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Spectral origin of non-Markovian open-system dynamics: A finite harmonic
model without approximations
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Dissipation caused by nonhomogeneous bosonic finite chain environments (implementable in, e.g., segmented
ion traps) is investigated through an exact diagonalization approach, avoiding common approximations used
to describe open systems. Different spectral densities, including band gaps, can be engineered to separately
assess different factors leading to memory effects, namely, the environment’s size, temperature, proximity of the
cutoff frequency, the spectral density’s shape (sub-Ohmic, Ohmic, super-Ohmic), and the strength of its coupling
to the system. Non-Markovianity is quantified with two recently introduced measures related to information
backflow and nondivisibility of the system dynamical map. By sweeping the bath spectrum via tuning of the
system frequency we show strongest memory effects at band-gap edges and provide an interpretation based on
energy flow between system and environment. A system weakly coupled to a stiff chain ensures a Markovian
dynamics, while the size of the environment as well as the local density of modes are not substantial factors.
We show an opposite effect when increasing the temperature inside or outside the spectral band gap. Further,
non-Markovianity arises for larger (negative and positive) powers of algebraic spectral densities, being the Ohmic
case not always the most Markovian one.
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I. INTRODUCTION

Achievements in preparation, control, and measurements
of quantum systems require a deep understanding of the
mechanism of interaction between a given open quantum
system and the surrounding environment [1]. From a theo-
retical point of view, popular approaches, e.g., derivations
of master or quantum Langevin equations [1,2], are based
on the assumption of an infinite heat bath with some given
spectral density J (ω) embedding all information about the real
couplings and frequencies in the complex environment, and the
structure of the coupling to the system. Typical approximations
to simplify the treatment, such as negligible memory effects
(Markovian approximation), system time coarse graining,
weak system-bath coupling, large frequency cutoff, and Ohmic
spectral density, drastically constrain the possible frequency
dependence of J (ω). Although simplified spectral densities
allow an analytical treatment, important deviations from these
simple instances are common in several systems such as, for
instance, electric circuits, acoustic polarons in metals and
semiconductors, radiation damping of charged particles [1],
photonic crystals [3–6], but also in ion traps suffering electric
field noise [7], micromechanical oscillators [8], or polarized
photons for broad frequency spectra [9].

Memory effects and deviations from Markovian dynamics
have been widely explored considering the time dependence of
master equation coefficients and deviations from exponential
decays [1,10–12] but only in the last few years several
approaches have been proposed to systematically distinguish
Markovian evolution in terms of properties of the dynamical
map [13–16]. Different measures allow one to quantify non-
Markovianity (NM) in terms of deviations from the Lindblad
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form of the generator of the master equation [13], backflow
of information from the environment [14], and entanglement
decay with an ancilla [15], to mention some of them. The
recent endeavor to better characterize memory effects in open
systems not only aims to a deeper understanding of dissipative
dynamics in physical, biological, and chemical systems, but is
also explored as a resource in quantum technologies [17].

The aim of this work is to identify non-Markovian effects
originating in the structure of the system and bath couplings
as well as in the distribution of energies, as given by the
form of the spectral density J (ω). To this end we consider
a microscopic model given by an inhomogeneous harmonic
chain, avoiding the limitations of approximate approaches.
Finite models of coupled oscillators have been used to assess
entanglement dynamics [18] and its generation when attaching
ions to a chain [19,20] and can also provide an insightful
test bed to establish the regimes of validity of approximated
master equations [21]. The case of an oscillator attached
to a homogeneous chain was already studied by Rubin to
determine the statistical properties of crystals with defects:
This configuration leads to an Ohmic spectral density (thus
Markovian, at least for large temperature) [22]. Moving
to nonhomogeneous chain configurations, we inquire the
origin of NM to distinguish among several independent
features quantifying separately different sources of NM. When
focusing on periodic systems (e.g., dimers), we can engineer
spectral densities with finite band gaps, like in semiconductors
or photonic crystals [3–5,23]. For suitable couplings we show
that the system is actually influenced by the resonant portion
of the environment. Memory effects [14,15] are then evaluated
by sweeping the spectral density for a structured bath allowing
us to show the effects of the local form of the spectrum.

Before introducing the model, we point out that experi-
mental implementation of a tunable chain of oscillators can
be obtained through recent progress in segmented Paul traps
[24,25] also allowing tunability of ions couplings and on-site
potentials. Other possible setups are based on photonic crystal
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FIG. 1. (Color online) Examples of spectral densities which can
be generated in our model: Rubin chain with g = 0.1 and k = 0.01
(black dashed line), gapped spectral density with g = 0.1, h = 0.05,
and k = 0.0075 (red continuous line), and increasing coupling density
with gi = 0.1 + 0.05i and k = 0.01 (blue dotted line); all cases
with N = 200 oscillators. Bath local potential frequency ω0 = 0.2.
Couplings and frequencies are specified relative to a fixed (arbitrary)
frequency unit, with � = m = 1, in this and following figures.
Schematic for the three plotted examples (top left) and of a star
configuration (top right) also represented.

nanocavities, microtoroid resonators (see [26] for a review),
or optomechanic resonators [27]. Furthermore, correlations
spectra of the system can be measured to gain insight on the
spectral density induced by the rest of the chain (see [8,10]).
The nonhomogeneous harmonic chain we consider in this
work represents then a structured and controllable reservoir
amenable to experimental realization.

II. THE MODEL: NONHOMOGENEOUS CHAIN

We consider an open quantum system consisting of a
harmonic oscillator HS = (p2

S + ω2
Sq

2
S)/2, where pS and qS are

the system momentum and position operators, interacting with
an environment (E) that consists of N harmonic oscillators of
frequency ω0, each interacting with its nearest neighbors with
a springlike coupling of strength gi . A particularly dramatic
deviation from the Ohmic spectrum obtained with a homoge-
neous chain (Rubin model [22], gi = g,∀i) is found when con-
sidering a periodic configuration (dimer) of identical oscilla-
tors with alternate values of couplings g and h � g (see Fig. 1):

HE =
∑

i

(
p2

i + �2
i q

2
i

)
/2 − g

odd∑
i

qiqi+1 − h

even∑
i

qiqi+1 (1)

with �i =
√

ω2
0 + h + g (i = 2, . . . ,N − 1) and �1 = �N =√

ω2
0 + g [28]. For any ω0 and g �= h we build a band-gap

model, characterized by a frequency spectrum distributed in
an acoustic and an optical band separated by a finite gap [23].
The system is attached to the first element of the E chain
and k is a coupling constant with an interaction term of the
form HI = −kqSq1. We consider a total initial factorized state
ρ = ρS ⊗ ρ, where ρS is a vacuum squeezed state and the chain
environment is a Gibbs thermal state of temperature T , ρE =

exp(−HE/kBT )/Z. The chain configuration for real oscilla-
tors is mapped by diagonalization of the environment (through
an orthogonal transformation K) into a star configuration of
independent oscillators (bath’s eigenmodes) of frequency νi

interacting with the system with strength g̃i = kK1i (see Fig. 1
and Appendix A). In this work we will use units as referred to
an arbitrary, but fixed, frequency unit. Couplings, times, and
temperatures will be given in terms of this unit.

A. Langevin equation

The reduced dynamics of the system is governed by a
generalized Langevin equation, typically derived starting from
a star environment [1,2],

q̈S + ω̃2
SqS +

∫ t

0
ds γ (t − s)q̇S = ξ (t), (2)

where ξ (t) is Langevin forcing of the system ξ (t) =∑
i g̃i [qi cos(νit) + pi/νi sin(νit)] − γ (t)qS(0), and

γ (t) =
∑

i

(
g̃2

i /ν
2
i

)
cos(νit) (3)

is the damping kernel accounting for dissipation and memory
effects and ω̃S is the system frequency after renormalization
[1,2]. The spectral density can be obtained from the damping
kernel as

J (ω) = ω

∫ ∞

0
γ (t) cos(ωt)dt. (4)

For a finite number N of normal modes, the dissipative
dynamics suffers recurrence for times τR (related to reflection
into the system of the fastest signals traveling along the
chain), whose value depends on the number of modes N

and on the frequency spectrum [29]. If we look at times
t < τR the spectral density (4) can be described by a smooth
function of frequency. The form of this function can be
directly related to the dynamical properties of the system. For
instance, a linear—Ohmic—spectral density, i.e., J (ω) ∝ ω,
leads to a Markovian equation with time-independent friction
kernel −γ0q̇(t). In the Rubin model (i.e., the upper uniform
chain in Fig. 1 when N → ∞) it is possible to show that
J (ω) ∝ k

√
ω2 − ω2

0

√
ω2

c − ω2 with ωc = √
2g the highest

(cutoff) frequency in the spectrum of normal modes. When the
on-site potential is absent (ω0 = 0) and the system frequency is
small compared to the cutoff, the Rubin model reproduces the
Ohmic condition J (ω) ∝ ω [1]. Other nonhomogeneous chain
examples are shown in Fig. 1 with their respective spectral
densities.

III. RESONANCE CONDITIONS

In order to investigate the role of the spectral density’s
shape, we first need to know to what extent the system is
affected by different bath eigenmodes depending on their
relative detuning. To do so we compare the state of the system
ρ(t) with ρδ(t) obtained by allowing the system to interact
only with those normal modes whose frequencies lie within a
range δ to system frequency ωS , i.e., such that |νi − ωS | < δ.
The time evolution is obtained by a full diagonalization of
HS + HE + HI (see Appendix B). Deviation between ρ(t)
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FIG. 2. (Color online) (a) Averaged fidelity as a function of
system-bath coupling k and bandwidth δ, for a band-gap density
[shaded area in (b)] with g = 0.1, h = 0.05, ω0 = 0.3, and ωS = 0.65
at temperature T = 0. Integration performed up to τF = 400 for
N = 50 oscillators. (b) System excitation number n = 〈HS(τF )〉/ωS

at τF = 400 as a function of the system frequency ωS for a band-gap
model with g = 0.1, h = 0.05, and ω0 = 0.3 [J (ω) as shaded area]
at T = 0. System-bath coupling k = 0.005 (red solid) and k = 0.025
(blue dashed). (Arbitrary units as specified in the caption of Fig. 1.)

and ρδ(t) can be witnessed by the Uhlmann fidelity measure
[30], F(ρ,ρδ) = Tr

√√
ρρδ

√
ρ. This quantity averaged in time,∫ τF

0 F(ρ,ρδ)dt/τF , is shown in Fig. 2(a) for a band-gap model
with system frequency larger than the optical band, ωS > ωc.
Here and in the following we choose τF < τR but big enough
to explore the dissipative dynamics. If we take the value
0.99 as a guide for the eye, a weakly coupled oscillator
(k < 0.01) interacts only with a small vicinity of modes in
the nearest band [right (optical) band in Fig. 1], while already
for k = 0.012 we need to take into account modes in the
furthest band [left (acoustic band)]. This rough estimation
allows one to appreciate that for weak couplings k � ωc a
reduced number of resonant bath modes suffice to determine
the system evolution.

The effect of the environment band gap is clearly shown by
looking at the system excitation (average energy normalized by
its frequency) n = 〈HS(τF )〉/ωS at τF by varying the system
frequency ωS to sweep the spectral density [Fig. 2(b)]. Energy

is dissipated continuously when ωS is resonant with the bath
while it cannot propagate into the chain for ωS within the
band gap (leading to oscillatory behavior and the formation of
bound dressed states) [3,4,23,31].

IV. NON-MARKOVIAN DYNAMICS

Among the different quantifiers of NM appearing recently
in the literature we consider hereafter the Breuer-Laine-Piilo
(BLP) [14] and Rivas-Huelga-Plenio (RHP) [15] measures.
The first (BLP) gives an interpretation of NM in terms of
a backflow of information from the environment into the
system. Its definition exploits the contractivity property of
the quantum trace distance D under completely positive and
trace preserving maps. The lack of contractivity is a signature
of the map nondivisibility and non-Markovianity [14]. For
continuous variable systems, and within Gaussian states, the
definition has been extended by substituting the trace distance
with the fidelity F [32,33], and the associated measure for the
degree of NM reads

MBLP = max
ρ1,ρ2

∫
dF/dt<0

dF (ρ1,ρ2)

dt
dt, (5)

where the maximization is taken among all pairs of Gaussian
states (ρ1,ρ2) and integration is performed up to τF .

The RHP criterion witnesses the nondivisibility of the
dynamical map by preparing the system in an entangled
state with an ancilla and evaluating the nonmonotonic time
evolution of the entanglement. The measure reads [15]

MRHP =
∫ τR

0

∣∣∣∣dESA

dt

∣∣∣∣dt + ESA(τR) − ESA(0), (6)

where ESA(t) denotes a proper system-ancilla entanglement
measure, such as logarithmic negativity. This measure is based
on the fact that local trace-preserving completely positive
(CP) maps do not increase entanglement, hence any increase
of entanglement at some time means that in such interval
the dynamical map cannot be written as the composition
of CP maps and nondivisibility characterizes non-Markovian
dynamics (see [15] for a more detailed explanation). We should
stress that when Eq. (6) gives zero, the map can be either
divisible or nondivisible, i.e., it could still be non-Markovian,
thus in these cases the measure is inconclusive. For details on
the numerical evaluation of these two measures we refer the
reader to Appendix C.

In Fig. 3 we show both NM measures for a dimer chain en-
vironment as a function of the system frequency ωS for temper-
ature T = 0. We find that local NM maxima are present at the
edges of the band-gap spectral density for both measures, while
rapidly decreasing both inside the band and the gaps of the
spectral density, at different rates. Sharp changes in frequency
lead to long times in the Fourier transform, and are responsible
for broad noise and dissipation kernels, for long time bath
correlations [1,21], and for pronounced NM signatures, Fig. 3.
Full Markovian behavior is achieved only inside the band
where MBLP ∼ 0. Even if the null value of the RHP measure is
inconclusive, we note that increasing the system-bath coupling
k, it raises to finite values, yielding a shape very much in agree-
ment with the BLP measure. This is one of the few comparisons
of two different NM measures in the literature [34].
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FIG. 3. (Color online) BLP non-Markovianity [blue
(dot-dashed)] and RHP [black (dashed)] for N = 40 oscillators,
g = 0.2, h = 0.05, k = 0.001, ω0 = 0.5 when ωS is swept, for
T = 0. The red (continuous) curve represents the spectral density
function used in arbitrary units. The extra dots are evaluated at
ωS = 0.45 increasing the two-mode squeezing parameter from
r = 1 to 1.5 (for RHP NM, upper dot) and increasing the squeezing
parameter range for the BLP NM (lower dot) maximization (from
r ∈ {0.5,1} to r ∈ {0.125,1.125}) (see Appendix C). (Arbitrary units
as specified in the caption of Fig. 1.)

We also notice that in correspondence with the edges
of the spectral density J (ω), where MBLP is larger, we
find a higher density of modes (i.e., there is an increasing
number of eigenfrequencies when approaching the edge of
the band gap). To exclude its connection with NM effects, we
artificially engineered the spectral density to obtain a constant
density of modes throughout the spectrum. This can be done
considering a star model (see below) with equally spaced vi

frequencies within the bands. This allows us to establish that
the enhancement of NM at the edges is actually not related
to the normal mode density of states. The origin of NM is
elsewhere.

Interaction between system and environment (HI ) leads to
energy exchange. When the system is in resonance with a
band of the spectral density (optical or acoustical), energy
is exchanged with many normal modes. In the real chain
picture this corresponds to energy allowed to travel along the
chain. This leads to an ever increasing indistinguishability
of the states in Eq. (5) (all losing energy and relaxing) and
thus to a zero (or close to zero) value of NM. On the other
hand, at the band edges and in the band gaps, the energy
lost by the system cannot travel freely along the chain, but
bounces back and forth from the first elements of the chain to
the system. This implies a periodical increase and decrease
of distinguishability of the states whose fidelity we are
integrating, hence we witness a higher NM value. The higher
the detuning (deeper in the band gap), the less excitations and
energy are exchanged, resulting in a diminishing value for the
BLP NM. This result is in accordance with Ref. [10], where
they study a generic (bosonic or fermionic) reservoir, and show
that band gaps generate localized modes (thus dissipationless
oscillatory behavior) plus nonexponential decays (identified
there with NM). According to Ref. [14], Fig. 3 provides a
quantitative measure of NM at band-gap edges as backflow of
information.

V. WHAT MAKES A BATH MARKOVIAN?

Besides the resonance conditions and the back reflection of
information and energy when the system is out of resonance
with the bath, what are the main factors leading to more
Markovian dynamics? We have tried to answer this question
in a fivefold approach, namely, with respect to the bath’s size,
its temperature, the width of its spectral density, its shape
(sub-Ohmic, Ohmic, super-Ohmic), and the strength of its
coupling to the system.

It is known that at low temperatures, Markovian approxima-
tions are generally not valid [1] and nonexponential decays of
the correlation functions do arise [11]. In Fig. 4 (left) we show
that the backflow of information MBLP is similarly present only
at low temperatures [T � ωc, assuming kB = � = 1)] when
the system is dissipating within a band of the spectral density.
Surprisingly, when we move to a nonresonant configuration,
with the frequency of the system in the band gap, NM is
found to increase with temperature [Fig. 4 (middle)]. When
increasing temperature to higher values a linear increase of
NM is observed within the gap, while in the band MBLP tends to
vanish. A similar behavior is observed for the MRHP measure,
though when inside the band it is inconclusive as entanglement
with ancilla is always decaying.

Most prominent NM effects are expected in the strong
coupling regime between system and bath [1,11]: Indeed
reduction to Markovian dynamics is provided by a decrease of
the coupling, which reduces NM by two orders of magnitude
by one order of magnitude decrease in coupling. For the MRHP

we see that it tends to zero very fast (remember that a zero
value is inconclusive) [Fig. 4 (right)].

A. Star model

Finally we built an artificial star model (Fig. 1, top right)
with equally spaced frequencies νi and with assigned couplings
g̃i . In this way we can engineer in our simulations any
functional dependence of the spectral density [the converse
procedure, i.e., specify a given J (ω) and then find frequencies
and couplings of a linear chain that can reproduce it, is
specified in [35,36]]. This allows us to look, as common
in the literature, at deviations from the Ohmic case. For
instance, the case of a spin in a dephasing environment shows
NM signatures in the super-Ohmic case [37]. Here we start
considering a star model of oscillators with algebraic spectral
density function and with lower and upper sharp frequencies
cutoffs J (ω) = k(ω/ωS)l
(ω − ωc)
(ω̄c − ω) (with 
 the
step function). In Fig. 5 (left) we show MBLP for fixed cutoffs at
0.25,0.75 (similar results are obtained by enlarging this range).
We consider both positive and negative algebraic forms (the
latter reported in a recent experiment with optomechanical
oscillators [8]) and observe an increase of NM in both cases
when departing from lmin ∼ 1/2,1,1.4,2,2.8 at temperatures
T = 0,0.25,0.5,1,2 (T = 2 not shown). Surprisingly, the
lowest NM is achieved for l = 1/2 at zero temperature, instead
of l = 1 (Ohmic case). For higher temperatures the lowest
value is achieved for l = 1 or a bit higher. Also, a bath
with J (ω) ∼ 1/ω2 is more non-Markovian than one with
J (ω) ∼ ω2. We also stress that different scaling and constraints
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FIG. 4. (Color online) Left: log(MBLP) for 50 oscillators, g = 0.1, h = 0.05, k = 0.001, and ω0 = 0.3, for temperatures T ∈ [0,10] and
ωS (the limits of the acoustic and optical bands are evident from the discontinuity of MBLP). Middle: Temperature dependence of MBLP (black)
and MRHP [red (gray)] for ωS = 0.25(0.375) with continuous (dashed) line, i.e., out of (in) resonance. Right: MBLP (continuous) and MRHP

(dashed) at ωS = 0.575 for a homogeneous 50 oscillator (Rubin) chain, g = h = 0.1 (i.e., no gap) and ω0 = 0.3. (Arbitrary units as specified
in the caption of Fig. 1.)

of power function densities lead to significant influence on
memory effects (see Appendix D).

The importance of frequency cutoff ωc in the spectral
density is relevant not only to avoid unphysical divergences
but also when discussing NM in terms of relevant time scales.
A chain environment allows one to engineer the value of the
frequency cutoff of an Ohmic environment by increasing the
coupling strengths within the chain, however, this also changes
the slope of J (ω) at low ω. In order to separately assess the
role of the frequency cutoff, it is thus preferable to introduce
artificial g̃i in a star model to allow for the variation of ωc while
keeping the initial slope of the spectral density (see the inset of
Fig. 5, right). The result of such procedure is shown in Fig. 5
(right) where it is observed that an increase of ωc allows for
a more monotonic flow of information into the environment
leading to a decrease of NM.

We have also checked the dependence of NM with the
bath size, seeing none (except for the role of the recurrence
time). This is in accordance with the energyand information
exchange conceptual relation that we have hypothesized; that

FIG. 5. (Color online) MBLP for the star configuration with
equally spaced eigenfrequencies, and couplings designed to
give a specific J (ωS). Left: spectral density function J (ω) =
k(ω/ωS)l
(ω − 0.25)
(0.75 − ω) (
 is the step function) is used.
We show MBLP as a function of l at ωS = 0.5, for tempera-
tures T = 0,0.25,0.5,1. Right: spectral density function J (ω) =
kω

√
ω2

c − ω2/ωc is used with 40 oscillators and k = 0.000 01. We
plot MBLP at ωS = 0.4 when varying ωc. (Inset shows some of the
J (ω) functions corresponding to this situation; arbitrary units as
specified in the caption of Fig. 1.)

is, information (and energy) only flows back into the system
when there is nonperfect resonance between the system and
the bath. Whenever they are resonant, information and energy
flow freely into the environment irrespective of its size.

VI. CONCLUSIONS

We have considered different (nonphenomenological) spec-
tral densities attainable by tuning nonhomogeneous oscillator
chains that can be implemented in segmented ion chain traps
and also with nanooscillators. A system attached at one
extreme of the chain dissipates in this finite bath and exhibits
memory effects. Its dynamics is analyzed considering con-
tinuous variables and Gaussian states. The importance of our
analysis is the separate assessment, without approximations, of
environment features that can be microscopically engineered
and the quantitative comparison of two NM measures [14,15]
to establish their influence in retaining environment memory
effects. In spite of the difference between BLP and RHP
measures, our analysis shows a good qualitative agreement on
their dependence on different parameters whenever the second
one is conclusive (i.e., not vanishing).

The possibility to tune the chain in a dimer configuration
allows us to assess the influence of band gaps and to obtain
a more detailed picture on the origin of Markovianity in
relation to specific features of the spectral density. The main
role describing the behavior of NM is played by a resonance
condition: If the system is resonant with the normal modes
of the bath, energy transfer along the chain is allowed and
therefore information and energy flow irreversibly from system
to bath leading to a Markovian dynamics. The largest backflow
of information is found at the edges of the gaps where the
energy bounces between the system and bath.

A high frequency cutoff and weak coupling, the first
obtained by increasing the stiffness of the chain and the latter
by decreasing the system-bath coupling, are major factors for
ensuring Markovian dynamics. Indeed, NM effect of strong
coupling or frequency cutoff, have already been discussed
in the literature and we find consistent results. A relevant
point when dealing with finite systems is that actually neither
the size of the bath is important (only matters in limiting
the recurrence time) nor the local density of modes has any
significant influence on memory effects.
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On the other hand, unexpected results have been found
when increasing temperature leading to opposite behavior
inside and outside the band with a (linear in T) NM increase
in the band gap while inside the band memory effects become
negligible for temperatures larger than the environment fre-
quencies. Finally we have quantified NM when departing from
the Ohmic case, considering positive and negative algebraic
spectral densities J (ω) ∝ ωl for −2 � l � 3 (being l = −2
a recently measured value [8]) showing an enhancement of
memory effects for both positive and negative values of l,
with the Ohmic case (l = 1) not being necessarily the most
Markovian one.

The microscopic approach here adopted is useful not only
to assess NM without approximations but also to have a deeper
understanding of non-Markovian dynamics, looking at the
energy flowing through the system. It would be interesting
indeed to explore NM in more complex networks of oscillators
[38] and also in different systems, such as qubits (see, for
instance, the recent analysis in an homogeneous chain [39]).
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APPENDIX A: ENVIRONMENTAL DIAGONALIZATION

Let us consider the Hamiltonian HE and rewrite it in the
following way:

HE = pT p
2

+ qT Aq, (A1)

where we compact the position and momentum operators
in a vector formalism, i.e., q ≡ {q1,q2, . . . ,qN }T and p ≡
{p1,p2, . . . ,pN }T . Moreover we have an N × N matrix A
with elements Aij = �2

i δij /2 − Gij /2, where the connection
matrix G has the following form:

G =

⎛
⎜⎜⎜⎜⎜⎝

0 g 0 0 · · · 0
g 0 h 0 · · · 0
0 h 0 g · · · 0
0 0 g · · · · · · · · ·

· · · · · · · · · · · · 0 g

0 0 0 · · · g 0

⎞
⎟⎟⎟⎟⎟⎠

. (A2)

Since A is symmetric, it can be diagonalized by an orthogonal
transformation K, i.e., KT AK = D, where D is a diagonal
matrix containing the eigenvalues λi of A. Thus defining the
new variables Q = KT q and P = KT p, we can rewrite the
Hamiltonian as

HE =
N∑

i=1

[
P 2

i

2
+ ν2

i Q
2
i

2

]
, (A3)

where the eigenfrequencies are νi = √
2λi , and again Q ≡

{Q1,Q2, . . . ,QN }T and P ≡ {P1,P2, . . . ,PN }T . Thus we
passed from a chain environment into the equivalent star
model.

APPENDIX B: FULL DIAGONALIZATION AND
TIME EVOLUTION

The starting point is the total Hamiltonian H = HS +
HE + HI after the diagonalization of the environment. Since
H is also quadratic in position and momentum operators, it
can again be written as

H = pT p
2

+ qT Bq (B1)

where, contrary to the notation of last section, we have
q ≡ {q1,q2, . . . ,qN ,qS}T and p ≡ {p1,p2, . . . ,pN,pS}T . The
(N + 1) × (N + 1) matrix B has elements Bii = ν2

i /2 for i =
1, . . . ,N , BN+1N+1 = ω2

S/2, and Bi,N+1 = BN+1,i = −g̃i/2.
We can again perform a diagonalization of B through an

orthogonal matrix O, i.e., OT BO = F, and upon defining the
new system-environment normal modes Q = OT q and P =
OT p, we rewrite the full Hamiltonian as

H =
N+1∑
i=1

[
P 2

i

2
+ f 2

i Q2
i

2

]
, (B2)

where
√

2fi are the eigenvalues of B contained in the diagonal
matrix F.

In this picture, the time evolution for each normal mode is
trivial,

Qi(t) = Qi(0) cos(fit) + Pi(0)

fi

sin(fit),

Pi(t) = −fiQi(0) sin(fit) + Pi(0) cos(fit).

(B3)

Now, remembering the new variables are connected to the old
ones through the orthogonal transformation O at any time t ,
we easily get

qi(t) =
N+1∑
j=1

[
BQQ

ij (t)qj (0) + BQP
ij (t)pj (0)

]
,

pi(t) =
N+1∑
j=1

[
BPQ

ij (t)qj (0) + BPP
ij (t)pj (0)

]
.

(B4)

where

BQQ(t) = O · Co · OT ,

BQP (t) = O · Si
f

· CT ,

BPQ(t) = −O · f Si · OT ,

BPP (t) = O · Co · OT ,

(B5)

where Co is the diagonal matrix with Coii = cos(fit), f Si
is also diagonal such that f Siii = fi sin(fit), and Si

f ii
=

sin(fit)/fi . Equations (B4) provide the time evolution of the
position and momentum operators for the system and the
normal modes when their form at time zero is given.

APPENDIX C: NUMERICAL EVALUATION
OF NM MEASURES

Both MBLP and MRHP measures are evaluated numerically
considering Gaussian states. The simulations for MRHP have
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FIG. 6. (Color online) RHP non-Markovianity against system
frequency ωS comparing the result with r = 1,2,3 (continuous,
dashed, dashed-dashed). The behavior is the same, only with higher
absolute values. (Arbitrary units as specified in the caption of
Fig. 1.)

been done for two-mode vacuum squeezed states between
system and ancilla, with a squeezing parameter r = 1 unless
otherwise stated. As shown in Fig. 3 (extra black dot),
increasing this parameter yields higher values for the measure.
However, it is important to stress that there are no qualitative
changes in the behavior of MRHP (see Fig. 6).

The main issue with this measure is that for low system-bath
couplings it is inconclusive (i.e., MRHP = 0), but this can be
easily fixed by increasing k. Typical time steps for integration
of this measure δt = 0.1 (e.g., for τR ∼ 700 in Fig. 3) have
been used, which is more than enough to resolve the positive
slopes of the dynamics for ESA [see Eq. (4)].

The simulations for MBLP have been performed between
pairs of one-mode vacuum squeezed states. As a finite set of
states is considered our numerical analysis provides a lower
bound for this measure. The possibility to evaluate MBLP

on a reduced family of (orthogonal) states [40] was recently
reported but as we deal with Gaussian states—that are never
orthogonal—we cannot restrict our analysis and we consider
a number of Gaussian states as large as possible. We have
checked that a further increase in the number of squeezed
states does not significantly change our results. Interestingly,
we actually see that in general “quasiorthogonal” squeezed
states do not provide the best choice for the non-Markovianity
maximizing pair. In Fig. 3 one of them has squeezing
parameter r1 = 1 and phase-space angle θ1 = 0 and for the
other state r2 ∈ [0.5,1] with r2 = 0.5 and θ2 ∈ [0,π/2] with
θ2 = π/4 (same for Fig. 4 (right); for Fig. 5 we have
used r2 ∈ [0.25,1] with r2 = 0.25). The bold (blue) point
in Fig. 3 in the main paper was obtained by increasing
r2 ∈ [0.125,1.125], r2 = 0.5, and θ2 ∈ [0,π/2] with θ2 =

FIG. 8. (Color online) Top: BLP non-Markovianity against sys-
tem frequency ωS with J (ω) = k(ω − ω0)l
(ωc − ω), ω0 = 1, ωc =
5, k = 0.000 01, and l = 1,2,3,4 (black for l = 1 to gray for l = 4.
Bottom: BLP NM versus l evaluated at ωS = 1,3,5 (sparse dashed,
tight dashed, and continuous, respectively) for the spectral density
above. (Arbitrary units as specified in the caption of Fig. 1.)

π/4. Instead, for Fig. 4 (left and middle) we have used a
much more thorough scan with r1 = 1/3,1, θ1 = 0, r2 ∈ [0,2],
r2 = 0.1, and θ2 ∈ [0,π ] with θ2 = π/10. We stress that
the behavior against temperature is quite sensitive to the
range of squeezings used and needs to be scanned intensively,
because the optimal pair for this measure depends on the
bath temperature (mostly for low T). We show an example in
Fig. 7.

APPENDIX D: NM BEHAVIOR WITH NON-OHMIC BATH
FOR OTHER PARAMETRIZATIONS

The behavior of MBLP under the non-Ohmic spectral density

J (ω) = k(ω/ωS)l
(ω − 0.25)
(0.75 − ω) (D1)

FIG. 7. (Color online) BLP non-Markovianity as used for the figures related to temperature, for T = 0,0.5,1 and ωS = 0.375 (r1 = 1). It
can be seen that for higher temperatures several maxima appear at different squeezing parameters r2,θ2. (Arbitrary units as specified in the
caption of Fig. 1.)
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FIG. 9. (Color online) BLP non-Markovianity against system
frequency ωS with J (ω) = k[(ω − ω0)/(ωc − ω0)]l
(ωc − ω), ω0 =
3, ωc = 5, k = 0.000 01, and l = 1/2,1,2 (continuous, dashed, and
dotted, respectively). We have drawn the spectral density to guide the
eye. Inset: BLP NM versus l evaluated at ωS = 4. (Arbitrary units as
specified in the caption of Fig. 1.)

was shown in Fig. 5. This is a spectral density which
pivots around ωS and therefore keeps the coupling strength

at ωS [J (ωS) = k ,∀l] fixed, while at the extreme points
(ω0 and ωc) it differs in values. However, choosing for
example

J (ω) = k(ω − ω0)l
(ωc − ω) (D2)

[which keeps J (ω0) constant but differs at J (ωc) for different
l] would change the value of MBLP, as shown in Fig. 8.

Deeper differences are found considering different power
law spectra densities with constrained coupling strengths at
both ω0 and ωc, as results from

J (ω) = k[(ω − ω0)/(ωc − ω0)]l
(ωc − ω) (D3)

[leading to J (ω0) = 0 and J (ωc) = k, ∀ l). In Fig. 9 it can
be seen that the behavior of MBLP is again different. It does
actually decrease in the super-Ohmic case (larger l values).

We notice that in the latter two cases the spectral density
at the system frequency J (ωS) differs in value when changing
l, unlike the case discussed in Sec. V (star model). These
examples show that normalization has to be carefully taken
into account when drawing general conclusions about non-
Markovian aspects of dissipation in the presence of different
power laws in the spectral density.
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S. Maniscalco, arXiv:1301.2585.

[18] M. B. Plenio, J. Hartley, and J. Eisert, New J. Phys. 6, 36 (2004).
[19] A. Wolf, G. De Chiara, E. Kajari, E. Lutz, and G. Morigi,

Europhys. Lett. 95, 60008 (2011).
[20] E. Kajari, A. Wolf, E. Lutz, and G. Morigi, Phys. Rev. A 85,

042318 (2012).
[21] A. Rivas, A. D. K. Plato, S. F. Huelga, and M. B. Plenio, New

J. Phys. 12, 113032 (2010).
[22] R. J. Rubin, Phys. Rev. 131, 964 (1963), and references therein.
[23] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders

College, Philadelphia, 1976).
[24] A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M.

Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger, Phys.
Rev. Lett. 109, 080501 (2012).

[25] R. Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost,
J. P. Home, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett.
109, 080502 (2012).

[26] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Laser
Photon. Rev. 2, 527 (2008).
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