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Relativistic recoil effects for energy levels in a muonic atom within a Grotch-type
approach. I. General approach
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Recently we calculated relativistic recoil corrections to the energy levels of the low-lying states in muonic
hydrogen induced by electron vacuum polarization effects. The results were obtained by Breit-type and Grotch-
type calculations. The former were described in our previous papers in detail, and here we present the latter.
The Grotch equation was originally developed for pure Coulomb systems and allowed to express the relativistic
recoil correction to order (Zα)4m2/M in terms of the relativistic nonrecoil contribution (Zα)4m. Certain attempts
to adjust the method to electronic vacuum polarization took place in the past, however, the consideration was
incomplete and the results were incorrect. Here we present a Grotch-type approach to the problem and in a series
of papers consider relativistic recoil effects in order α(Zα)4m2/M and α2(Zα)4m2/M . That is the first paper
of the series and it presents a general approach, while two other papers present results of calculations of the
α(Zα)4m2/M and α2(Zα)4m2/M contributions in detail. In contrast to our previous calculation, we address now
a variety of states in muonic atoms with a certain range of the nuclear charge Z.
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I. INTRODUCTION

Spectroscopy of light muonic atoms was used for a
while and provided us with certain important data on the
nuclear structure. It was based on a study of the emission
lines and had limited accuracy. Recently, the first successful
laser-spectroscopy measurement on muonic hydrogen has
opened a new generation of experiments. The experiment
performed at Paul Scherrer Institut (PSI) delivered the value
of the Lamb shift in muonic hydrogen and allowed one
to determine the proton charge radius with unprecedented
accuracy. Unexpectedly, that measurement has led to one of
the currently largest controversies in quantum electrodynamics
(QED)-related experiments. A strong discrepancy between
the value of the proton charge radius obtained from muonic
hydrogen [1] and that in ordinary hydrogen [2] is of about 5
standard deviations. Meantime, the latter value is in perfect
agreement with a recent electron-proton scattering result [3].

That circumstance has renewed interest in spectroscopy of
muonic atoms. The low l states and, mostly, the 1s and 2s

states are sensitive to the finite-nuclear-size effects and have
been used for a while to determine the charge radius for a
broad range of nuclei from hydrogen [1] to uranium [4].

Higher-l states are also of interest for more “metrological”
measurements. In particular, the 3d5/2−2p3/2 transition in
muonic 24Mg and 28Si was used in [5] to determine mμ/me.
A similar measurement was also performed in pionic atoms to
determine the pion mass. In such experiments one has to deal
with x-ray transitions and then there is a problem in calibration
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of the x-ray standards. In [6] the 5f −4g transition in pionic
nitrogen and the 6h−5f one in pionic neon were compared
with 5f −4g transitions in muonic oxygen.

Higher-l states can also be of interest due to antiprotonic
helium spectroscopy. At present, highly accurate data are
available only for a three-body system, which includes a
nucleus, antiproton, and electron [7,8]. While the antiproton
in a circular or a near circular state is rather immune
against annihilation, the electron “protects” the antiprotonic
state from collision quenching. Still, a possibility for a
two-body antiprotonic helium ion has not been given up
and such a system may be of experimental interest in the
future.

In this situation a theoretical study of low-lying states of
circular states, such as 2p,3d,4g,5f,6h is of practical interest.
Since the muon mass is substantially higher than the electron
mass, one has to pay attention to recoil effects.

To find recoil contributions to energy levels of a hydrogenic
atom one can apply various approaches and, in particular, a
Grotch-type one.

A calculation of recoil corrections to order m/M is possible
in hydrogenic atoms exactly [9] (see also [10]) without any
expansion in Zα. The result consists of two contributions;
one is a result of one-photon exchange in an effective Dirac
equation, while the other takes into account multiphoton
exchanges.

It is the one-photon exchange that was first derived in
[11] without any expansion in Zα. The Grotch equation is an
efficient way to derive from the one-photon-exchange term the
result which allows one to combine a few important features
of theory of the energy levels and to obtain a result which
incorporates

1050-2947/2014/89(2)/022102(10) 022102-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.022102


KARSHENBOIM, IVANOV, AND KORZININ PHYSICAL REVIEW A 89, 022102 (2014)

(1) the leading nonrelativistic term (i.e., a result of the
Schrödinger-Coulomb problem) exactly in m/M;

(2) the complete relativistic series for infinitely heavy
nucleus (i.e., a result of the Dirac-Coulomb problem) exactly
in (Zα);

(3) the leading relativistic recoil correction to energy in
order (Zα)4m2/M .
On the other hand, the electronic vacuum polarization (eVP)
effects and, in particular, the Uehling potential, play a crucial
role in the theory of energy levels in muonic atoms. It
is important to be able to calculate relativistic and recoil
corrections to them for a variety of levels.

Recently, such a relativistic recoil contribution of order
α(Zα)4m2/M was considered in various approaches for low-
lying states in light muonic atoms [12–14] (see also [15–17] for
earlier evaluations). Results on α2(Zα)4m2/M can be found
in [18].

Here, we rederive the Grotch equation for a pure Coulomb
problem and generalize it for a broad class of potentials. The
generalized approach allows one to find relativistic recoil eVP
corrections in the first and second order in α, which are studied
in subsequent papers [19,20].

II. ONE-PHOTON EXCHANGE IN TWO-BODY
BOUND SYSTEMS

The Coulomb bound two-body systems have a binding
energy of order (Zα)2m, where α is the fine structure constant,
Z is the nuclear charge, m is the mass of the orbiting particle,
i.e., the lighter one in the bound system. Throughout the paper
we apply relativistic units in which � = c = 1. These energy
levels have various corrections due to the relativistic, recoil,
and QED effects and due to the nuclear structure.

The (Zα)2m term can be found by many different methods,
while the methods to derive the corrections often depend on the
nature of those corrections. A certain class of the corrections
can be expressed in terms of the potentials and one can expect
that for their evaluation it is possible to adjust approaches used
for pure Coulomb calculations.

The potential corrections and, in particular, those presented
by the Uehling potential, are dominant QED effects for light
and medium-Z muonic atoms. Here we develop an effective
approach to study relativistic recoil corrections in the first order
in the electronic vacuum polarization.

Electronic vacuum polarization (eVP) effects are responsi-
ble for the Uehling potential, but even for the relativistic recoil
contribution one has to go somewhat beyond just the Uehling
potential, just as for the calculation of the (Zα)4m2/M term
one has to go beyond a pure Coulomb field. Here M is the
nuclear mass and appearance of the m/M ratio indicates that
recoil effects are involved.

Throughout the paper we consider a pointlike nucleus;
however, in many situations the finite-nuclear-size effects can
be treated as a small perturbation and, specifically, for low-Z
calculations and for a high-l medium-Z case. In any case, the
finite nuclear size affects the interaction between the muon
and the nucleus; however, the effect can be still described as a
kind of potential and the results obtained below can be in part
adjusted for the extended nuclei.

FIG. 1. The leading one-photon-exchange diagram. It is respon-
sible for the contributions to orders (Zα)2m and (Zα)4m.

Relativistic recoil effects contribute to one-photon ex-
change as well as to many-photon exchanges. The Coulomb
and Uehling potentials correspond to a dominant contribution
in one-photon exchange.

The one-photon contribution for the Coulomb case and
Uehling term are depicted in Figs. 1 and 2, respectively. They
are responsible for the entire nonrelativistic contribution to
orders (Zα)2m and α(Zα)2m, respectively.

Those contributions can be described by a potential. They
partly include recoil effects in a sense, that one has to use the
reduced mass mR = mM/(m + M) in calculations. The result
for the Uehling correction can be achieved analytically in terms
of elementary functions [21,22]. The potential approach can
be also applied for a relativistic evaluation with the Dirac wave
functions. For the Uehling potential the energy with the Dirac
wave functions is known in closed analytic terms [23,24].

Indeed, as far as the wave functions for Schrödinger-
Coulomb and Dirac-Coulomb problems and the dispersion
presentation of the Uehling potential, such as

VU (r) = −α(Zα)

π

∫ 1

0
dv ρe(v)

e−λr

r
, (1)

where

λ = 2me√
1 − v2

, ρe(v) = v2(1 − v2/3)

1 − v2
, (2)

are well known, a numerical calculation has never been a prob-
lem (see, e.g., [12,13,15]). Nevertheless, analytic evaluations
allow one to find various useful asymptotics [22–24].

We note that the Uehling potential is smaller than the
Coulomb potential roughly by a factor of α/π in any kinematic
area. Similarly, we see that the eVP potential related to
the second-order correction possesses the same property—it
is smaller than the Coulomb exchange in any kinematic
area by a factor of (α/π )2. Since general behavior of the
eVP-induced potentials is somewhat similar to the (α/π )VC(r)
and (α/π )2VC(r), we can hope that whatever we use for a
pure Coulomb problem, it may be adjusted for eVP effects,
including the relativistic recoil.

FIG. 2. The one-photon-exchange diagram for the eVP contribu-
tions. It is responsible for the the Uehling-potential corrections to
orders α(Zα)2m and α(Zα)4m.
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FIG. 3. The leading two-photon-exchange diagrams. In case of
any practical calculations, there should be subtraction terms due to the
nonperturbative nature of the Coulomb exchange for the bound state
problem; meanwhile some one-photon- “reducible” contributions can
appear. Those are not shown here. In certain gauges and, in particular,
in the Feynman gauge the two-photon-exchange term contributes to
order (Zα)4m2/M , while in the Coulomb gauge it contributes only
to order (Zα)5m2/M .

Meanwhile, neither a complete calculation of the one-
photon exchange (Figs. 1 and 2) can be identically presented
in terms of a potential, nor can the two-photon exchange
(Figs. 3 and 4) be in general ignored.

The approach developed by Grotch and Yennie [11] allowed
one to resolve this problem for exchange by free photons
(Figs. 1 and 3) and here [14] we generalize it, following our
previous paper, for the case of the eVP contributions.

At first, we have to address a question of a possibility to use
a certain relativistic equation with a kind of effective potential
for a calculation of recoil effects.

The one-photon-exchange contribution can be evaluated
with the help of the photon propagator, which in the Coulomb
gauge takes the form,

DC
00 = − 1

k2
, DC

i0 = 0, DC
ij = −

(
δij − kikj

k2

)
1

k2
, (3)

where k2 = k2
0 − k2. Note that only the static part of D00

produces a contribution in the nonrecoil limit and thus is re-
sponsible for an electrostatic potential. The other components
of the photon propagators in general depend on the choice
of the gauge and they are not directly related to D00. For this
reason the complete one-photon contribution cannot in general
be expressed in terms of an electrostatic potential.

The one-photon contribution in the Coulomb gauge can be
reduced for the m/M correction to its static approximation
(i.e., neglecting the k0 dependence) and thus to several
potential-like terms because

(1) there is no k0 dependence in D00 and thus no retardation
effects are involved (if they were involved, that still would
be of reduced importance because they are proportional
to k2

0/k2 and for atomic energy levels that would lead to

FIG. 4. Two-photon-exchange diagrams for the eVP contribu-
tion. Subtraction terms and reducible contributions are omitted. In
certain gauges the two-photon-exchange effects contribute to order
α(Zα)4m2/M .

relativistic corrections proportional to (m/M)2, while here we
are interested in the m/M correction only);

(2) Di0 = 0;
(3) Dij involves lower components of the spinor for the

nucleus and thus the contribution is proportional to at least
m/M , which means that the retardation effects in the Dij term
are of order (m/M)2 or higher and negligible.
In the next sections we apply the static approximation to
the one-photon exchange and develop an effective potential
equation, first for a pure Coulomb problem and next for a
perturbed Coulomb problem.

The remaining question is about two-photon-exchange
contributions for the (Zα)4m2/M correction. [In any effective
Dirac equation approach, and we follow such an approach
since we are to find a Grotch-type effective Dirac equation, it
is assumed that certain two-photon-exchange subtractions take
place (see, e.g., [29] for detail).] This question was reviewed,
e.g., in [14]. The two-photon contributions are of at least order
(Zα)5m2/M in the Coulomb gauge because

(1) there is no k0 dependence in D00 and thus there
is no photon pole in two-photon exchange with two D00

components;
(2) Di0 = 0, and thus there is no contribution which

involves one Di0 photon and one D00 photon.
That is sufficient to avoid any potential (Zα)4m2/M

contribution.

III. GROTCH EQUATION AND ITS SOLUTION
FOR THE COULOMB BOUND SYSTEMS

Once we are limiting our consideration to one-photon
contribution in a static approximation (i.e., at k0 = 0), we can
derive the Grotch equation for the free one-photon exchange
(Fig. 1) in order, after that, to generalize it step by step for
a more general case, including the eVP contributions. Our
consideration closely follows the original one by Grotch and
Yennie [11].

Here we give a brief reminder of the derivation of the Grotch
equation and its solution in order to describe every step which
we will need to adjust to eVP contributions.

The Grotch equation [11] is one of several effective Dirac
equations for a two-particle system. It is important to reproduce
the two most important features of any system of two fermions
with an orbiting particle much lighter than the nucleus.
The electron in ordinary hydrogen and the muon in muonic
hydrogen are such particles. It is useful to consider the orbiting
particle within a full relativistic consideration, while treating
the nucleus in the leading nonrelativistic approximation. As a
result, we may derive an equation, which correctly reproduces
its limits, both the Schrödinger-Coulomb equation with the
reduced mass and the Dirac-Coulomb equation with the
original mass of the muon (or electron). Indeed, the equation
is also supposed to take into account certain relativistic recoil
corrections. The uncertainty in the calculation of the static
one-photon contribution is of order (Zα)4(m/M)2m. The
two-photon contribution is of order (Zα)5m2/M .

The desired equation is of the form of Dirac equation for a
muon,

[P̂n − p̂N − m − Ṽ1γ ]�n = 0, (4)
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where Â = γ ν
[μ]Aν and Pn = (En,0) (here Aν is an arbitrary

vector, ν is a relativistic 4-index, while μ stands for a muon.)
This is an equation in the center-of-mass system. While

the equation is for the muon energy and wave function, the
quantized energy En is for the two-body system and we
should subtract from the whole 4-momentum Pn the nuclear
4-momentum pN = (

√
M2 + p2, −p), where p is the muon

momentum.
To obtain a one-particle equation from a two-body one it

was suggested that one can present the two-body wave function
�μN in terms of the free nuclear spinor and the muon wave
function ψ ,

�μN =
(

1

− p·σ N

2M

)
ψ. (5)

This suggestion is not just an approximation in a sense that
one can construct a perturbation theory and systematically take
into account all the corrections required for a certain level of
accuracy. The nuclear on-shell corrections are of relativistic
nature for the nucleus and thus they are of higher order in
m/M and Zα than the leading recoil effects we study. The off-
shell corrections can be found through many-photon exchange
diagrams and a proper choice of gauge can eliminate them in
the leading recoil order.

The effective potential Ṽ1γ results from the static part of
the one-photon exchange averaged over the nuclear part of the
wave function in (5). In the momentum space we find

Ṽ1γ (q,p) = −iγ 0
μγ 0

N (Zα)
(

1, − σN · q
2M

)
× [

iγ 0
Nγ 0

μD00(k) + iγ i
Nγ j

μDij (k)
] (

1

−σ N ·p
2M

)

= −Zα

k2

{
1 + 1

2M

[
αμ · (p + q)

− (αμ · k) (k · (p + q))
k2

]
− 1

2M
[k × iσN ] · αμ + O

(
(Zα)4

(
m

M

)2

m

)}
,

(6)

where k = p − q. Here, the neglected term is not
O((Zα)4(m/M)2m) by itself, but it represents an operator,
the matrix element of which over the atomic wave function is
O((Zα)4(m/M)2m).

This effective potential includes a nuclear-spin-dependent
term which is responsible for the hyperfine splitting. It is of
order (Zα)4m2/M . However, experimentally and theoretically
the hyperfine structure effects are well separated from the
Lamb shift effects. We consider this term as a perturbation and
neglect the hyperfine-interaction term (i.e., we average over
the nuclear spin).

Once we average the results over the nuclear spin, i.e.,
over the hyperfine structure, we note that all the remaining
nuclear-spin effects appear only in order (m/M)2 (see, e.g.,
[25–28]) and thus this derivation, started for the nuclear spin
1/2, is now valid for a nucleus with an arbitrary spin.

That is the last crucial step to obtain the Grotch equation
[11] and we arrive at that in coordinate space,(

α · p + βm + p2

2M
+ VC + 1

2M
{α · p,VC}

+ 1

4M
[α · p,[p2,WC]]

)
ψ(r) = Eψ(r), (7)

where the operator WC appears due to taking into account
the DC

ij components of the photon propagator. It is essential
that it can be expressed in a certain way through VC , which
is defined through DC

00. In particular, for free one-photon-
exchange (Fig. 1) and the relation between the Coulomb gauge
is of the form,

WC(k) = −2VC(k)

k2
. (8)

For the case of the Coulomb gauge one finds in coordinate and
momentum space,

VC(r) = −Zα

r
, VC(k) = −4πZα

k2
, (9)

and

WC(r) = −Zαr, WC(k) = 8πZα

k4
. (10)

While the leading part of DC
00 in any gauge should produce the

Coulomb term VC , the shape of the Hamiltonian in Eq. (7) and
a particular shape of WC depends on the gauge chosen.

The effective equation above can be solved in a closed
analytic form after applying a series of transformations [11].
We start with rearranging the Hamiltonian,

H =
(

α · p + βm + p2

2M
+ VC + 1

2M
{α · p,VC}

+ 1

4M
[α · p,[p2,WC]]

)
, (11)

as following

H = H0 + δH + O

(
(Zα)4 m3

M2

)
, (12)

where

H0 = H1 + H 2
1 − m2

2M
+ 1

4M
[H1,[p2,WC]], (13)

H1 = α · p + βm + VC

1 − βm/M

1 − (m/M)2
, (14)

and

δH = −
(

V 2
C

2M
+ 1

4M
[VC,[p2,WC]]

)
. (15)

The correction, neglected in (12), is indeed an operator; its
matrix elements over bound states are of order O((Zα)4 m3

M2 ),
which is explicitly shown in (12). In this sense Eq. (12) is not
correct as an operator identity, but it is sufficiently valid for all
matrix elements for the bound states.

We note that due to the relation between VC and WC (8) the
last term vanishes for the Coulomb potential in the Coulomb

022102-4



RELATIVISTIC RECOIL . . . . I. GENERAL APPROACH PHYSICAL REVIEW A 89, 022102 (2014)

gauge,

δH = 0. (16)

To solve Eq. (7) within the required accuracy is the same
as to solve the equation,

H0ψ0 = E0ψ0, (17)

where E = E0 and ψ = ψ0 for the pure Coulomb case.
To deduce E0 and ψ0 we should first find a solution of

equation,

H1ψ1 = E1ψ1. (18)

Looking for it in the form,

ψ1 = (1 + βξ )ψ̃, (19)

one finds that ψ̃ is a solution of an effective one-particle Dirac-
Coulomb equation,[

α · p + βm̃ − Z̃α

Zα
VC(r)

]
ψ̃ = Ẽψ̃, (20)

with an effective mass,

m̃ = m
(
1 − E1

M

)√
1 − (

m
M

)2
, (21)

and an effective Coulomb coupling constant,

Z̃α = Zα√
1 − (

m
M

)2
= Zα

[
1 + O

((
m

M

)2)]
, (22)

where

ξ = M

m

(
1 −

√
1 −

(
m

M

)2)
= m

2M

[
1 + O

((
m

M

)2)]
.

(23)

The solutions of Eq. (20) are similar to the well-known
solutions of the conventional Dirac-Coulomb equation (see,
e.g., [30]), with the only difference being that the parameters
m and Zα must be replaced by effective values m̃ and Z̃α,
defined in (21) and (22).

The energies E1 are related to the known eigenvalues of the
effective equation (20), Ẽ, by the equation,

Ẽ = E1 − m2

M√
1 − (

m
M

)2
. (24)

The eigenvalues and eigenfunctions of Hamiltonian H0 in
Eq. (7), according to (12), are related to E1 and ψ1, as

E0 = E1 + E2
1 − m2

2M
(25)

= Ẽ + Ẽ2 + m2

2M
+ O

(
m3

M2

)
, (26)

ψ0 = N

[
1 − 1

4M
[p2,WC] + O

((
m

M

)2

(Zα)4

)]
(1 + βξ )ψ̃,

(27)

where N is a normalization constant, for which one can find
(see, e.g., [31])

N2 = 1

1 + 2ξẼ/m̃ + ξ 2
(28)

= 1 − m

M
+ (Zα)2

2n2

m

M
+ O

((
m

M

)2)
+ O

(
m

M
(Zα)4

)
.

(29)

This evaluation is not yet completed. We note that the
energy E0 is expressed in terms of E1 (25), and the latter
in terms of Ẽ (24). Meanwhile, Ẽ is a function of m̃ (21) and
Z̃α (22). The effective mass m̃ in its turn depends on E1 as
follows from Eq. (21).

To proceed further, we note that for the Dirac-Coulomb
problem,

EDC = fC(Zα) m, (30)

and thus the value of

F̃ = Ẽ

m̃
, (31)

being equal to fC(Z̃α), does not depend on the effective mass
of the orbiting particle m̃, while the effective charge Z̃α, as
follows from Eq. (22), does not depend on energy. This allows
simplifications.

Applying Eqs. (31) and (21) to (24), we obtain

E1 = m
F̃ + m

M

1 + m
M

F̃
, (32)

and, using (25),

E0 = m + m

(
1 − m

M

)
(F̃ − 1)

− m2

2M
(F̃ − 1)2

(
1 − m

M

) (
1 + m

M
+ 2 m

M
F̃

)(
1 + m

M
F̃

)2 .

Since

F̃ − 1 = O((Zα)2),

we can efficiently expand

E0 = m + m

(
1 − m

M

)
(F̃ − 1)

− m2

2M
(F̃ − 1)2

(
1 − m

M

) (
1 + 3 m

M

)(
1 + m

M

)2

+O

(
m

(
m

M

)3

(Zα)6

)
, (33)

m̃ = m

√
1 − m

M

1 + m
M

[
1 −

m
M

1 + m
M

(F̃ − 1)

+
(

m
M

)2(
1 + m

M

)2 (F̃ − 1)2 + O

((
m

M

)3

(Zα)6

)]
. (34)
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For the pure Coulomb problem it is sufficient to transform
Eq. (33), neglecting terms of order (Zα)4(m/M)2m. We note,
comparing F̃ and

F = fC(Zα),

that we have to distinguish between Z̃α and Zα only in the
leading term of (F̃ − 1),

F = 1 +
(

Zα

Z̃α

)2

(F̃ − 1) + O

(
(Zα)4

(
m

M

)2

m

)
.

As a result, we eventually find for the Coulomb problem,

E = m + mR(F − 1) − m2
R

2M
(F − 1)2, (35)

which has corrections only of order (Zα)4(m/M)2m.
Here we have taken into account that for a pure Coulomb

problem δH = 0 and thus the eigenvalues of the Hamiltonians
H in Eq. (11) and H0 in Eq. (13) are the same, i.e., E = E0.

This evaluation, following [11], eventually presents eigen-
values and eigenfunctions of the Grotch equation (7) in terms
of the well-known solution of the Dirac-Coulomb problem
(see, e.g., [30]), but with effective parameters m̃ and Z̃α. We
briefly overview those solutions in Appendix A (see, e.g., [30]
for details).

We note that the Grotch equation (7) and its solution (35) is
a complete account of the static one-photon exchange, once we
average over the nuclear spin. The relativistic energies (see,
e.g., [30]) are listed in Appendix A. We have not evaluated
the wave functions, but it is more appropriate to perform such
an evaluation once we clarify what accuracy is required. The
energy levels (35) by themselves are obtained without any need
for explicit expressions for the wave functions. However, once
we step out from a pure Coulomb case the wave functions will
be required; however, they are to appear in calculations of a
small perturbation and do not need a high accuracy.

We remember that the energy levels (25) and (35) and wave
functions (27) obtained above reproduce correctly:

(1) the leading nonrelativistic term (i.e., a result of the
Schrödinger-Coulomb problem with the reduced mass) exactly
in m/M;

(2) the relativistic corrections (exactly in Zα) for a in-
finitely heavy nucleus (i.e., a result of the Dirac-Coulomb
problem);

(3) the leading relativistic recoil correction to energy in
order (Zα)4m2/M .
The result for the energy has to contain also various higher-
order contributions (Zα)km2/M (k � 6), which, without being
a complete result, still have a certain sense, since it is
sometimes clear how to upgrade them to a complete result
[9,10].

IV. CONSIDERATION OF AN ARBITRARY
NONRELATIVISTIC-TYPE POTENTIAL

Let us consider now a potential, which is a sum of the
Coulomb potential and a “nonrelativistic-type potential”:

V = VC + VN.

The “nonrelativistic-type potential” VN (r) is such a potential
that the leading nonrelativistic correction to energy is of order
ε(Zα)2m and the leading relativistic correction is of order of
ε(Zα)4m, while the leading correction to the wave function
is of relative order ε both for nonrelativistic and relativistic
behavior. It is understood that ε is a small but finite parameter,
such as α/π , and that the potential VN (r) is smaller than the
Coulomb potential in any area by a factor of ε.

We consider such a potential as a nonrelativistic-type
potential, because its relativistic correction, similarly to the
case of pure Coulomb potential, can be found through a
relativistic expansion, which treats relativistic corrections as
additional effective terms of a Hamiltonian of a nonrelativistic
Schrödinger equation. Such a consideration is valid, e.g., for
the eVP effects in muonic atoms, but not valid for eVP effects
in ordinary atoms.

For consideration of VC + VN in comparison with a pure
Coulomb problem [11], reviewed in the previous section, one
should take into account the following:

(1) It is not necessary that ε(Zα)4m2/M contributions can
be calculated in the one-photon-exchange approximation. We
suggest that it is valid for all ε(Zα)4m2/M terms, and that
sets a constraint on effects which may be taken into account
by the method developed here. This question is common for
Grotch-type and Breit-type calculations and was discussed for
one-loop eVP corrections in [14]. As explained there, there is
a gauge, where the eVP contribution can be calculated within
such an approximation.

(2) Rigorously speaking, there is no such a thing as just
“potential.” One has to deal with a generalized one-photon
exchange. The correction can be due to the photon propagator
correction (as it is in the case of eVP effects), nuclear structure,
etc. While its D00 component in a static regime is related to
a “potential” for the external field approximation, the result
for the other terms depends on the nature of the correction.
There is no single rule on how to express the complete effect
in terms of VN . Here, we suggest that the expression (7) holds
for the one-photon contribution in order up to ε(Zα)4m2/M .
The Hamiltonian is of the form,

H =
(

α · p + βm + p2

2M
+ V + 1

2M
{α · p,V }

+ 1

4M
[α · p,[p2,W ]]

)
, (36)

where

W = WC + WN, (37)

and an appropriate WN term is to be found.
Furthermore, we suggest that in general the behavior of WN is
somewhat similar to that of εWC , and the order of magnitude
of related matrix elements can be found from that similarity. It
is essential that in some way the last term in the Hamiltonian
resulted from the lower (smaller) component of the nuclear
spinor, so the related matrix elements are of order (Zα)4m2/M

and may additionally contain ε.
All that apparently sets another constraint on interactions
which can be described by means of a Grotch-type equation.
What is important for our purposes is that for the eVP
contributions we deal with a certain correction to the photon
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propagator, the equation (7) is valid, and the appropriate
function WN can be explicitly found (see [14,19,20]).

(3) Next we note that the addition to the Hamiltonian,
defined in Eq. (15), which vanishes in the pure Coulomb case,
does not in the general situation:

δH = −
(

V 2

2M
+ 1

4M
[V,[p2,W ]]

)
�= 0. (38)

In the former, pure Coulomb, case this addition was equal to
zero. It consisted of two operators, matrix elements of which
are of order (Zα)4m2/M:〈

V 2

2M

〉
−

〈
1

4M
[V,[p2,W ]]

〉
= O

(
(Zα)4 m2

M

)
.

These are operators which have a nonvanishing matrix element
between upper-upper (large-large) components of the muon
spinor. To obtain the leading term of order (Zα)4m2/M it is
sufficient to work with the nonrelativistic wave functions ψNR.
So, the equations for the Hamiltonian and the energy are now

H = H0 + δH, (39)

H0 = H1 + H 2
1 − m2

2M
+ 1

4M
[H1,[p2,W ]], (40)

H1 = α · p + βm + V
1 − βm/M

1 − (m/M)2
, (41)

where we neglect the terms of order (Zα)4(m/M)2m, and

E = E0 + δE, δE = 〈ψNR|δH |ψNR〉. (42)

Since δE is already of order ε(Zα)4m2/M , only the linear
corrections are necessary and the nonrelativistic wave function
is that of the problem with H0.
In the first order in ε we need only pure Coulomb wave
functions (see Appendix A), since we explicitly took into
account that δH , which vanishes in the pure Coulomb case,
has to be proportional to ε. To second order in ε we have
to construct the nonrelativistic wave function perturbatively.
Such a problem can be successfully resolved for many
problems numerically.
The solution suggests that the effective energy Ẽ depends on
the effective mass m̃, and the actual energy E0 is expressed in
terms of Ẽ. Meantime, the effective mass m̃ depends on the
energy E0. In the case of the pure Coulomb problem, the ratio,

Ẽ

m̃
= F̃ ,

does not depend on the effective mass and as a result we
can disentangle Ẽ and m̃. In the general case, the ratio Ẽ/m̃

depends on m̃ and, through it, it depends on energy E0. This
can be resolved only through expansion over the relativistic
effects.
We have to apply expressions (33) and (34) studied above,
where now the solution of the Dirac equation with potential V

is of the form,

E = fD(Zα,Zαm/μ) m, (43)

and

F̃ = fD(Z̃α,Z̃αm̃/μ),

where fD is a dimensionless energy of the Dirac equation with
V and

F̃ − 1 = O((Zα)2).

In contrast to the pure Coulomb case the dimensionless energy
fD depends on the effective mass through a dimensionless
parameter Z̃αm̃/μ. This is possible if the potential VN

depends on the dimensional parameter μ. While calculating
various integrals over the wave function the scale parameter
of the potential, say, “radius” (∼1/μ), is naturally compared
with the atomic Bohr radius (∼1/Zαm). For instance, in the
case of eVP corrections in muonic atoms μ = me and the
related parameter is ∼1.5Z.
Next we note [see Eq. (34)] that

m̃ = m0

(
1 + O

(
m

M
(F̃ − 1)

)
+ · · ·

)
,

where m0 is the result in the limit Zα → 0. The relativistic
part is already proportional to (Zα)4m and it is sufficient to
apply m0 there. The nonrelativistic part is of order (Zα)2m

and a correction of relative order (Zα)2m/M is important in
the leading approximation, while higher powers of m/M are
to be neglected here.
The result of the expansion with all terms required is

m̃ = mR

√
1 −

(
m

M

)2[
1 − m

M
(F̃ − 1)

]

= mR

√
1 −

(
m

M

)2

− m

M
ENR, (44)

where ENR is the nonrelativistic part of the energy for the
Schrödinger problem with V . As we mentioned, any further
m/M corrections in the second term are unimportant and in
particular, we can choose to calculate ENR with a muon mass
m or with the reduced mass mR .
The effective mass is not included in F̃ and F directly, but
only in a combination,

Z̃αm̃ = ZαmR

[
1 − ENR

M

]
. (45)

Thus we find

F̃ − 1 = (Zα)2

(Z̃α)2
(fD(Z̃α,Z̃αm̃/μ) − 1)

= (Zα)2

(Z̃α)2

{
fD(Z̃α,ZαmR/μ) − 1

− ENR

M
κ

∂

∂κ
fD(Z̃α,κ)

}
, (46)

where for the following it is useful to introduce

κ = ZαmR

μ
.

One can treat the first two terms in (46) separately, introducing

F0 − 1 = (Zα)2

(Z̃α)2
{fD(Z̃α,ZαmR/μ) − 1},

which now does not depend on m̃. The energy can also be split
into two terms:

E0 = E(1) + E(2),
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with the first term similar to the one for the pure Coulomb case
[cf. Eq. (35)]

E(1) = m + mR(F0 − 1) − m2
R

2M
(F0 − 1)2 . (47)

For the second term we note that (fD − 1) is the leading
nonrelativistic contribution to the energy and with a sufficient
accuracy we can approximate

fD(Z̃α,ZαmR/μ) − 1 = ENR

mR

,

and thus

E(2) = − m2
R

2M

∂

∂ ln κ

(
ENR

mR

)2

. (48)

Eventually we arrive at the identity for the complete energy,

E = m + mR(F0 − 1) − m2
R

2M
(F0 − 1)2

− m2
R

2M

∂

∂ ln κ

(
ENR

mR

)2

−〈ψNR|
(

V 2

2M
+ 1

4M
[V,[p2,W ]]

)
|ψNR〉, (49)

which is valid for our purposes and have corrections to order
(Zα)4m3/M2 and ε(Zα)4m3/M2.
For the relativistic recoil term (Zα)4m2/M we choose between
applying mR and m in such a way that it would simplify a
comparison with Breit-type calculations of the same correc-
tions (see [14]) for details. A difference between mR and m

in relativistic recoil corrections produces only terms of order
(Zα)4(m/M)2m.
In contrast to the pure Coulomb problem in the external
field approximation, for which we know the energy and wave
functions in closed analytic form, we indeed cannot know them
for an arbitrary potential.
For the main term in (49) we need to be able to find the energy
of the Dirac equation with potential V and the reduced mass
mR with a required accuracy. For two other terms we need to
know only the nonrelativistic results for the related problem of
a Schrödinger equation with potential V and the reduced mass
mR .
Both relativistic and nonrelativistic problems can be consid-
ered at this stage perturbatively since ε � 1 and VN is a small
correction to VC .

V. CONCLUSIONS

The main result of this paper is that there is a certain kind
of potential V for which a calculation of the relativistic effects
can be split into two parts. One is a calculation of the energy
in the external field approximation for a muon with the mass
equal to its reduced mass in the atom. That is a “standard”
problem of a Dirac equation for a particle with the mass equal
to the reduced mass. This calculation can be, in principle,
performed by various means, including numerical solutions.

The second part, which is a nontrivial part of the relativistic
recoil correction, can be obtained once we know the nonrel-
ativistic results for the atom with a muon with the reduced
mass. That includes certain derivatives. Such a reduction

of the relativistic correction to nonrelativistic calculations
essentially simplifies the problem. Roughly speaking, the
essential two-body effects are less complicated than the one-
particle relativistic problem.

Apparently, a number of problems to be solved for a
relativistic muon is limited and we do not expect that a Dirac
equation with potential V can be solved exactly. As far as the
non-Coulomb term is a perturbation, i.e., for ε � 1, we can
find all required elements perturbatively.

In particular, in the subsequent paper [19] we apply the
developed approach to the eVP corrections in the first order in
α, i.e., to the relativistic Uehling correction. In this case, one
can expand (49) in ε = α/π and find that all required terms
are known in a closed form. In the other subsequent paper [20]
the same master equation is applied to the relativistic recoil
Källen-Sabry correction, however, none of the eVP related
terms are known analytically. So, they are calculated by means
of numerical integration. Here, it is still sufficient to work in
the first order in ε = (α/π )2. However, the relativistic recoil
results of the same order, namely α2(Zα)4m2/M arise also
from double iteration of the Uehling potential, for this case
ε = α/π , and the second order in ε terms are required in (49).
The recoil effects are obtained for these corrections also by
means of numerical integration [20].

To conclude, we mention that the condition ε � 1 was set
only because we are interested in developing a framework for
perturbative calculations of the eVP relativistic recoil effects,
which are performed in subsequent papers [19,20]. In princi-
ple, one can consider any “nonrelativistic-type potential,” but
the related Dirac equation should be solved numerically.
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APPENDIX A: SOLUTION OF THE DIRAC EQUATION
WITH COULOMB POTENTIAL

The exact relativistic energy for a pure Dirac-Coulomb
problem EC(nlj ) for the nlj state is of the form (see, e.g.,
[30]),

EC(nlj ) = fC(Zα) m, (A1)

fC(Zα) = 1√
1 + (Zα)2

(nr+ζ )2

, (A2)

and1

ν = (−1)j+l+1/2(j + 1/2), ζ =
√

ν2 − (Zα)2,

nr = n − |ν|.

1It is customary to use κ for (−1)j+l+1/2(j + 1/2) (cf. [30]),
however, κ is used in our papers on muonic atoms for something
else.
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The wave functions of the Dirac-Coulomb problem are (see,
e.g., [30])

ψ
(C)
njlm(r) =

(
�j,l,m(r/r) f (r)

(−1)
1+2l−2j

2 �j,2j−l,m(r/r) g(r)

)
, (A3)

where the radial components are

f

g

}
= ± (2mη)3/2

�(2ζ + 1)

√
(m ± EC)�(2ζ + nr + 1)

4Zαm
η

(
Zα
η

− ν
)
nr !

× e−mηr (2mηr)ζ−1

×
{(

Zα

η
− ν

)
1F1(−nr,2ζ + 1 ; 2mηr)

∓ nr × 1F1(1 − nr,2ζ + 1 ; 2mηr)

}
. (A4)

Here the upper signs correspond to the large component f

and lower ones are for the small components g; 1F1(a,b; z)

are confluent hypergeometric functions, �jlm is a spherical
spinor, and

η =
√

1 − (
Enlj

/
m

)2 = Zα√
(nr + ζ )2 + (Zα)2

.

The leading nonrelativistic contribution to the Dirac-
Coulomb wave functions can be expressed in terms of the
eigenfunctions of the Schrödinger-Coulomb problem,

�
(C)
nlm(r) = Ylm(r/r)Rnl(r), (A5)

where

Rnl(r) = 2(Zαm)3/2

nl+2(2l + 1)!

√
(n + l)!

(n − l − 1)!
(2Zαmr)l e− Zαmr

n

× 1F1

(
−n + l + 1,2l + 2;

2Zαmr

n

)
, (A6)

and Ylm are spherical functions.
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