necessary
adjunct of the GM gauge [21]. This is a clear contrast with
plane-wave behavior. A hallmark of plane waves is that, once
formed, they propagate without input from external sources.

Direct laboratory evidence exists that Up is a potential
energy and not a kinetic energy. In typical short-pulse laser
ionization experiments, there is not sufficient time for the
ponderomotive potential to be returned to the photoelectron
before the end of the pulse. (See, for example, the discussion in
Ref. [23].) Linear polarization spectra would have a minimum
at Up were that energy the kinetic quiver energy, and that fact
would be very noticeable in practical strong-field experiments
where Up can be of the order of the binding energy or
greater. That is not what is observed; linear polarization spectra
typically peak near zero energy. This is consistent with the
identity of Up as a potential energy.

III. z f AS COUPLING CONSTANT

Other properties of the ponderomotive potential are rele-
vant; in particular, it acts as an effective coupling constant
of charged particles with very strong electromagnetic fields.
The purpose of Ref. [3] was to explore whether the radius
of convergence of SFQED differs from that of QED. This
is important because Dyson demonstrated [24] that QED has
an essential singularity at the origin in a complex coupling
constant plane, meaning that all the remarkable successes of
QED actually follow from a theory that is only asymptotic.
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The findings of Refs. [2] and [3] are that the fine-structure
constant α, the basic coupling constant of QED, is replaced in
SFQED by the intensity-dependent parameter zf , and that the
essential singularity at the origin in QED does not appear
in SFQED. However, there are other perturbation-limiting
singularities away from the origin that occur in SFQED in
intensity-dependent locations.

A qualitative understanding about the intensity-dependent
failure of perturbation theory comes from the observation that,
when Up increases to the point that the minimum number of
photons required to achieve the energy threshold of the process
being studied must index upward to the next larger integer, this
marks an essential singularity in a complex coupling constant
plane. This phenomenon occurs in both free-particle [3] and
bound-particle (see Section IX of [25]) processes.

The defining expression for zf in Eq. (3) has an alternative
expression as

zf = αρ
(
2λ/λ

2
C

)
, (24)

where ρ is the number of photons per unit volume, λ is the
wavelength of the field, and /λC is the electron Compton
wavelength. The multiplier α in (24) is the fine-structure
constant, the coupling parameter of QED. The effective
volume within the parentheses in Eq. (24) is approximately the
volume of a right circular cylinder of radius /λC and length λ. In
other words, the fine-structure constant α of QED is enhanced
in SFQED by the number of photons contained within the
volume of a cylinder with a radius of an electron Compton
wavelength, and extended over a wavelength of the plane-wave
field.

This conclusion is significant because the coupling constant
zf is directly proportional to Up, meaning that Up takes on the
additional meaning of measuring the coupling of the electron
to the field, as well as specifying the potential energy of an
electron in a transverse field. The quantity zf can be regarded
as the dimensionless form of Up.

A final remark concerns the “multiple-pole” structure of
Volkov Green’s functions in monochromatic beams. The mass
shell condition found there takes the form [26–28]

(pμ − nkμ)(pμ − nkμ) = (mc)2(1 + zf ) (25)

for any integer n. This is a significant generalization of Eq. (2).
The analysis given above applies only to n = 0, as well as
requiring that pμ be replaced by pμ + Uμ. However, this is
sufficient: only for n = 0 is the mass shell condition strictly
applicable [29]. This follows from the fact that generalizing a
monochromatic field to a wave packet of plane waves moves
all poles except for n = 0 off the real axis in a complex
representation of the Green’s function in momentum space.

IV. RELATIVISTIC MASS

The primary purpose of this work has been to explore the
“intense-field mass shift.” There is a quite different concept of
putative mass change known as “relativistic mass.” This can
be treated with brevity, so that it is possible to dismiss in a
single paper both long-standing notions of mass alteration of
an electron.

The relativistic mass concept holds that an electron has a
rest-frame mass given by m0, and that this is altered to

m = m0γ, (26)

γ = 1/(1 − v2/c2)1/2 (27)

when viewed in a frame moving at velocity v with respect to the
rest frame. This point of view was rejected by Okun [14], who
protested against a concept that, among other problems, would
require different “transverse” and “longitudinal” masses.
Nevertheless, the relativistic mass concept has been stoutly
defended [30], and it continues to be part of a standard physics
curriculum.

A Lorentz vector is defined as any quantity that transforms
under a Lorentz transformation according to the same rule as
the basic Lorentz spacetime vector xμ. A relativistic velocity
that is a simple vector follows from a derivative with respect
to proper time τ :

uμ = d

dτ
xu. (28)

The relativistic momentum is then just the product of uμ with
the Lorentz scalar mass m:

pμ = muμ. (29)

No subscript is required for m since it is a Lorentz scalar that
represents a unique property of the electron. By construction,
as shown in Eqs. (28) and (29), uμ and pμ are obviously
Lorentz vectors.

Confusion becomes possible when the relativistic velocity
uμ is written in terms of a nonrelativistic velocity. Since time
undergoes an apparent dilation in any frame other than the rest
frame, one has the connection

t = γ τ, (30)

so that Eq. (28) can be expressed as

uμ = γ
d

dt
xμ, (31)

which makes it possible to write the momentum 4-vector as

pμ = (m)

(
γ

d

dt
xμ

)
, (32)

where each set of parentheses encloses a quantity with a
clear Lorentz identity. If the factors in Eq. (32) are grouped
instead as

pμ = (mγ )

(
d

dt
xμ

)
, (33)

this makes it possible to introduce the confusing notion of
a variable mass mγ . When the factors are grouped as in
Eq. (33), the loss of covariance is obvious in that neither
factor has any Lorentz identity. The form given in Eq. (33)
loses covariance completely by multiplying the noncovariant
factor (mγ ) by another noncovariant factor (dxμ/dt). This is
needless and obfuscating. The concept of a variable relativistic
mass destroys the relativistic clarity of free-particle dynamics.
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V. SUMMARY

The essential conclusions of this paper can be summarized
as follows: The requirement that an electron in a plane-wave
field must possess the ponderomotive potential Up due to
that field, coupled with the fact that the acquisition of Up

from the field also gives the electron a minimum momentum,
has been shown to provide a complete explanation for the
mass shell expression of strong-field QED. No change in
the mass of the electron occurs. It is further remarked that
the explanation for the existence of the apparent mass shift in
terms of the ponderomotive potential precludes the mass-shift
interpretation. The question of whether Eq. (2) might follow

from a shift in mass or from the presence of the ponderomotive
potential of an electron in a plane-wave field is resolved in
favor of the latter explanation.

The potential Up itself is Lorentz-invariant, gauge-
invariant, and determines the strength of coupling between
a plane-wave field and a charged particle. Its presence and
its effects are fundamental. With that acknowledgment, the
intensity-dependent mass shift hypothesis must be discarded.

The putative variable “relativistic mass” of an electron
destroys otherwise straightforward covariance requirements.
It has no redeeming features, and should not be used. The net
conclusion is that both forms of variable electron mass are
unnecessary, and serve only to muddle the underlying physics.
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