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I. INTRODUCTION

The theory of unstable states in quantum mechanics [1–6]
has applications virtually in any branch of physics: statistical
and condensed-matter physics [7], atomic and molecular
physics [8], nuclear physics [9,10], quantum-field theory and
particle physics [11], and so on. In this paper we show that the
particle states inside the cavity of the Winter model [12–17]
can be obtained from the states of a particle in a box by means
of renormalization and mixing. The Winter model describes
the coupling of a cavity with the outside and is given, after
proper rescaling [17] (see the next section), by the Hamiltonian

Ĥ = − ∂2

∂x2
+ 1

πg
δ(x − π ) (1)

in the half line 0 � x < ∞ and with vanishing boundary
conditions at zero ψ(x = 0,t) = 0. The distribution δ(y) is
the Dirac delta function. Equation (1) describes a model with
one parameter g ∈ R, the inverse of the area of the potential
barrier in x = π (up to a factor π ). The metastable states
are nothing but wave packets initially (for example, at t = 0)
concentrated inside the cavity, i.e., in the interval 0 < x < π .
The time evolution of metastable states is controlled by wave
propagation and imperfect multiple reflections on the right
cavity wall, in x = π , leading to a leakage of the wave
amplitude outside it. For 0 < g � 1 (a high barrier), there
is weak coupling of the cavity with the outside and resonant
long-lived states come into play. The idea is that, by means of
them, we can describe the dynamics of the particles initially
inside the cavity as if the outside did not exist.

Let us briefly discuss the motivations that led us to further
investigate the Winter model.

Historically, this model has been used for a semiquantitative
analysis of α decay in heavy nuclei (see [9] and references
therein), as the superposition of the nuclear and electrostatic
potentials can be roughly described by a bump function (a
general potential with compact support can be approximated
with a δ function for large wavelengths). Of course, there
are clearly much more realistic models in this context, to be
analyzed with numerical methods.

The Winter model is currently used in quantum chemistry
to check metastable properties of more complex models de-
scribing some specific phenomenology [14,15], as a source for
exact quantum-decay solutions [16], or as a testing ground for
various resonant-state formalisms (Green’s functions, spectral
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decompositions, etc. [2]). Its relevance lies in the fact that it is
the simplest Hamiltonian system exhibiting metastable states,
for which an almost exact analytic treatment is possible. On the
contrary, more phenomenologically oriented models, involv-
ing, for example, a sequence of δ-like barriers or additional
potentials modeling some media or detector interaction [2],
have to be analyzed by means of specific numerical techniques.
In this framework, the Winter model provides a safe and simple
check of results obtained for more complex models, being a
limiting case.

There is also a link of the Winter model to a big and active
field of current research: quantum chromodynamics on the
lattice. The box eigenfunctions play the role in the Winter
model of the interpolating fields in quantum-field theory.
The latter are operators acting on the vacuum by exciting a
multiplicity of different particle states, which one is usually
interested in separating, as we explicitly can in the Winter
model by means of the inverse of the mixing matrix U−1(g).

Finally, the Winter model also has a pedagogical relevance,
as it enables a student in physics or chemistry to fully
understand the decay of states in quantum mechanics without
the use of perturbation theory (Fermi’s golden rule). Indeed,
by using perturbative methods, one is always faced with the
problem of separating what is intrinsic to the system from what
is instead just a consequence of the approximations. On the
theoretical side, the application of perturbation theory to decay
phenomena is not straightforward (while of course correct)
because an arbitrarily small perturbation produces a drastic
change in the spectrum of the theory: The discrete spectrum
completely disappears. In the same spirit, resonance properties
of the Winter model for small |g| were discussed in the book
of applications of quantum mechanics by Flügge [13].

Our results involve a second-order computation in g

extending the O(g) results in [17], in which we repeated the
original Winter computation, finding additional contributions
in the time evolution of unstable states, which were absent
in [12]. These new terms have a small strength O(g) � 1
compared to the old ones, but decay generally slower in
time, with the smallest decay width. These contributions
therefore dominate the evolution of all unstable states except
the lowest one at large times and cannot be neglected. In this
paper we show that such contributions can in principle be
rotated away by means of a linear transformation U (g) in the
infinite-dimensional vector space of the resonances.

Since the Winter model is, as discussed above, a kind
of attractor of many quantum-decay models, it is clear that
the occurrence of nondiagonal terms has to be a general
phenomenon in metastable systems. The implications of the
mixing terms for the checks discussed above are still to be
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investigated. Let us stress that it would have been difficult to
imagine the existence of such mixing terms in complex models
without an exhaustive analytic study of the Winter model.

To show the relevance of renormalizing the Winter model,
let us briefly discuss the importance of renormalization in
understanding the dynamics of many physical theories. It is
common practice in physics to compare a given physical
system with a simplified one in which some interactions
are omitted. These interactions can be related to control
parameters in experiments involving, for example, external
electric or magnetic fields or can be treated theoretically as
variable quantities. The idea of renormalization is that, as one
of the main dynamical effects, switching on an interaction
in a physical system modifies the parameters of the starting,
noninteracting, system; once renormalization has been made,
the residual effects of the interaction are substantially weaker
than before renormalization. When the coupling setting the
strength of the interaction gets too large, there is usually little
connection between the free and the interacting system and
renormalization often loses its meaning.

In condensed-matter physics, renormalization is related to
the so-called adiabatic continuity principle [7]: By adiabat-
ically (i.e., slowly) turning on an interaction, the free states
of the system go 1-1 onto the interacting states by means
of a flow of the parameters such as masses, couplings, etc. A
typical example is the normal Fermi liquid, i.e., a system with a
repulsive interaction among electrons in the Fermi sphere [18].
In quantum-field theory [19–22], the relation between free
parameters and interacting ones (masses, couplings, and field
normalizations) is often singular because of the lack of intrinsic
energy scales cutting off the quantum fluctuations at large
energies: That leads to the well-known ultraviolet infinities.
One also encounters renormalization in nonrelativistic quan-
tum mechanics with δ-functions potentials [23].

It is remarkable that solving the nonrelativistic Schrödinger
equation for nuclei (which are strongly interacting many-
body systems), in order to obtain the low-energy excitations
and the scattering cross sections, can be greatly simplified
by implementing renormalization-group ideas, as recently
discovered [10]. One finds the phenomenon of generation
of many-body operators by renormalization-group flow, the
problem of the stability under change of the ultraviolet cutoff,
etc., which are typical of perturbative quantum-field-theory
computations, in a completely different framework.

In classical physics, renormalization is usually imple-
mented by the method of multiple scales [24,25]. In the case
of a free anharmonic oscillator, for example, renormalization
amounts to the absorption of secular terms into a shift of
the harmonic frequency. These terms are formally resonances
produced by forcing terms occurring in the perturbative
expansion, are incompatible with energy conservation, and
spoil the convergence of the perturbative expansion at large
times. After renormalization, such strong-coupling effects
completely disappear; only a small coupling between the
harmonics is left and a uniform approximation in time is
obtained.

Let us remark that the adiabatic continuity principle is
subjected to relevant violations. Let us quote, for example,
the cases of the energy gap in the Bardeen-Cooper-Schriffer
theory of classical superconductors [26] or the mass gap in

massless quantum chromodynamics [27]. These phenomena
are typically characterized by functions that have an essential
singularity when the interaction coupling g goes to zero, of
the form e1/g for g < 0, making nonsmooth the connection
between the interacting system and the related free one. In
these cases, the relation between the free system and the
interacting one is highly nontrivial and the residual interaction
is of nonperturbative character.

Let us end the Introduction by observing that, even
though renormalization is implemented and interpreted in
quite different ways in different contexts, it is a ubiquitous
phenomenon in physics, like the unstable states cited above, a
thing that certainly could not be expected a priori.

II. WINTER MODEL

The Hamiltonian operator of Winter model reads

Ĥ = − �
2

2m

∂2

∂x2
+ λδ(x − L), (2)

where m is the particle mass, λ is a coupling constant, δ is
the Dirac delta function, and x = L > 0 is the support of the
potential. Formulas can be simplified by going to a proper
adimensional coordinate via

x = L

π
x ′ (3)

and rescaling the Hamiltonian as

Ĥ = �
2π2

2mL2
Ĥ ′. (4)

The new (adimensional) Hamiltonian then takes the form in
which it appeared in the Introduction,

Ĥ ′ = − ∂2

∂x ′2 + 1

πg
δ(x ′ − π ), (5)

and contains the single real parameter

g = �
2

2mλL
. (6)

The time-dependent Schrödinger equation

i�
∂ψ

∂t
= Ĥψ (7)

now reads

i
∂ψ

∂t ′
= Ĥ ′ψ, (8)

where

t ′ ≡ �π2

2mL2
t. (9)

Let us omit primes from now on for the sake of simplicity. It
is possible to rescale the Winter Hamiltonian (2) in slightly
different ways, as done, for example, by the Winter model
itself, but the main point is that we deal in any case with a
one-parameter model.

A. Spectrum

For a positive coupling, g > 0, i.e., for a repulsive po-
tential, the Hamiltonian of the Winter model in Eq. (1)
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has a continuum spectrum only, with eigenfunctions of the
form

ψ(x; k,g) ∝
(

− i

2
exp(ikx) + i

2
exp(−ikx)

)
θ (π − x)

+ [a(k,g) exp(ikx) + b(k,g)

× exp(−ikx)]θ (x − π ) (10)

and eigenvalues

ε(k) = k2. (11)

The step function θ (x) = 1 for x > 0 and 0 otherwise
and the coefficients a(k,g) and b(k,g) have the following
expressions:

a(k,g) = − i

2
+ 1

4πgk
[exp(−2iπk) − 1], (12)

b(k,g) = i

2
+ 1

4πgk
[exp(+i2πk) − 1]. (13)

These coefficients have the following two symmetries (which
will be relevant in the discussion of the spectrum as well as of

the time evolution):

a(−k,g) = −b(k,g), (14)

a(k,g)∗ = b(k∗,g∗), (15)

where the asterisk denotes complex conjugation. In general,
k is a real quantum number but, because of Eq. (14), the
eigenfunctions are odd functions of k, so one can assume
k > 0, implying that there is no energy degeneracy (trivial S

matrix). By normalizing the eigenfunctions as∫ ∞

0
ψ∗(x; k′,g)ψ(x; k,g)dx = δ(k − k′), (16)

where δ(q) is the Dirac delta function, the normalization factor
reads

N (k,g) = 1

[2πa(k,g)b(k,g)]1/2
. (17)

The final expression for the eigenfunctions therefore can be
written as

ψ(x; k,g) = 1√
2π

{(
− i exp(ikx)

2 [a(k,g)b(k,g)]1/2 + i exp(−ikx)

2 [a(k,g)b(k,g)]1/2

)
θ (π − x)

+
[(

a(k,g)

b(k,g)

)1/2

exp(ikx) +
(

b(k,g)

a(k,g)

)1/2

exp(−ikx)

]
θ (x − π )

}
. (18)

Note that, because of continuum normalization, the amplitude
of the eigenfunctions outside the wall is always O(1), no matter
which values are chosen for k and g, while inside the cavity
the amplitude has a nontrivial dependence on k and g. For
|g| � 1, the amplitude of ψ(x; k,g) inside the cavity shows
marked peaks for k ≈ n − gn, where 1 � n � 1/|g| is an
integer, because

|a(n − gn,g)| = |b(n − gn,g)| = |g|
2

√
π2n2 + 1 + O(g2)

≈ π

2
|g|n � 1. (19)

As is usually the case, peaks become less marked for increasing
n.

III. TEMPORAL EVOLUTION OF UNSTABLE STATES

The eigenfunctions of a particle in a box of length L = π

with Hamiltonian

Ĥ0 = − ∂2

∂x2
(20)

are given, as is well known, by

ψ
(l)
0 (x,t) =

√
2

π
sin(lx)e−il2t , (21)

where l = 1,2,3, . . . is a positive integer and 0 � x � π .
We study the time evolution of wave functions ψ (l)(x,t ; g)

that coincide at t = 0 with the free eigenfunctions in
Eq. (21) in the interval x ∈ [0,π ] (the cavity) and vanish
outside it:

ψ (l)(x,0) =
{√

2/π sin (lx) for 0 � x � π

0 for π < x < ∞.
(22)

The initial conditions above make the limit g → 0 easy
because the wave functions ψ (l)(x,t ; g) become eigenfunctions
of Winter Hamiltonian in that limit. For g �= 0, however, we
will see in the next section that there are more natural initial
conditions to consider.

The spectral representation in eigenfunctions of the wave
function of the unstable state at time t has the explicit
expression

ψ (l)(x,t ; g) =
(

2

π

)3/2 ∫ ∞

0
p(l)(k; x,g)e−ik2t dk,

(23)
0 � x � π, g > 0,

where

p(l)(k; x,g) = (−1)l l
sin(kπ )

k2 − l2

sin(kx)

4a(k,g)b(k,g)
. (24)

The integral on the right-hand side (rhs) of Eq. (23) can
be exactly evaluated with numerical methods for t not too
large because high-frequency oscillations occur in the factor
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FIG. 1. Rotation of the integration contour in the complex k plane
(see the text) and (simple) zeros of the function b(k,g) for g = 0.1
lying in the fourth quadrant.

e−ik2t in the integrand for t → +∞. In order to study the
large-time behavior we therefore have to develop analytic
techniques.

A. Small-time expansion

For small times t � 1, the wave function in Eq. (23)
exhibits a power behavior [8,12,17] that is not relevant to
our discussion and will not be treated further.

B. Asymptotic expansion for large times

To obtain explicit analytic formulas, we expand the integral
for large t . The steepest-descent method suggests to replace the
integral on the rhs of Eq. (23) by the integral over the steepest-
descent ray (0,∞e−iπ/4), on which the fast oscillations of
the integrand are absent (see Fig. 1). Therefore, the state
ψ (l)(x,t ; g) is decomposed in a natural way into the sum of
two quite different contributions:

ψ (l)(x,t ; g) = ψ (l)
ex (x,t ; g) + ψ (l)

pw(x,t ; g), (25)

where

ψ (l)
ex (x,t ; g)

≡ −2πi

(
2

π

)3/2 ∞∑
n=1

Res
[
p(l)(k; x,g)e−ik2t ,k(n)(g)

]
, (26)

ψ (l)
pw(x,t ; g) ≡ e−iπ/4

(
2

π

)3/2 ∫ ∞

0
p(l)(ke−iπ/4; x,g)e−k2t dk.

(27)

Here Res [f (k); a] denotes the residue of the (analytic)
function f at the point a ∈ C and k(n)(g) is a simple pole
of the integrand lying in the last octant of the complex k

plane for n ∈ N+(see Fig. 1), to be evaluated in the next
section.

In general, the contribution ψ (l)
ex (x,t ; g) exhibits an expo-

nential decay, while the contribution ψ (l)
pw(x,t ; g) exhibits a

power decay as t 
 1. Let us consider the above contributions
in turn.

1. Exponential contributions

The explicit expression of the exponential part of the
unstable wave function at time t � 0 reads

ψ (l)
ex (x,t ; g) = −2πi

(
2

π

)3/2 ∞∑
n=1

Res

[
(−1)l l

sin(kπ )

k2 − l2

× sin(kx) exp(−ik2t)

4a(k,g)b(k,g)
; k(n)(g)

]
. (28)

The Hamiltonian is Hermitian (the physical case) for real g

only, which we assume from now on. The integrand [the first
argument in the large square brackets in Eq. (28)], as a function
of the complex k variable, has removable singularities at the
positive integers k = l and pole singularities corresponding to
the zeros of the functions a(k,g) and b(k,g) constrained by the
conditions

Imk(n)(g) < 0, Rek(n)(g) > |Imk(n)(g)|. (29)

The transcendental equation

b(k,g) = 0 (30)

has simple zeros for |g| � 1 of the form

k(n)(g) = n − ng + ng2 − iπn2g2 + O(g3), (31)

where n is a nonzero integer. All these zeros lie in the lower
half of the complex k plane, i.e., have Imk(n)(g) < 0, and
satisfy also the second condition in Eq. (29) for n > 0. In
general, the function k(n)(g) is the branch with k(n)(0) = n of
the multivalued analytic function k(g) satisfying b(k(g),g) =
0. Numerical computation actually shows that conditions (29)
remain satisfied up to values of g of order one. The zeros
leave the last octant (−π/4 < θ < 0) for very large values of
|g|, where the unstable-state description becomes irrelevant.
Because of Eq. (15), which for real g reads

a(k,g) = b(k∗,g)∗, (32)

the zeros of the equation a(k,g) = 0 are complex conjugates
of the ones of Eq. (30), therefore lie in the upper half k plane,
and consequently do not enter the residue sum.

The only nontrivial residue to evaluate is therefore

Res

[
1

b(k,g)
; k(n)(g)

]

= lim
k→k(n)(g)

k − k(n)(g)

b(k,g)
= 1

(∂b/∂k)(k,g)|k=k(n)(g)

= −2igk(n)(g)

1 + g[1 − 2πik(n)(g)]
, (33)

where, after the evaluation of the derivative, we have simply
replaced k → k(n)(g) and used the relation

exp[2πik(n)(g)] = 1 − 2πigk(n)(g), (34)

which is true for any solution of Eq. (30). We then have
the following exact expression in terms of the zero set
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{k(n)(g)}:

ψ (l)
ex (x,t ; g) = −2πi

(
2

π

)3/2

(−1)l l
∞∑

n=1

1

4a[k(n)(g),g](∂b/∂k)[k(n)(g),g]

sin[k(n)(g)π ]

k(n)(g)2 − l2
sin[k(n)(g)x]E(n)(t ; g)

=
√

2

π
(−1)l2lg

∞∑
n=1

(−1)n
k(n)(g)[1 − 2πigk(n)(g)]1/2

[l2 − k(n)(g)2]{1 + [1 − 2πik(n)(g)]g} sin[k(n)(g)x]E(n)(t ; g), (35)

where we have defined the time evolution factors

E(n)(t ; g) ≡ exp[−iε(n)(g)t]

= exp
[−iω(n)(g)t − 1

2�(n)(g)t
]
. (36)

Since the energies are complex for g �= 0, on the last member
we have split them into real and imaginary parts as

ε(n)(g) = [k(n)(g)]2 = ω(n)(g) − i

2
�(n)(g), (37)

where ω(n)(g) is the frequency and �(n)(g) is the decay width
of the pole state n. Note that E(n)(0; g) = 1, as it should. In
Eq. (35) we have chosen the principal branch of the complex
square root −π < argz � π (11/2 = 1). In deriving the last
member in Eq. (35) we have also used a relation obtained by
taking the square root of Eq. (34):

exp[iπk(n)(g)] = (−1)n[1 − 2πigk(n)(g)]1/2. (38)

The sign in front of the square root is fixed by taking the
limit g → 0 on both sides, i.e., by setting g = 0 and replacing
k(n)(g) → n. The equality between the first and the last
member in Eq. (35) can be written in compact form as

ψ (l)
ex (x,t ; g) =

√
2

π
(−1)l2lg

∞∑
n=1

(−1)nFl(k(n)(g); g)

× sin[k(n)(g)x]E(n)(t ; g), (39)

where

Fl(z; w) ≡ z(1 − 2πizw)1/2

(l2 − z2)[1 + (1 − 2πiz)w]
. (40)

Once the poles {k(n)(g)} have been exactly evaluated (with
numerical methods, for example) for a large set of integers 1 �
n � N with N 
 1, one can insert them in the known function
Fl on the rhs of Eq. (39). This way one obtains an (almost) exact
evaluation of the exponential part of the wave function. In the
following sections, however, we present an expansion for g �
1 that allows for explicit analytic expressions. Equation (35)
is conveniently rewritten as

ψ (l)
ex (x,t ; g) =

∞∑
n=1

V (g)lnθ
(n)(x,t ; g), (41)

where the entries of the mixing matrix V (g) read

V (g)ln ≡ g(−1)l+n2lk(n)(g)[1 − 2πigk(n)(g)]1/2

[l2 − k(n)(g)2]{1 + [1 − 2πik(n)(g)]g} . (42)

We have defined the pole wave functions (which evolve
diagonally with time)

θ (n)(x,t ; g) ≡
√

2

π
sin[k(n)(g)x]E(n)(t ; g). (43)

For |g| � 1 there is a similarity between the pole wave
functions above and the eigenfunctions in Eq. (18) for k �
n − gn ∈ R. Let us stress, however, the differences between
the true exact eigenstates, having real energies and lying in the
continuum spectrum, and the resonance states, normalizable
states with complex energy describing dynamics in a simple
but approximate way for a finite amount of time only [7].

2. Matrix notation

To simplify formulas, it is convenient to introduce matrix
notation. Let us define an infinite column vector containing all
the pole states


(x,t ; g) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

θ (1)(x,t ; g)
θ (2)(x,t ; g)

...
θ (n)(x,t ; g)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

(44)

and an infinite diagonal matrix representing the evolution of
the pole states

E(t ; g) ≡ diag[E(1)(t ; g),E(2)(t ; g), . . . ,E(n)(t ; g), . . . ]. (45)

In more standard notation

E(t ; g) =

⎛
⎜⎜⎜⎝

E(1)(t ; g) 0 · · · 0
0 E(2)(t ; g) · · · 0

· · · · · · · · · · · ·
· · · · · · E(n)(t ; g) · · ·
0 0 · · · · · ·

⎞
⎟⎟⎟⎠ .

(46)

The temporal evolution of the pole states can be rewritten in
matrix notation as


(x,t ; g) = E(t ; g)
(x,0; g). (47)

Similarly, let us define an infinite column vector containing
the metastable wave functions

�(x,t ; g) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ (1)(x,t ; g)
ψ (2)(x,t ; g)

...
ψ (n)(x,t ; g)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

(48)
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as well as the vectors �ex(x,t ; g) and �pw(x,t ; g) containing
the exponential and power parts, respectively.1 Equation (25)
now reads

�(x,t ; g) = �ex(x,t ; g) + �pw(x,t ; g). (49)

Setting t = 0 in Eq. (48), one obtains a list of the initial
conditions for all l = 1,2,3, . . . [see Eq. (22)]:

�(x,0) =
√

2

π
θ (π − x)

⎛
⎜⎜⎜⎜⎜⎜⎝

sin(x)
sin(2x)

...
sin(nx)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

. (50)

Equation (41) reads in the new notation

�ex(x,t ; g) = V (g)
(x,t ; g) = V (g)E(t ; g)
(x,0; g). (51)

Let us remark that since there are no power corrections in time,
Eq. (51) does not reproduce the initial value in Eq. (50) for
t = 0.

C. Power contributions

The integral ψ (l)
pw(x,t ; g), over the ray (0,∞e−iπ/4) in the

complex k plane, can be exactly evaluated with numerical
methods without problems for any time t � 0, as it does not
involve any oscillation. It is also convergent at the initial time
t = 0; in other words, the decomposition in Eq. (25) does
not spoil the convergence at t = 0. However, for large times
t 
 1, the integral takes the dominant contribution from a
neighborhood of k = 0, where the integrand is analytic and
can therefore be expanded in powers of k:

p(l)(k; x,g) = g2

(1 + g)2

∞∑
j=1

p
(l)
j (x,g)k2j . (52)

The first two coefficients explicitly read

p
(l)
1 (x,g) = (−1)l+1

l
πx, (53)

p
(l)
2 (x,g) = (−1)l+1

l
πx

[
1

l2
+ π2

6
+ 2

3

π2g

1 + g

− π2g2

(1 + g)2
− x2

6

]
. (54)

Substituting the series on the rhs of Eq. (52) into the integral
over k on the rhs of Eq. (27), exchanging the integral with
the series, and performing the change of variable ν = k2t , one
obtains the following asymptotic expansion:

ψ (l)
pw(x,t ; g) ≈

√
2

π3/2

e−iπ/4g2

(1 + g)2

∞∑
j=1

(−i)jp(l)
j (x,g)

t j+1/2

×
∫ ∞

0
dν νj−1/2e−ν (55)

1In general, we denote the vectors by uppercase greek letters and
their components by the corresponding lowercase letters.

=
√

2

π

e−iπ/4g2

(1 + g)2

∞∑
j=1

(−i)j (2j − 1)!!

2j

p
(l)
j (x,g)

t j+1/2
,

0 � x � π, t 
 1, (56)

whose first two terms read

ψ (l)
pw(x,t ; g) ≈ eiπ/4

√
2

(−1)l

l

g2

(1 + g)2

x

t3/2

×
{

1 − 3i

2t

[
1

l2
+ π2

6
+ 2

3

π2g

1 + g

− π2g2

(1 + g)2
− x2

6

]
+ O

(
1

t2

) }
. (57)

Let us make a few remarks. The physical interpretation of the
small-k expansion is that states with very low momenta are pro-
duced in the decay at asymptotic times [12]. The above
asymptotic expansion is uniformly valid for all g � 0 since
the coefficients p

(l)
j (x,g) are uniformly bounded in that region

[see Eq. (52)]. The exponent 3/2 controlling the power decay
ψpw ≈ 1/t3/2 does not depend on l and g; power corrections,
however, vanish for g → 0 (the impermeable cavity).

We are in complete agreement with [12] as far as the
asymptotic power behavior in time is concerned; however,
we remark that our results for the power corrections in t are
valid for any g, i.e., they do not involve any expansion in
g. In particular, one can take the limit g → ∞, in which the
potential barrier disappears.

IV. RESONANCES

For g � 1, i.e., for weak coupling, there is a large time
slice between a preexponential small-t region [8,12,17] and
a postexponential one related to the powerlike decay just
discussed,

1 � t � ln(1/g)

g2
, (58)

in which the unstable wave functions ψ (l)(x,t ; g) evolve to
a good approximation as a superposition of pole states, i.e.,
of resonances (see Fig. 2). Relation (58) is a consequence
of the first-order results in the next section. It is clear
that nonexponential contributions do not have a resonance
interpretation: They constitute an intrinsic limit of the scheme.

A. First-order computation O(g)

By expanding in powers of g the mixing matrix

V (g) =
∞∑

k=0

gkV (k), (59)

one obtains up to first order

V (0) = Id, (60)

V (1) = − 1
2Id + A, (61)

where A is the real antisymmetric matrix with entries

Al,n ≡ (−1)l+n 2ln

l2 − n2
for l �= n (62)
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EC

PC

10 20 30 40 50 60
t

10 10

10 7

10 4

0.1

FIG. 2. Time evolution of the modulus square integrated over
the cavity of the exponential contribution (EC) (solid line)∫ π

0 |ψ (1)
ex (x,t ; g)|2dx and power contribution (PC) (dashed line)∫ π

0 |ψ (1)
pw(x,t ; g)|2dx to the wave function of the fundamental state

ψ (1)(x,t ; g) for g = 0.2 [see Eq. (25)]. Up to t ≈ 30, the exponential
contribution dominates over the power one, which controls the
asymptotic behavior. The scale on the vertical axis is logarithmic.

and Al,l = 0. The frequencies and widths entering the pole
wave functions have the following lowest-order expressions:

ω(n)(g) ≡ [Rek(n)(g)]2 − [Imk(n)(g)]2

= n2(1 − 2g) + O(g2), (63)

�(n)(g) ≡ −4 Rek(n)(g)Imk(n)(g)

= 4πn3g2 + O(g3). (64)

Since it is convenient to have some freedom in the normal-
ization of the pole states, let us introduce the renormalization
constants

Z(n)(g) = 1 +
∞∑

k=1

gkz
(n)
k , (65)

where z
(n)
k are (in general complex) coefficients, which

depend in general on n: They have to be determined by
imposing chosen renormalization conditions. We define the
renormalized pole states ξ (n)(x,t ; g) by dividing θ (n)(x,t ; g)
by Z(n)(g),

ξ (n)(x,t ; g) ≡ θ (n)(x,t ; g)

Z(n)(g)

= 1

Z(n)(g)

√
2

π
sin[k(n)(g)x]E(n)(t ; g), (66)

and define the renormalized mixing matrix entries U (g)l,n by
multiplying Vl,n(g) by the same factor

U (g)l,n = V (g)l,nZ
(n)(g) (67)

(no sum over n is implied). In order to introduce matrix
notation, let us represent the renormalization constants through
the diagonal matrix

Z(g) ≡ diag[Z(1)(g),Z(2)(g), . . . ,Z(n)(g), . . .]. (68)

In components, Eq. (68) reads

Z(g)l,n = δlnZ
(n)(g), (69)

where δln = 1 for l = n and zero otherwise is the Kronecker
delta. The matrix renormalization constant also possesses a
power-series expansion

Z(g) = Id +
∞∑

k=1

gkZ (k), (70)

where Z (k) are diagonal matrices. The renormalized mixing
matrix then reads

U (g) = V (g)Z(g). (71)

In terms of the renormalized pole states, Eq. (51) reads

�ex(x,t ; g) = U (g)�(x,t ; g) = U (g)E(t ; g)�(x,0; g). (72)

By multiplying with each other the power series of V (g) and
Z(g), one obtains the power expansion for U (g),

U (g) =
∞∑

k=0

gkU (k), (73)

where

U (n) =
n∑

k=0

V (k)Z (n−k). (74)

Because of the change of wavelength due to the interaction,
i.e., to g �= 0, the pole states θ (n)(x,t ; g) are not normalized to
one at the initial time t = 0, unlike the initial conditions. If we
introduce normalized pole states, i.e., satisfying the condition∫ π

0
|ξ (n)(x,0; g)|2dx = 1, (75)

we obtain

Z(n)(g) = 1 + g

2
+ O(g2). (76)

Therefore, up to first order,

U (0) = Id, (77)

U (1) = A. (78)

It is remarkable that condition (75) has the effect of removing
the diagonal contributions from the first-order mixing matrix
U (1). Let us also note that the matrix U (g) = Id + gA + · · ·
represents an infinitesimal rotation in the infinite-dimensional
vector space of the normalized pole states. So the natural
question to be treated in the next section is what happens
in higher orders in g.

1. Comparison with Winter results

We are in disagreement with [12] regarding the exponential
behavior of the excited metastable states, i.e., of ψ (l)

ex (x,t ; g)
with l > 1. Let us show that in detail. Equation (72) reads in
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components

ψ (l)
ex (x,t ; g) = ξ (l)(x,0; g) exp

[
−iω(l)(g)t − 1

2
�(l)(g)t

]

+
1,∞∑
n�=l

g
(−1)l+n2ln

l2 − n2
ξ (n)(x,0; g)

× exp

[
−iω(n)(g)t − 1

2
�(n)(g)t

]
. (79)

As usual, l labels the initial state and n the pole state. The
diagonal term on the rhs of Eq. (79) (the one with n = l) is in
agreement with the rhs of Eq. (2a) in [12]. In [12] however, the
nondiagonal contributions (the ones with n �= l), entering the
sum on the rhs, are not included. These terms have a coefficient
suppressed by a power of g � 1 compared to the diagonal
one, but have a slower exponential decay for n < l [�(n) ∝ n3;
see Eq. (64)], and therefore dominate in the exponential time
region (i.e., before power effects take over). A reasonable
approximation is to truncate the sum on the rhs of Eq. (79)
to n < l, as contributions with n > l are suppressed both by a
power of g � 1 and by the large widths. For example, for l = 2
Eq. (79) may be approximated by neglecting higher poles as

ψ (2)
ex (x,t ; g) � ξ (2)(x,0; g) exp[−iω(2)(g)t − 16πg2t]

− 4
3gξ (1)(x,0; g) exp[−iω(1)(g)t − 2πg2t].

(80)

As a measure of the size of the above terms, let us take the
square of the modulus integrated over the cavity (0 < x < π )∫ π

0
| · · · |2dx. (81)

As shown in Fig. 3, for g = 0.1 there is a large temporal region,
from t � 5 up to t � 160, where the nondiagonal contribution
from the first pole

16

9
g2

∫ π

0
|ξ (1)(x,0; g)|2dx exp(−4πg2t) (82)

P1

P2

PC

50 100 150 200
t

10 10

10 7

10 4

0.1

FIG. 3. Time evolution of the contributions to the l = 2, i.e., first
excited, state for g = 0.1. The dotted line denotes the second pole
contribution (P2), the dashed line denotes the first pole contribution
(P1), and the solid line denotes the power contribution (PC).

dominates over the diagonal one from the second pole∫ π

0
|ξ (2)(x,0; g)|2dx exp(−32πg2t) (83)

in the temporal evolution of the first excited state (l = 2). For
very large times t � 160, the power contribution dominates
over the exponential ones and we enter the (true) asymptotic
region. For general g, the nondiagonal l = 1 contribution
dominates over the diagonal one l = 2 for

t > t∗ � 1

28πg2
ln

(
9

16g2

)
. (84)

For t = t∗ the signal-to-noise ratio (i.e., the modulus squared
of the wave function normalized at t = 0 integrated over the
cavity) is decreased from one down to � 2(16g2/9)8/7 (the
factor 2 comes from the two resonances).

To summarize, neglecting the nondiagonal contributions
is a reasonable approximation only for the time evolution
of the lowest-lying state ψ (1)(x,t ; g). The presence of the
nondiagonal terms shows that the evolution of general unstable
states is far more complicated than implied by the analysis
in [12]. The occurrence and the relevance of such off-diagonal
terms has been noted in [17]. A physical interpretation of such
an effect will be presented in the next section.

2. Physical interpretation of pole state mixing

In order to express the metastable wave functions of the
Winter model ψ (l)(x,t ; g) in terms of the eigenfunctions of the
particle in a box, one has to diagonalize the time evolution.
That is achieved by counterrotating the vector containing the
initial conditions, i.e., by considering the evolution not of
�(x,0; g) but of

�(x,0; g) ≡ U−1(g)�(x,0; g). (85)

By using the first equality in Eq. (72), it is immediately shown
that

�(x,t ; g) = �(x,t ; g) = E(t ; g)�(x,0; g). (86)

By looking at the vector equation (85) component by compo-
nent, the new initial conditions read

φ(l)(x,0; g) =
√

2

π
θ (π − x)

∞∑
n=1

[U−1(g)]ln sin(nx), (87)

each evolving as a single pole wave function

φ(l)(x,t ; g) = ξ (l)(x,t ; g). (88)

The experimental meaning of Eq. (85) or (87) is clear: In order
to observe a diagonal time evolution as in the free case (21),
one has to prepare the initial state as the coherent superposition
of free eigenfunctions given by Eq. (85) or (87). In the case of
excited states l > 1, the superposition in Eq. (85) or (87) also
has the effect of subtracting the contributions from smaller l,
which decay slower in time and therefore tend to dominate
the evolution, as discussed in [17]. If the matrix U (g)−1 is
computed in an approximate way (as a truncated power series
in g, for example), there is a small residual contamination in
the time evolution of the lth state from the lower ones, which
becomes substantial asymptotically in time. In other words, the
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problem of isolating the lth mode for all times can in principle
be solved only with an exact computation of U (g).

Let us now explicitly evaluate the initial wave function that
evolves diagonally in t , according to Eq. (87). To order g,

U (g)−1 = 1 − gA + O(g2). (89)

The sum of the trigonometric series on the rhs of Eq. (87) reads

φ(l)(x,0; g) =
√

2

π

[(
1 − g

2

)
sin(lx) − glx cos(lx)

]
× θ (π − x) + O(g2). (90)

The rhs of Eq. (90) is the expansion to O(g) of√
2

π

(
1 − g

2

)
sin[l(1 − g)x]θ (π − x). (91)

It is tempting to think that higher orders in g actually lead to the
result (91): The term g2A2/2 in the second-order correction
g2U (2) actually confirms this guess. However, let us warn the
reader that wave-function renormalization does not account
for all the second-order effects (see the next section).

The interpretation of Eq. (91) is straightforward: The
counterrotation of the initial wave function in index space
amounts to the shift of the wave vector l → k(l)(g) = l(1 −
g) + · · · in momentum space, with a consequent change of
normalization. In other words, in order to have a diagonal
evolution in t of the initial wave function, the latter has to
be prepared with the corrected wave vector k(l)(g), which is
dynamically generated from l = k(l)(0), the free one. Temporal
evolution is then simply given by multiplication by the factor
E(l)(t,g) in Eq. (36).

Let us note that the wave function in Eq. (91) has a
finite jump O(g) at the right border of the cavity, in x = π .
The Fourier series in Eq. (87) exhibits indeed the Gibbs
phenomenon in x = π , as the coefficients decay asymptoti-
cally ≈1/n for n → ∞.2 It is remarkable that we obtain a
discontinuous initial wave function, while the eigenfunctions
only have a discontinuous first derivative [12,13,17]. Let us
remark, however, that the results above are obtained by means
of power series in g that we have not shown to be convergent
and are probably only asymptotic. The Fourier series therefore
should be truncated to some finite order in g, regularizing the
discontinuity.

B. Second-order computation O(g2)

In this section we push the perturbative expansion for
g � 1 up to O(g2) included in order to obtain more accurate
results and to get some insight into the general structure of the
expansion, if any. The exact expression in Eq. (42) for the
mixing matrix in terms of the exact solutions k(n)(g) of
the equation b(k,g) = 0 indeed is not very illuminating. By
inserting the small-g expansion for the poles pushed one order
further with respect to previous section,

k(n)(g) = n − ng + (n − iπn2)g2

+ (
4
3π2n3 + 3iπn2 − n

)
g3 + O(g4), (92)

2The related vertical slope in x = π can be derived by differentiating
Eq. (87) with respect to x and then setting x = π .

we obtain for the mixing matrix

V (0) = Id, (93)

V (1) = A − 1
2Id, (94)

V (2) = 1
2A2 − A + 3

8Id + iπAH − 3
2 iπH, (95)

where for convenience we have repeated the lowest-order
results and H is the real diagonal matrix

H ≡ diag(1,2,3, . . . ,n, . . . ). (96)

The coefficients entering the pole wave functions read

ω(n)(g) = n2(1 − 2g + 3g2) + O(g3), (97)

�(n)(g) = 4πn3g2(1 − 4g) + O(g4). (98)

Equation (95) has been obtained by using the explicit
expression

V
(2)
ln = δln

(
1

4
− π2

6
l2 − iπ

3

2
l

)
+ (1 − δln)

×
[

(−1)l+n2ln

l2 − n2
(iπn− 1) + (−1)l+n+12ln(l2 + n2)

(l2 − n2)2

]
,

(99)

together with the formula

1

2
(A2)ln = (1 − δln)(−1)l+n+1 2ln(l2 + n2)

(l2 − n2)2

− δln

(
π2

6
l2 + 1

8

)
. (100)

Note that the squared matrix is symmetric, as it should, being
the square of an antisymmetric matrix. Equation (100) has
been derived by means of the identities3

1,∞∑
k �=m

1

k2 − m2
= 3

4m2
,

1,∞∑
k �=m

k2

(k2 − m2)2
= π2

12
+ 1

16m2
,

(101)

which hold for m a positive integer. Let us remark that it is
not trivial that the matrix A2 does exist, as its entries involve
the summation of infinite series, which in effect turn out to be
(absolutely) convergent. By looking at the asymptotic form of
the coefficients of A and A2 given above, it is straightforward
to show that A3 and A4 also exist. We expect that all the
positive powers of A do exist.

Let us now discuss renormalization at second order. The
explicit expansion of U (g) up to O(g2) reads

U (0) = Id, (102)

3These identities are obtained from
∑−∞,+∞

k �=m 1/(k − m) = 0 and∑−∞,+∞
k �=m 1/(k − m)2 = π 2/3, respectively, by splitting the sums into

positive and negative indices and rearranging them in order to have a
single sum (the first identity can also be found in [28]).
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U (1) = V (1) + Z (1)

= A − 1
2Id + Z (1), (103)

U (2) = V (2) + V (1)Z (1) + Z (2)

= 1
2A2 − A + 3

8Id + iπAH − 3
2 iπH

+ (
A − 1

2Id
)
Z (1) + Z (2). (104)

As shown in previous section, if we set

Z (1) = 1
2Id, (105)

we obtain at first order

U (1) = A, (106)

so that at second order we get

U (2) = 1
2A2 − 1

2A + 1
8Id − 3

2 iπH + iπAH + Z (2). (107)

We may set, for example,

Z (2) = − 1
8Id + 3

2 iπH, (108)

to give

U (2) = 1
2A2 − 1

2A + iπAH. (109)

The renormalized mixing matrix then finally reads

U (g) = Id + gA + 1
2g2A2 − 1

2g2A + iπg2AH + O(g3).

(110)

Let us notice that, by introducing the renormalized coupling

gr ≡ g − 1
2g2 + O(g3), (111)

the formula above can be simplified a bit:

U (gr ) = Id + grA + 1
2g2

r A
2 + iπg2

r AH + O
(
g3

r

)
. (112)

The inverse matrix is given up to second order in gr by

U−1(gr ) = Id − grA + 1
2g2

r A
2 − iπg2

r AH + O
(
g3

r

)
. (113)

As anticipated in previous section, while the term 1/2g2
r A

2 can
be absorbed in the box eigenfunctions by means of wave-vector
renormalization, that is not true for the term −iπg2

r AH . The
latter has a large size

(AH )l,n =
{

(−1)l+n2ln2

l2−n2 for l �= n

0 otherwise
(114)

and produces also a highly singular behavior in the counter-
rotated box eigenfunctions considered in the previous section,
U (g)−1�(x,0; g), because

(AH )l,n = O(1) for n → ∞ (l fixed). (115)

The detailed investigation of such effects, for which we are not
able to provide at present a physical interpretation, requires the
study of the convergence properties of the series in g involved,
which is beyond the scope of the present paper.

1. Exponentiation

The first three terms on the rhs of Eq. (112) are actually the
expansion of

exp(grA) = Id + grA + 1
2g2

r A
2 + O

(
g3

r

)
, (116)

so it is not difficult to conjecture that higher orders in gr

will lead to the exponential above. The problem is that we
are not sure that the conjectured exponentiation is legitimate,
i.e., that it includes all the leading terms order by order
in g. To O(g2) we encountered indeed the big term AH ,
which will presumably produce iterates of similar size in
higher orders, which we are unable to control. Furthermore,
since Z (2) is a diagonal matrix, whatever value is chosen
for it, we cannot cancel the term AH in U (2) with an ad
hoc renormalization condition. A third-order computation in
g, which is in principle straightforward while technically
cumbersome, could probably reveal further structure of the
perturbative expansion.

V. DISCUSSION

Let us now discuss the renormalized wave functions
φ(l)(x,t ; g). The main qualitative difference between the free
case and the interacting one is that in the latter case there
are nonzero widths. The appearance of an imaginary part
in the ab initio real energy is a second-order effect in g.4

Once a nonzero width is allowed, the key point is that the
φ(l)(x,t ; g) have a form similar to the eigenfunctions of the free
system ψ

(l)
0 (x,t) in Eq. (21). The differences between the free

case and the interacting one, as long as 0 < g � 1, can be
relegated to small modifications of the parameters entering
the free wave functions ψ

(l)
0 (x,t). In other words, switching

on the interaction, i.e., going from g = 0 to 0 < g � 1,
produces finite renormalizations only. Let us discuss these
renormalizations in turn.

(i) The normalization coefficient Z(l)(g) has a modulus
greater than one for 0 < g � 1 and reduces to one in the
free case g = 0; it has a first-order correction in g and is the
analog of the field renormalization constant Z in quantum-
field theory [17]. Unlike the most common cases (QED, for
example), Z(l)(g) is not real because the one-particle states are
unstable.

(ii) The wave vector k(n)(g) is renormalized to first order
in g by the interaction and reduces to the free case for
g → 0: k(l)(0) = l. It acquires an imaginary part at second
order in g, related to the decay width. That implies the
disappearance of the node of the wave function around x = π

and a (small) exponential growth of φ(l)(x,t ; g) by going from
the impermeable wall in x = 0 toward the permeable one in
x = π .

(iii) The real part of the energy ω(l)(g) is also renormalized
to first order in g by the interaction and reduces to the free case
for g → 0: ω(l)(0) = l2. Note that the free dispersion relation
ω = k2 is not renormalized at first order.

Let us make a few remarks.
We do not expand in powers of g the wave functions

φ(l)(x,t ; g), but only the parameters k(n)(g), ω(n)(g), etc.,
entering them through the functions appearing in ψ

(l)
0 (x,t).

That implies that we are resumming classes of higher-order

4Nonzero widths are clearly not in contradiction with the unitarity
of the fundamental theory because we are looking at a subsystem,
i.e., an open system [4,14].
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corrections in g in the wave function, in the spirit of
renormalization in quantum-field theory [19–22] and statistical
mechanics [29] or the method of multiple scales in classical
physics [24,25].

The decay widths grow faster with increasing n than the
frequencies

�(n)(g) ∝ n3, ω(n)(g) ∝ n2. (117)

Since our renormalized theory has meaning only for

�(n)(g) � ω(n)(g), (118)

we cannot take n too large. Therefore, while in principle the
state vectors and the evolution or mixing matrices are infinite,
in practice, for any fixed g one has to make a truncation in n

according to the condition (118) (see [18]). This limitation
is also reasonable from a physics viewpoint: High-energy
particles pass through the barrier in x = π without difficulty
and therefore there is no sense in including them in the
description of the dynamics inside the cavity. By restricting
on n one is also cutting off small wavelengths λ � 2π/n and
therefore is limiting space resolution.

VI. CONCLUSION

In this work we have shown that the evolution according
to the Winter model of the eigenfunction of a particle
inside an impermeable cavity (i.e., a box) with any quantum
number l = 1,2,3, . . . is not controlled asymptotically by the
corresponding lth resonance, as intuitively expected and as
stated in [12], but always by the first resonance l = 1. This
phenomenon originates from O(g) coupling terms between
the eigenfunctions of the particle in a box (box eigenfunctions
hereafter) and the resonances, which we have evaluated with
next-to-leading-order accuracy, i.e., up to second order in the
coupling g � 1. Because of this mixing, metastable dynamics
is far more complicated than implied by the Winter results and
common arguments. Roughly speaking, the idea suggested

by our results is that the box eigenfunctions are not natural
initial states as far as decay is concerned: Natural initial
states are dynamically generated from the box eigenfunctions.
With the exception of the fundamental state, such box
eigenfunctions do not even approximately evolve as single
elementary excitations, as claimed by Winter, but as coherent
superpositions of many elementary excitations. Furthermore,
mixing effects are quite large, as mixing matrix entries decay
rather slowly as we move away from the main diagonal [as 1/n

to O(g), where n is the distance from the diagonal; see Eqs.(52)
and (89)]. The physical picture is that time evolution produces,
in addition to the expected decay of box eigenfunctions, also a
finite rotation of them, represented by the infinite matrix U (g).
Therefore, in order to have a natural initial state evolving
simply, i.e., diagonally, with time, one has to counterrotate
the box eigenfunctions by means of the matrix U−1(g). One
of the main dynamical effects of such a counterrotation is to
adjust the wavelengths of the box eigenfunctions to those of the
elementary excitations of the model. In physical terms, the time
evolution of box eigenfunctions produces a rearrangement of
their wavelengths to the characteristic wavelengths of the
system. Let us stress, however, that wavelength renormal-
ization does not exhaust the effects contained in the matrix
U−1(g) (a complete physical interpretation is still missing).
Since the Winter model is a limiting case of many different
models, it is clear that the occurrence of nondiagonal terms
has to be a general phenomenon in metastable systems. The
implications of the mixing terms for more complex models
are still to be investigated and could modify their current
understanding. Let us stress that it would have been quite
difficult to imagine the existence of such mixing terms in
more phenomenologically relevant models, but also much
more complicated, without our exhaustive analytic study of
the Winter model. We have also shown that the resonant states
of the Winter model can be related to the box eigenfunctions
by means of renormalization of the parameters entering the
free eigenfunctions, after allowing for nonzero widths.
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