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Relativistic recoil effects for energy levels in a muonic atom within a Grotch-type approach.
II. An application to the one-loop electronic vacuum polarization
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We continue our account of relativistic recoil effects in muonic atoms and present explicitly analytic results
at first order in electron-vacuum-polarization effects. The results are obtained within a Grotch-type approach
based on an effective Dirac equation. Some expressions are cumbersome and we investigate their asymptotic
behavior. Previously, relativistic two-body effects due to the one-loop electron vacuum polarization were studied
by several groups. Our results found here are consistent with the previous result derived within a Breit-type
approach (including ours) and disagree with a recent attempt to apply a Grotch-type approach.
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I. INTRODUCTION

An analytic calculation of relativistic recoil effects in a
hydrogenlike atom to order (Zα)4m2/M is possible through
the equation [1]

E = m + mR[fC(Zα) − 1] − m2
R

2M
[fC(Zα) − 1]2, (1)

where fC(Zα) is the dimensionless energy of a Dirac-
Coulomb equation, which is indeed well known (see, e.g.,
[2]). The corrections are of order O((Zα)4(m/M)2m) and
O((Zα)5(m/M)m). The terms in (Zα)5 are due to effects of
multiphoton exchange. It is even possible to provide a complete
calculation of the m/M recoil effects for pure Coulomb two-
body systems by taking into account multiphoton exchange
contributions exactly in (Zα) [3,4].

As was shown in our previous paper [5], one can consider
a more general problem and the result for the energy takes the
form

E = m + mR[fCN (Zα,κ) − 1] − m2
R

2M
[fCN (Zα,κ) − 1]2

− m2
R

2M

∂

∂ ln κ
[fCN (Zα,κ) − 1]2

−〈ψ |
(

V 2

2M
+ 1

4M
[V,[p2,W ]]

)
|ψ〉, (2)

where κ = ZαmR/μ, the potential is

V = VC + VN,

where in a certain sense VN ∼ εVC , ε � 1. Here, W is a
specific auxiliary potential, ψ is the wave function of the
Dirac problem with the reduced mass, and fCN (Zα,κ) is
the dimensionless energy for the potential VC + VN . The
momentum scale (i.e., the characteristic inverse radius) of
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VN is μ−1. For the case of the Uehling potential, the scale
parameter is defined as μ = me.

In this paper, we study a correction to the energy in the first
order of VN , so we can write

fCN (Zα,κ) = fC(Zα) + fN (Zα,κ),

where fN (Zα,κ) is the corresponding dimensionless cor-
rection. Since we are interested only in terms of order
ε(Zα)4m2/M , we can further simplify this expression as

E = m + mR[fCN (Zα,κ) − 1] + �E,

�E = − m2
R

2M
[fCN (Zα,κ) − 1]2 − m2

R

2M

∂

∂ ln κ

[E(NR)(κ)]2

m2
R

−〈ψNR|
(

V 2

2M
+ 1

4M
[V,[p2,W ]]

)
|ψNR〉, (3)

where it is sufficient to apply the nonrelativistic approximation
to the energy in the term with derivative

[fCN (Zα,κ) − 1]|nonrel = E(NR)(κ)

mR

, (4)

as well as to the wave function in the last term.
It is remarkable that in certain respects the relativistic recoil

correction beyond the Dirac equation with the reduced mass
�E is simpler than the solution of the Dirac equation. To
order ε(Zα)4m2/M , it requires only nonrelativistic evaluation.
In particular, the leading recoil correction, being expressed
in pure nonrelativistic terms, does not depend on the total
angular momentum j , but only on the angular momentum l.
That means that this correction may contribute to the Lamb
splitting (a difference between states with the same j , but
different l, such as the 2p1/2 − 2s1/2 difference), but not to
the fine-structure interval (a difference between states with the
same l, but different j , such as the 2p3/2 − 2p1/2 difference).

To validate applicability of this expression for the electron-
vacuum-polarization (eVP) effects, we should prove that the
relativistic recoil effects can be reduced to the evaluation of
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FIG. 1. One-photon-exchange diagram for the eVP contributions.
It is responsible for the the Uehling-potential corrections to orders
α(Zα)2m and α(Zα)4m.

the one-photon exchange (see Fig. 1) and present explicit
expressions for related contributions to V and W .

Apparently, the correction to the potential is the Uehling
potential, which can be presented, e.g., in the form [6]

VU (r) = −α(Zα)

π

∫ 1

0
dv ρe(v)

e−λr

r
, (5)

where

λ = 2me√
1 − v2

,

(6)

ρe(v) = v2(1 − v2/3)

1 − v2
.

The factor α/π plays a role of the parameter ε in our general
consideration [5] and μ = me. Meanwhile, a construction of
W , which is to be preceded by a choice of an appropriate gauge
is not trivial (see the discussion in Ref. [7]).

In principle, the correction �E can be treated relativis-
tically without any nonrelativistic reduction of the energy
and the wave function. However, the higher-order effects
which are incorporated in this case are smaller than possible
effects of two-photon corrections. In particular, for the eVP
contributions, the higher-order relativistic recoil contributions
to �E are of order α(Zα)6m2/M , while the two-photon-
exchange diagrams contribute to order α(Zα)5m2/M .

In the following sections, we briefly reproduce this dis-
cussion and present appropriate results for a relativistic and
nonrelativistic correction to the energy due to a Dirac equation
with a potential which accounts for the eVP effects. Using
them, we present an analytic expression for eVP relativistic
recoil corrections in the general case as well as for most
interesting particular cases, such as circular and low-lying
states. For both kinds of states, we also derive their large-kappa
asymptotics. In conclusion, we discuss a comparison with an
alternative technique for relativistic recoil corrections based
on the Breit-type equation.

II. GROTCH-TYPE EXPRESSION FOR THE EVP
CORRECTIONS IN FIRST ORDER IN α

A choice of gauge for the photon propagator is crucial for
the explicit presentation of the one-photon contribution and
for the value of the two-photon contribution. We have already
discussed that in part in Ref. [5] and in detail in Ref. [7].

Indeed, due to the gauge invariance of quantum electrody-
namics, any final complete result for any physical calculation

FIG. 2. Two-photon-exchange diagrams for the eVP contribu-
tion. Subtraction terms and reducible contributions are omitted. In
certain gauges, the two-photon-exchange effects contribute to order
α(Zα)4m2/M .

does not depend on the choice of the gauge. However, the
technical origin of different contributions to such a final result
may be different in different gauges. In particular, the physical
result for a relativistic recoil correction to order α(Zα)4m2/M

does not necessarily come only from the static part of the
one-photon-exchange term.

Following [7], we use the Coulomb gauge for the free-
photon propagator, while the eVP correction to the propagator
takes the form

De
00 = −α

π

∫ 1

0
dv ρe

1

(k2 + λ2)
,

De
i0 = 0, (7)

De
ij = −α

π

∫ 1

0
dv ρe

1

(k2 − λ2)

(
δij − kikj

(k2 + λ2)

)
.

We note that similarly to the Coulomb gauge, the D00 compo-
nent of the photon propagator does not depend on the energy
transfer and Di0 = 0. This choice is sufficient for vanishing
α(Zα)4m2/M contributions from two-photon exchanges (see
Fig. 2) and thus the problem of calculations of relativistic
recoil effects at this order is reduced to consideration of the
one-photon-exchange diagrams (see Fig. 1).

The Grotch-type calculations of the eVP contribution
of order α(Zα)4m3/M2 were considered some time ago
Refs. [8–10] (for earlier evaluations, see [11,12]). However,
the gauge was not appropriate and two-photon-exchange
corrections should be added. Those corrections were missed
in Refs. [8–10], which produces a discrepancy between the
Breit-type calculation [13] and the Grotch-type ones. The
situation was clarified in Ref. [7].

Once an appropriate gauge is chosen, we can restrict our
consideration to the static part of the one-photon-exchange
contribution, including the vacuum polarization. Treating the
nucleus nonrelativistically, we arrive at the same equation as
for the free one-photon exchange(

α · p + βm + p2

2M
+ V + 1

2M
{α · p,V }

+ 1

4M
[α · p,[p2,W ]]

)
ψ(r) = Eψ(r), (8)

where, however, the effective potentials W and V include eVP
effects and, in particular,

V (r) = VC(r) + VU (r),
(9)

VU (k) = −4α(Zα)
∫ 1

0
dv

ρe(v)

k2 + λ2
,
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and

W = WC + WU,

WU (k) = −2
VU (k)

k2 + λ2
(10)

= 8α(Zα)
∫ 1

0
dv

ρe(v)

(k2 + λ2)2
,

WU (r) = α(Zα)

π

∫ 1

0
dv ρe(v)

e−λr

λ
,

and, as given in Refs. [1,5],

WC(r) = −Zαr,
(11)

WC(k) = 8πZα

k4
.

With an expression for W in hand, we can rewrite the
addition to the Hamiltonian, which in the leading order of
α, takes the form

δH = −
(

V 2
C

2M
+ 1

4M
[VC,[p2,WC]]

)
︸ ︷︷ ︸

=0

− VUVC

M
− 1

4M
[VC,[p2,WU ]]

− 1

4M
[VU,[p2,WC]]. (12)

The expression turns out to be equal to zero for the pure
Coulomb case.

For the case of VN = VU and fN = fU , Eq. (3) leads to the
expression for the following correction of the first order in α:

EU = mRfU (Zα,κ) − m2
R

M
[fC(Zα) − 1]fU (Zα,κ)

− m2
R

M
[fC(Zα) − 1]

∂

∂ ln κ
fU (Zα,κ)

−〈ψ |
[
VUVC

M
+ 1

4M
[VC,[p2,WU ]]

+ 1

4M
[VU,[p2,WC]]

]
|ψ〉. (13)

The expression includes a nonrelativistic term of order
α(Zα)2m (exact in m/M), a pure relativistic one α(Zα)4m

and a relativistic recoil correction to order α(Zα)4m2/M . It
also contains a higher-order α(Zα)6m nonrecoil term which
may be numerically comparable to α(Zα)4m2/M in a certain
range of Z.

This expression may be approached analytically or by
numerical means. Following, we express it in terms of
certain base integrals which we evaluate in closed analytic
form following [14,16–21]. The required expressions for
the dimensionless fC(Zα) energy and Dirac-Coulomb wave
functions ψ are summarized in the Appendix of our previous
paper [5].

To obtain final results, we have to find some derivatives
and it is important to have an expression for fU (Zα,κ) (the
dimensionless Uehling corrections to the energy levels of the
Dirac-Coulomb equation with the reduced mass) in a form

suitable for differentiation and it is also available. Not only
analytic expressions for relativistic [14,16] (see Sec. III) and
nonrelativistic [16–19] (see Sec. III) corrections are known,
but also their various asymptotics [14,16,18–21].

For the analytical differentiation, one can take into account
that

∂

∂ ln κ
f (κ/n) = ∂

∂ ln κn

f (κn),

where κn = κ/n is a combination which naturally appears
in various analytic expressions (see Sec. III). For numerical
evaluations of the derivative, a more useful relation is

∂

∂ ln κ
f (κ) = − ∂

∂ ln me

f (κ).

III. UEHLING-POTENTIAL CORRECTION TO THE
ENERGY LEVELS OF THE DIRAC-COULOMB EQUATION

The Uehling correction to the energy of the Dirac-
Coulomb+Uehling problem was addressed in Ref. [14] for
circular states and later was generalized for an arbitrary state
[16]. The result reads as

fU (Zα,κ) = −α(Zα)

πmR

∫ 1

0
dv ρe(v)〈ψ |e

−λr

r
|ψ〉

= α(Zα)2

πn2
Fnlj (κ ′

n), (14)

where

κ ′
n = ηmR

me

,

η = Zα√
(nr + ζ )2 + (Zα)2

,

ζ =
√

ν2 − (Zα)2, (15)

ν = (−1)j+l+1/2(j + 1/2),

nr = n − |ν|.

The parameter κ ′
n is different from κn = κ/n = Zαm/nme.

However, in a nonrelativistic approximation

κ ′
n = ZαmR

me

√
(nr + ζ )2 + (Zα)2

� ZαmR

me

√
(nr + |ν|)2 + (Zα)2

= ZαmR

men
= κn. (16)

The function Fnlj (κ) can be expressed either in terms of
a one-dimensional integral over elementary functions or in
terms of a hypergeometric function 3F2 [14,16]. Indeed, the
correction fU can be computed numerically for any desired
state. However, because of a required expansion and various
further considerations, such as examination of the asymptotic
behavior, we prefer here analytic or semianalytic results.
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In particular, as it was found in Ref. [16]

Fnlj (κ) = −
nr∑

i,k=0

Bik K2,2ζ+i+k(κ), (17)

where

Bik =
(

ηn

Zα

)2 (−1)i+k(nr )!

i!(nr − i)!k!(nr − k)!

�(2ζ + nr + 1)�(2ζ + i + k)

�(2ζ + i + 1)�(2ζ + k + 1)

1
Zα
η

− ν

×
{[(

Zα

η
− ν

)2

+ (nr − i)(nr − k)

]
− EC(nlj )

m

(
Zα

η
− ν

)
(2nr − i − k)

}
. (18)

The base integrals, defined as [14,16]

Kabc(κ) =
∫ 1

0
dv

v2a

(1 − v2)b/2

(
κ
√

1 − v2

1 + κ
√

1 − v2

)c

=
∫ 1

0
y1−b(1 − y2)a−1/2

(
κy

1 + κy

)c

,

(19)

Kbc(κ) = K1bc(κ) − 1

3
K2bc(κ).

It is easy to obtain for the first derivative of K

∂Kbc

∂κ
= c

κ2
Kb+1,c+1(κ). (20)

The integrals K can be also expressed in a closed form [14,16]

Kabc(κ) = κc

2
B

(
a + 1

2
,1 − b

2
+ c

2

)
3F2

(
c

2
,
c

2
+ 1

2
, 1 − b

2
+ c

2
;

1

2
, a + 3

2
− b

2
+ c

2
; κ2

)

− c κc+1

2
B

(
a + 1

2
,
3

2
− b

2
+ c

2

)
3F2

(
c

2
+ 1,

c

2
+ 1

2
,

3

2
− b

2
+ c

2
;

3

2
, a + 2 − b

2
+ c

2
; κ2

)
, (21)

where B
(
α,β

)
is the beta function and 3F2

(
α,β,γ ; δ,ε; z

)
stands for the generalized hypergeometric function (see, e.g., [22]).

The solution above is a solution of the Dirac equation for a particle with mass m. However, as we see from Eq. (3), the
two-body energy is the easiest to express in terms of a Dirac equation with the reduced mass, introducing corrections.

In muonic hydrogen for n = 2, the argument of the hypergeometric function κ ′
2 is less than unity (�0.7), and the hypergeometric

series converges well. For n = 1 in muonic hydrogen or n = 2 in muonic helium, one has to use analytic continuation of the
hypergeometric series or integral representation of the hypergeometric function.

To calculate the term with derivative and the term with δH we need efficient nonrelativistic expressions. The Uehling correction
in the nonrelativistic limit is

f
(NR)
U (Zα,κ) = α(Zα)2

πn2
F

(NR)
nl (κn), (22)

where

F
(NR)
nlj

(κn) = −
n−l−1∑
i,k=0

B
(NR)
ik K2,2l+i+k+2(κn), (23)

B
(NR)
ik = (−1)i+k(n − l − 1)!

i!(n − l − i − 1)!k!(n − l − k − 1)!

(n + l)!(2l + i + k + 1)!

(2l + i + 1)!(2l + k + 1)!
(24)

can be expressed in terms of elementary functions. Alternative expressions for the nonrelativistic correction can be found in
Refs. [16,19].

In a particular case of the ground state, the result has a simple form [17]

F
(NR)
10 (κ) = −1

3

{
−4 + κ2 − 2 κ4

κ3
A(κ) + 4 + 3 κ2

κ3

π

2
− 12 + 11 κ2

3 κ2

}
, (25)

where

A(κ) = arccos(κ)√
1 − κ2

= ln(κ + √
κ2 − 1)√

κ2 − 1
.
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The nonrelativistic kernels Kbc have only integer subscripts and that allows useful recurrence relations (see [14,18]). Applying
them, we arrive at [18]

F
(NR)
nl (κn) = (n + l)!

(n − l − 1)!(2n − 1)!

n−l−1∑
i=0

1

(2l + i + 1)!

1

i!

(
(n− l − 1)!

(n− l − i − 1)!

)2( 1

κn

)2(n−l−1−i)(
κ2

n

∂

∂κn

)2(n−l−i−1)

× κ2(l+i+1)
n

(
∂

∂κn

)2(l+i)
F

(NR)
10 (κn)

κ2
n

. (26)

IV. ANALYTIC RESULT FOR THE RELATIVISTIC
RECOIL UEHLING CORRECTION

Using the expression for the relativistic Uehling energy
equation (14) in terms of base integrals Kbc and their various
properties [14,16,18–21], for the third term of Eq. (13) we
arrive at

α(Zα)2

πn2

m2
R

M
(fC − 1)

×
nr∑

i,k=0

Bik

2ζ + i + k

κ ′
n

K2,2ζ+i+k+1(κ ′
n). (27)

The last term of Eq. (13) corresponds to a matrix element
of the additional Hamiltonian (12). For the relativistic wave
functions, it can be rewritten in the form

−〈ψ |
(
VUVC

M
+ 1

4M
[VC,[p2,WU ]] + 1

4M
[VU,[p2,WC]]

)
|ψ〉

= α(Zα)2

2Mπ

∫ 1

0
dv ρe(v)〈ψ |λe−λr

r
|ψ〉, (28)

which has the same structure of integration over r as fU (cf.
Sec. III) and one can readily obtain for it an expression which
differs from one for the Uehling correction (17) only by a
factor and the second indices of Kbc, arriving at

α(Zα)4

π

m2
R

M

η

Zαn2

nr∑
i,k=0

Bik

K3,2ζ+i+k(κ ′
n)

κ ′
n

(29)

or, for the nonrelativistic case,

α(Zα)4

π

m2
R

M

1

n3

nr∑
i,k=0

B
(NR)
ik

K3,2l+i+k+2(κn)

κn

. (30)

Combining the different parts of the expression (13), we
obtain for the correction to the first order of α

EU = mRfU (Zα,κ) + �EU,

where its relativistic recoil part is

�EU = α(Zα)2

πn2

m2
R

M

nr∑
i,k=0

Bik

[
(fC − 1)

(
K2,2ζ+i+k(κ ′

n)

+ 2ζ + i + k

κ ′
n

K2,2ζ+i+k+1(κ ′
n)

)

+ Zαη

κ ′
n

K3,2ζ+i+k(κ ′
n)

]
. (31)

Neglecting higher-order relativistic corrections, we find in
order α(Zα)4m2/M

�E
(NR)
U = α(Zα)4

πn3

m2
R

M

n−l−1∑
i,k=0

B
(NR)
ik

[
− 1

2n
K2,2l+i+k+2(κn)

−2l + i + k + 2

2nκn

K3,2l+i+k+3(κn)

+ 1

κn

K3,2l+i+k+2(κn)

]
. (32)

V. RESULTS FOR PARTICULAR STATES

There are several classes of states of interest. In this
section, we consider two of them, namely, circular states
(l = n − 1) and low-lying states (n = 1,2). The former are
quite insensitive to the nuclear structure, allowing accurate ab
initio calculations, and may be of a “metrological” interest
[23,24], while the latter are the most sensitive to the nuclear
structure and may be applied to measure the nuclear charge
radius [25,26]. Following, we present results in closed form
in terms of the generalized hypergeometric function 3F2 for
arbitrary Z and κn, and additionally the asymptotic behavior
for large κn is investigated.

A. Circular states

For states with maximal orbital and angular momenta, i.e.,
l = n − 1 and j = l + 1/2, there is no difference between κn

and its relativistic analog κ ′
n and nr = 0. The expression (31)

in this case can be transformed to

�EU = α(Zα)2

nζπ

m2
R

M

[
(fC − 1)

(
K2,2ζ (κn)

+2ζ

κn

K3,1+2ζ (κn)

)
+ (Zα)2

nκn

K3,2ζ (κn)

]
(33)

or, neglecting higher-order terms in Zα,

�E
(NR)
U = α(Zα)4

πn4

m2
R

M

1

κn

[
−κn

2
K2,2n(κn)

+ nK3,2n(κn) − nK3,1+2n(κn)

]
. (34)
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The asymptotics of the last expression for large κn is

�E
(NR)
U = α(Zα)4

πn3

m2
R

M

[
− 1

3n

(
ln(2κn) − ψ(2n)

+ψ(1) + 1

6

)
+ 2

3(2n − 1)
− π

4κn

+ 2n − 1

4κ2
n

−π
(n − 2)(2n + 1)

18κ3
n

+ O

(
1

κ4

)]
, (35)

where ψ(z) = �′(z)/�(z).

B. Low-lying states

The above results can be applied to the case of the 1s1/2 and
2p3/2 states. In particular, for the nonrelativistic case

�E
(NR)
U (1s) = α(Zα)4

π

m2
R

M

1

36κ3(κ2 − 1)
[−6(2κ6 − 3κ4

− 12κ2 + 10)A(κ) + 2κ(5κ4

+ 16κ2 − 30) − 3π (3κ4 + 7κ2 − 10)] (36)

or, for large κ ,

�E
(NR)
U (1s) = α(Zα)4

π

m2
R

M

[
−1

3
ln(2κ) + 17

18

− π

4κ
+ 1

4κ2
+ π

6κ3
+ O

(
1

κ4

)]
. (37)

Other particular cases of interest are 2s1/2 and 2p1/2 states.
For the nonrelativistic case, relations for these states can be
written in a unified form1

�E
(NR)
U (2l)

= α(Zα)4

π

m2
R

32M

{
−K24(κ2) + 4

κ2
[K34(κ2) − K35(κ2)]

+ 2(1 − l)

κ3
2

[κ2K44(κ2) + 4K54(κ2) − 4K55(κ2)]

}
(38)

or, for large κ ,

�E
(NR)
U (2l)

= α(Zα)4

π

m2
R

16M

{
1

3

(
− ln(2κ2) + 16 − 7l

3

)

− π

2κ2
+ l + 2

2

1

κ2
2

+ 2π (1 − l)

3

1

κ3
2

+ O
(

1

κ4
2

)}
. (39)

The numerical results for the low-lying states in light muonic
atoms, obtained from (36) and (38), are summarized in
Table I.

1To come to this form from Eq. (32), one can use the relation

Kb,c = 1

κ
Kb+1,c+1 + Kb,c+1.

TABLE I. Relativistic recoil eVP corrections for the low-lying
levels in muonic hydrogen. The units are (α/π ) (Zα)4m2

R/M .

Atom 1s 2s 2p1/2 2p3/2

μH 0.182 0.0381 0.000901 0.000901
μD 0.180 0.0388 0.000968 0.000968
μ3He 0.122 0.0459 0.00184 0.00184
μ4He 0.121 0.0459 0.00184 0.00184

VI. COMPARISON WITH THE BREIT-TYPE
CALCULATIONS

Evaluations of relativistic recoil effects within the Grotch-
type approach developed in this paper and the standard Breit-
type technique (see, e.g., [7,13,27]) are complementary. Both
produce for the eVP effects not only the leading term of order
α(Zα)4m2/M , but also certain higher-order corrections. While
the Grotch-type calculation provides us with partial account of
α(Zα)6m2/M contributions, the Breit-type calculation leads
to an exact (in m/M) result for the α(Zα)4m contribution.

The additional α(Zα)6m2/M terms in the Grotch-type
approach are not so important as a simplification of pure recoil
contributions. The technique allows us to easily separate the
leading α(Zα)4m2/M term from the higher-order effects and
calculate it much more easily than by means of the Breit-type
evaluation. Meanwhile, such an evaluation is completely
separated from the nonrecoil relativistic term. On the contrary,
the Breit-type evaluation produces both recoil and nonrecoil
relativistic contributions within the same calculations, which
allows additional crosschecks.

In this section, we describe a rearrangement of the Breit-
type evaluation which would allow a direct comparison
between the Grotch-type and Breit-type results. In paper [7],
we have calculated the relativistic-recoil correction in question
for low-lying states in light muonic atoms by both mentioned
methods. In both cases, we can expand the correction by
powers of m/M:

EU = α

π
(Zα)4mR

[
C0 + C1

mR

M
+ C2

(
mR

M

)2

+ · · ·
]
,

(40)

where C0 corresponds to the known nonrecoil Uehling cor-
rection to the energy, C1 is found by the Grotch method, and
the Breit method provides both C1 and C2. The coefficients
C1 calculated by the two methods agree. That is a unique
expansion and the C0 and C1 coefficients obtained by both
methods should be the same. The Grotch-type approach
produces C0 and C1, but not C2.

The conventional Breit-type calculation does not produce
the result in such a form which makes the direct comparison
difficult. The Breit approach is based on an unperturbed
Hamiltonian

H (0) = p2

2mR

+ V (r)

and thus the wave function does not include the muon and
nuclear mass separately, but only in a combination in the form
of the reduced mass φ(0) = φ(r; mR).
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In the meantime, the standard Breit equation (see, e.g., [2])

VBr = −
(

1

m3
+ 1

M3

)
p4

8
+ Zα

8

(
1

m2
+ 1

M2

)
4πδ3(r)

+Zα

(
1

4m2
+ 1

2mM

)
L · σ

r3
+ Zα

2mM
4πδ3(r)

+ Zα

2mM

[
1

r3
L2 − p2 1

r
− 1

r
p2

]
(41)

explicitly depends on the muon mass m and the nuclear mass
M . The eVP addition to the Breit Hamiltonian is of the form
[27]

V VP
Br =

(
1

8m2
+ 1

8M2

)
∇2VU +

(
1

4m2
+ 1

2mM

)
V ′

U

r
L · σ

+ 1

2mM
∇2

[
VU − 1

4
(rVU )′

]
+ 1

2mM

×
[
V ′

U

r
L2 + p2

2
(VU − rV ′

U ) + (VU − rV ′
U )

p2

2

]
.

(42)

As a result, the matrix element of VBr and V VP
Br over φ(0)(r; mR)

depends on m,M,mR and is not suited for presentation in the
form of (40).

To adjust the Breit Hamiltonian to this form, one has to
rewrite it as a function of mR and M , but not m. The related
corrections to the Hamiltonian take the form

VBr = −
(

1

m3
R

− 3

m2
RM

)
p4

8
+ Zα

8

(
1

m2
R

− 2

mRM

)
4πδ3(r)

+ Zα

4m2
R

L · σ

r3
+ Zα

2mRM
4πδ3(r)

+ Zα

2mRM

[
1

r3
L2 − p2 1

r
− 1

r
p2

]
(43)

and

V VP
Br (r) =

(
1

8m2
R

− 1

4mRM

)
∇2VU + 1

4m2
R

V ′
U

r
L · σ

+ 1

2mRM
∇2

[
VU − 1

4
(rVU )′

]

+ 1

2mRM

[
V ′

U

r
L2 + p2

2
(VU − rV ′

U )

+ (VU − rV ′
U )

p2

2

]
, (44)

and here all terms which contribute to order (Zα)4m3/M2 and
α(Zα)4m3/M2 are neglected.

The perturbations (43) and (44) directly lead to eVP results
in Eq. (40). We realized such a rearrangement in Ref. [7] and
obtained results by the Breit-type approach, which completely
agrees with our Grotch-type approach within an uncertainty

of numerical integration (cf. Table I). Such a rearrangement
is applicable not only in the first order in α. In particular, we
applied it in Ref. [28] to second order in α and obtained in that
work relativistic recoil corrections (of the first order in m/M)
consistent with our calculation of the relativistic recoil by the
Grotch-type method [29].

VII. CONCLUSIONS

In this paper, a method for a calculation of relativistic recoil
effects developed previously [5] was applied perturbatively
for the one-loop electronic-vacuum-polarization corrections.
With the results of the Dirac problem with Coulomb+Uehling
potential already known, the evaluation of the additional recoil
correction has dealt only with nonrelativistic wave functions.
It was performed in closed analytic form in terms of the same
base integrals as required for the calculation of the Uehling
correction itself (cf. [14,16–19]).

We also found asymptotics for high Zαm/(men) for the
circular and low-lying states. The low-lying states 1s,2s,2p

are of particular interest in light muonic atoms because they
provide us with perhaps the best opportunity to determine
the nuclear charge radius. Some time ago, certain results
were obtained within the Breit-type [13,27] and Grotch-type
approaches [10]. They have been discussed in part by us in
Ref. [7].

Both calculations contain not only the leading eVP rela-
tivistic recoil term of order α(Zα)4m2/M , but also certain
higher-order corrections. Here, we explain in details how to
compare those calculations. A modification of the effective
Breit Hamiltonian is described, which allows us to avoid any
higher-order effects in the Breit-type approach. As a result
[7], we agree with [13] and disagree with [9,10] and [27]. A
discrepancy with the former is due to an inappropriate gauge
used in that work, while the discrepancy with the latter is most
probably due to a numerical error there.

Here, we applied the technique based on the presentation
of the results in terms of base integrals. However, this is not
necessary. If it is desired, one can solve the related Dirac equa-
tion numerically. As we mentioned, for the relativistic recoil
correction by itself even the Dirac equation is not necessary.
A nonrelativistic Schrödinger equation with an appropriate
potential and subsequent nonrelativistic perturbation theory is
sufficient. The approach can be extended further and it has
been extended. In a subsequent paper [29], it is successfully
applied to the second-order eVP relativistic recoil corrections
to order α2(Zα)4m2/M .
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