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The ground state of interacting spin chains in external magnetic fields can undergo a quantum phase transition
(QPT) characterized by dramatic changes at a critical value of the magnetic field. In this paper, we use Bell-type
inequalities to study the multipartite correlations (including multipartite entanglement and multipartite nonlocality
in an n-spin subsystem) in the QPT of an infinite XY chain. An efficient numerical optimization procedure is
proposed to figure out the violation measure Mn of the inequalities. For n � 7, the magnetic-field (λ) dependence
of Mn is studied. We find the derivative of Mn is divergent exactly at the QPT point λc = 1 for any n. In addition,
with the increase of n, Mn converges quickly for λ < λc and converges very slowly for λ > λc, which can be
regarded as another signal for the QPT. Furthermore, in the vicinity of λc, high-order Bell-type inequalities will
be violated as long as n is large enough. This indicates that high-level multipartite correlation will be present
when the system is in the vicinity of the QPT point. Nevertheless, genuine n-partite entanglement or genuine
n-partite nonlocality is not observed in the QPT.
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I. INTRODUCTION

Quantum entanglement is one of the most important
concepts in quantum mechanics and quantum information
theory [1]. In the field of condensed-matter physics, quantum
entanglement has attracted much attention, partly because
it provides interesting perspectives for us to understand
quantum phase transitions (QPTs) [2]. A QPT is the dramatic
change of the ground state of a macroscopic quantum system.
Bipartite measures of entanglement, such as the entanglement
concurrence and the entanglement entropy, have been found to
show a maximum, a singularity, or an interesting logarithmic
scaling behavior in the vicinity of the QPT points [3–10].
These findings greatly enhance our understanding of QPTs.

Another way to characterize the correlations at a QPT is
to investigate the quantum nonlocality. Nonlocality is also
a kind of quantum correlation, which is indicated by the
violation of Bell-type inequalities [11–13]. It is a natural
conjecture that nonlocality should also play a fundamental
role in QPTs, just as entanglement does. However, it is rather
surprising that bipartite nonlocality is not observed in most
one-dimensional models [14–18]. Recently, it was pointed out
by Oliveira et al. that the absence of bipartite nonlocality in
translationally invariant systems results from the monogamy
inequality obeyed by quantum nonlocality [19]. As a result, the
basic role of quantum nonlocality in QPTs of one-dimensional
spin models remains unclear.

With the help of the Mermin inequality and the Svetlichny
inequality, recently, Bell-type inequalities have been general-
ized to multipartite settings, which makes them natural candi-
dates for a quantitative evaluation of quantum nonlocality in
any multipartite setting [20–26]. For example, Batle and Casas
have investigated the nonlocality in subsystems with three

qubits (n = 3) in infinite XY chains [27]. Unfortunately, for
various choices of three spins, nonlocal correlation is not ob-
served. For a quantum Ising model with finite spins (up to seven
spins), the nonlocality has been studied [28]. However, as the
length of the system is too small, the relationship between
multipartite nonlocality and QPT has not been discussed.

In this paper we will use generalized Bell-type inequalities
to characterize the multipartite correlation in the QPT of
infinite XY chains. First, we propose an efficient procedure
to calculate the violation measure of the inequalities, which
greatly reduces the CPU time in numerical optimization.
Second, we find that high-order inequalities are just violated
in the vicinity of the QPT point, which provides an alter-
native perspective to understand the link between quantum
correlation and QPTs in one-dimensional systems. We would
like to mention that the global entanglement of the XY

chain has been studied [23,29]. However, as we will show,
Bell-type inequalities are defined naturally in multipartite
settings. Furthermore, they provide us a unified view of both
multipartite entanglement and multipartite nonlocality.

This paper is organized as follows. In Sec. II, we briefly
review the concepts of the Mermin inequality and Mermin-
Svetlichny inequality. Some technique details about the nu-
merical optimization will also be proposed. In Sec. III, we
apply the theory to n continuous spins in infinite XY models.
A summary is given in Sec. IV.

II. DEFINITION AND OPTIMIZATION
OF n-PARTITE CORRELATIONS

A. n-partite Mermin inequality

In this paper, the main tool to study multipartite correlation
is a class of Bell inequalities derived by Mermin, Ardehali,
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Belinskii, and Klyshko [30–32]. Let’s consider an experiment
on n parties, where each party performs one out of two
measurements. We denote the two outcomes from party j as aj

and a′
j . Letting M1 = a1 and M ′

1 = a′
1, the Mermin-Klyshko

(MK) polynomials can be defined recursively as

Mn = 1
2Mn−1(an + a′

n) + 1
2M ′

n−1(an − a′
n),

M ′
n = 1

2M ′
n−1(a′

n + an) + 1
2Mn−1(a′

n − an),

where Mn and M ′
n can be obtained from each other by

exchanging all the aj and a′
j . For a given quantum-state

described by a density matrix ρ̂n, the polynomial Mn should
be interpreted as the expectation value of the corresponding
Mermin operator M̂n [24]. As we will show, M̂n depends upon
2n unit vectors.

Let’s take the n = 2 case as an example. Now the MK
polynomial is expressed as

M2 = 1
2a1(a2 + a′

2) + 1
2a′

1(a2 − a′
2).

In the context of quantum mechanics, M2 should be interpreted
as the expectation value of M̂2, i.e., M2 = Tr(ρ̂2M̂2), with

M̂2 = 1
2 a1 · σ 1 ⊗ (a2 + a′

2) · σ 2 + 1
2 a · σ 1 ⊗ (a2 − a′

2) · σ 2,

where a j and a′
j are unit vectors in R3 space and σ =

(σ̂x,σ̂y,σ̂z) are Pauli matrices. One can see that M̂2 is just
the widely used Clauser-Horne-Shimony-Holt operator [12],
with the two differing by a constant factor.

For any n-partite state ρ̂n which admits a local hidden-
variable theory, it should hold that [24]

Tr(ρ̂nM̂n) � 1. (1)

The violation of the above inequality indicates that ρ̂n cannot
be described by any local variable theory; in other words, it
contains nonlocal correlation. In this paper we will call Mn =
Tr(ρ̂nM̂n) the violation measure of the Mermin inequality. In
addition, it has been shown that the inequality will also be
violated if ρ̂n is entangled [24]. Thus, the inequality can be
used to indicate both the nonlocality and the entanglement.
Suppose a state ρ̂n violates the above inequality; it would be
interesting to further characterize the multipartite nature of the
correlations in ρ̂n, discussed in the following.

B. Multipartite entanglement

A two-party state ρ̂2 is separable if it can be decomposed
as ρ̂2 = ∑

i pi |�i〉〈�i |, where |�i〉 = |ψ1〉i |ψ2〉i are product
states for all i. In the multipartite case, because of many
more choices in decomposing the system, the classification of
entanglement is much richer than in the bipartite case [22]. If
an n-party state ρ̂n can be decomposed as ρ̂n = ∑

i pi |�i〉〈�i |,
where |�i〉 = |ψ1〉i · · · |ψn〉i are product states for all i, we say
ρ̂n is fully separable. Instead, if any |�i〉 can just be expressed
as |�i〉 = |ψ12〉i |ψ3〉i · · · |ψn〉i , rather than a full product form,
we say that ρ̂n is two-partite entangled. Similarly, one can
generalize to the definition of m-partite entanglement. A larger
m indicates a higher hierarchy of multipartite entanglement.

For an n-partite state containing at most m-partite entan-
glement (m � n), it should hold that [24]

Mn = Tr(ρ̂nM̂n) � 1√
2

2m/2. (2)

In this paper, we will call it the m-order Mermin inequality.
Inequality (1) can be seen as the first-order Mermin inequality.
For some state ρ̂n, if the m-order Mermin inequality is violated,
there is at least (m + 1)-partite entanglement in ρ̂n. A state ρ̂n

contains genuine n-partite entanglement if the (n − 1)-order
Mermin inequality is violated. Thus, the violation of Mermin
inequalities can be used as a sufficient criterion to classify
multipartite entanglement.

C. Multipartite nonlocality

Bancal et al. have proposed the so-called grouping models
to quantify multipartite nonlocality [26]. Suppose we can
divide an n-partite system into m groups, such that within
each group the parties can communicate with each other, while
between different groups no communication is allowed. We
will call it an m-grouping model. It is natural that a smaller
m indicates a higher hierarchy of multipartite nonlocality. For
example, for m = n, the model is fully separable and thus has
no nonlocality, while for m = 1, the model contains genuine
n-partite nonlocality.

First, let’s define the Mermin-Svetlichny (MS) operator as

Ŝm
n =

{
M̂n, for n − m even,

M̂+
n , for n − m odd,

(3)

with M̂+
n = 1√

2
(M̂n + M̂ ′

n). Then for any m-grouping model,
it holds that [26]

Sm
n = Tr

(
ρ̂nŜ

m
n

)
� 2(n−m)/2. (4)

In this paper, we will call it the m-order Mermin-Svetlichny
inequality for n sites. Inequality (1) can be seen as the n-order
Mermin-Svetlichny inequality for n sites. If the m-order
Mermin-Svetlichny inequality is violated by a state ρ̂n, in the
framework of the grouping models it says that an m − 1 (or
less) grouping model is needed to reproduce the nonlocality
in ρ̂n. A state ρ̂n contains genuine n-partite nonlocality if
the second-order Mermin inequality is violated. Thus, the
violation of the Mermin-Svetlichny inequality is a sufficient
criterion to classify multipartite nonlocality.

D. Details for numerical optimization

As we have shown, Mn (and Sm
n ) is a function of the

unit vectors {a1,a′
1, . . . }. For a given ρ̂n, in order to detect

the multipartite correlation, one has to find the max value
of Tr(ρ̂nM̂n) with respect to 2n unit vectors. Multivariable
optimization is usually difficult, and large amount of numerical
calculation is involved, which may be one of the reasons
why the fast-developed quantum information theory about
multipartite correlation has not been extensively applied
in one-dimensional quantum systems. Thereby, an efficient
procedure to carry out the optimization is significant. We
would like to mention that an efficient numerical optimization
to calculate the global quantum correlation has been proposed
in Ref. [33]. In the optimization of Mn, we find that most
of the CPU time is used to repeatedly evaluate the value
of the objective function Mn = Tr(ρ̂nM̂n) for different sets
{a1,a′

1, . . . }. Now we show how to obtain a high efficiency to
evaluate Mn. First, the Mermin operator M̂n can be expressed
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as the following inner product:

M̂n = fn · [σ 1 ⊗ · · · ⊗ σ n],

where fn is the sum of the dyadic of unit vectors {a1,a′
1, . . .}

and σ 1 ⊗ · · · ⊗ σ n is regarded as the dyadic of n spin vectors.
For example, M̂2 can be rewritten as

M̂2 = 1
2 [a1 ⊗ a2 + a1 ⊗ a′

2 + a ⊗ a2 − a ⊗ a′
2] · [σ 1 ⊗ σ 2].

Next, we can express the objective function Mn as

Mn = Tr(ρ̂nM̂n) = fn · ρn, (5)

with

ρn = Tr(ρ̂n[σ 1 ⊗ · · · ⊗ σ n]).

In practice, we treat fn and ρn as vectors. Now all variables
of the objective function are contained in vector fn, and all
the constants in the objective function are contained in vector
ρn. The optimization of Mn is just to find an optimal vector fn

which has the most amount of overlap with the given vector
ρn. In our program, we figure out the constant vector ρn before
calling the objective function, rather than evaluating repeatedly
the complex matrix-direct-product operations in Tr(ρ̂nM̂n),
which greatly improves the efficiency. Furthermore, it should
be mentioned that ρn is sparse. We find numerically that only
about 20% of its elements are nonzero. Consequently, most of
the elements in fn can be omitted, and the objective function
Mn = fn · ρn can be dramatically reduced. The separation of
variables and constants combined with the reduction of the
objective function improves the efficiency of the numerical
optimization by about 10 times.

III. MULTIPARTITE CORRELATION IN THE GROUND
STATE OF THE XY MODEL

A. Solution of the XY model

The XY model can be described by the following
Hamiltonian:

Ĥ = −
∑

i

[
(1 + γ )Ŝx

i Ŝx
i+1 + (1 − γ )Ŝy

i Ŝ
y

i+1 + λŜz
i

]
,

where γ is a dimensionless parameter describing the
anisotropy in the x-y plane and λ is a dimensionless parameter
characterizing the strength of the magnetic field. The model
reduces to the Ising model and XX model for γ = 1 and
γ = 0, respectively. For 0 < γ � 1, the ground state of the
system undergoes a second-order QPT at the critical point
λc = 1. The model is exactly solvable in the thermodynamic
limit [34,35]. In this paper, in infinite XY chains with an
open boundary condition, we will investigate the multipartite
correlation in a subsystem consisting of n consecutive spins,
located in the middle of the chain.

The first step is to construct the reduced density matrix of
the subsystem, i.e., ρ̂n. According to Barouch et al., ρ̂n can be
expressed in the following (unnormalized) form [34–36]:

ρ̂n =
∑

μ1,...,μn={0,x,y,z}

〈
Ŝ

μ1
1 · · · Ŝμn

n

〉
Ŝ

μ1
1 · · · Ŝμn

n , (6)

where we have used Ŝ0
i to denote the identity matrix.

We just need to calculate the n-party correlation functions

0

0.5

1

M
2

(a) γ = 0.6 (b) γ = 1.0

0 1 2
0

0.5

1

λ

M
3

(c) γ = 0.6

0 1 2

(d) γ = 1.0

λ

FIG. 1. (Color online) Violation measure Mn (n = 2,3) of the
Mermin inequality as a function of the dimensionless magnetic-field
parameter λ for several values of the dimensionless anisotropic
parameter γ . The circles, dots, and crosses are according to Mn with
{a1,a′

1, . . .} in the x-y plane, x-z plane, and y-z plane, respectively.
The red lines in (a) and (b) denote the exact results according to
Horodecki’s formula, divided by 2.

〈Ŝμ1
1 · · · Ŝμn

n 〉. First, for any given set of {μ1, . . . ,μn}, we
transform Ŝ

μ1
1 · · · Ŝμn

n into the product of an even number of
Majorana operators ăj [36]. Then with the help of Wick’s
theorem from quantum-field theory [37], the average value of
the products of ăj is expressed in terms of the second moments
〈ămăn〉. The expressions for 〈ămăn〉 are well known [36]. Thus,
along this procedure, we are able to identify ρ̂n exactly for finite
n. In practice, the symmetry of the model can be utilized; that
is, 〈Ŝμ1

1 · · · Ŝμn
n 〉 is equal to zero if the number of μi satisfying

μi = x,y is odd.
After obtaining ρ̂n, we will use the Mermin inequalities to

detect the quantum correlations in ρ̂n. Before starting our study,
we have confirmed the validity of our optimization procedure
by reproducing some previous results. For n = 2, the max
value of M2 can be figured out exactly according to Horodecki
et al.’s formula [13]. In Figs. 1(a) and 1(b), we show our results
for n = 2 for several γ . We consider three special situations;
that is, all the vectors {a1,a′

1, . . . } are in the x-y plane, in
the x-z plane, or in y-z plane. The exact results according
to Horodecki et al.’s formula are denoted by red lines. One
can see that our numerical results are in good agreement
with the exact results. Furthermore, for n = 3 [see Figs. 1(c)
and 1(d)], the first-order Mermin inequality Tr(ρ̂nM̂n) � 1
is never violated. It means that nonlocality is not observed
for three-qubit subsystems, which is consistent with previous
results [27].

For n � 4, as we will show, the first-order Mermin
inequality is violated when all the vectors {a1,a′

1, . . . } are
in the x-z plane. Thus, in this paper, we will just consider Mn

with all {a1,a′
1, . . . } in the x-z plane.

B. Signals of QPT

For the Ising case (γ = 1), we show the magnetic-field
dependence of Mn and its first-order derivative ∂Mn

∂λ
in Fig. 2.

First, ∂Mn

∂λ
diverges exactly at the critical point λc = 1 for all

n [see Fig. 2(b)]. As we have shown in Eq. (6), the elements
of ρ̂n are just multispin correlation functions. They (or part
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FIG. 2. (Color online) (a) Violation measure of the Mermin
inequality for the Ising model (γ = 1) for n = 2, . . . ,7. (b) The
derivative of the violation measure of the Mermin inequality for the
Ising model (γ = 1) for n = 2, . . . ,6.

of them) should be singular when a phase transition occurs.
Thus, it is not a surprising result that Mn = Tr(ρ̂nM̂n) is also
singular at the QPT point.

Another signal of the QPT is that Mn shows quite different
size effects on the two sides of the critical point. When
the size of the subsystem increases, Mn decreases gradually
in the region λ < λc = 1 and increases steadily for λ > λc

[see Fig. 2(a)]. Furthermore, for λ < λc, Mn converges very
quickly, and the curves for M5 and M6 are almost overlapped.
For λ > λc, however, our results reveal clearly that Mn

converges very slowly if, indeed, it can converge. Similar
behavior is also observed for γ = 0.6, as shown in Fig. 3.
The results suggest that the ground states on the two sides of
λc = 1 are fundamentally different, which can be regarded as
a signal of the QPT.
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FIG. 3. (Color online) Violation measure of the Mermin inequal-
ity as a function of λ of the XY model (γ = 0.6) for several n.
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FIG. 4. (Color online) (a) Size dependence of the peak value of
Mn of the Ising model (γ = 1). (b) Size dependence of the genuine
n-partite entanglement indicator M∗

n

Mc
n−1

of the Ising model (γ = 1).

Genuine n-partite entanglement is identified if M∗
n

Mc
n−1

> 1.

C. Multipartite entanglement in the critical region

A direct result of the increase of Mn with n is that, when n

is large enough, Mn will present peak points in the vicinity of
the critical point. Let’s just consider the Ising case as shown in
Fig. 2(a). M2 and M3 are monotonically increasing functions
of λ. For n = 4,5,6,7, Mn presents peaks at (λ∗

4 = 1.73,M∗
4 =

1.008), (λ∗
5 = 1.30,M∗

5 = 1.063), (λ∗
6 = 1.18,M∗

6 = 1.166),
and (λ∗

7 = 1.13,M∗
7 = 1.315), respectively. The peaks are

illustrated with asterisks in Fig. 2(a). With the increase of
n, the peaks become sharp gradually, and the position of the
peaks, i.e., λ∗

n, tends to the critical point λc = 1.
According to the Mermin inequalities (1), (2), and (4), a

high value of Mn may result in the violation of these inequal-
ities. Therefore, the peak points of Mn would be valuable
in characterizing the multipartite correlation in the system.
From Fig. 2(a), one can see that for n � 4 the first-order
Mermin inequality Tr(ρ̂nM̂n) � 1 is violated in the vicinity
of the peak points. According to the theory in Sec. II, this
indicates that at least two-partite entanglement is present in
ρ̂n. In fact, the existence of three-partite entanglement can
be identified for n � 8. In Fig. 4(a), we display the size
dependence of the peak value of Mn, that is, M∗

n . As n increases
from 3 to 7, one can see that ∂M∗

n

∂n
increases gradually. It is

quite reasonable that M∗
8 >

√
2. Therefore, the second-order

Mermin inequality Tr(ρ̂nM̂n) �
√

2 will be violated for n � 8.
In other words, at least three-partite entanglement is present for
n � 8. Furthermore, since (i) the right-hand side (rhs) of the
m-order Mermin inequality [see Eq. (2)] does not depend upon
n and (ii) the peak value of left-hand side (lhs) of the inequality,
i.e., M∗

n , increases faster and faster as n increases, one can
conclude that as long as n is large enough, the arbitrary-order
Mermin inequality will be violated. In the framework of
m-partite entanglement, multipartite entanglement with an
arbitrarily high hierarchy will be observed only if n is large
enough.

As we have mentioned, for a large n, the peak of Mn

should become sharp and should be located close to the critical
point. Thus, high-hierarchy-multipartite entanglement should
be present just in the vicinity of the QPT point. In fact,
Mn can disclose even more features about the change of the
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hierarchy of multipartite entanglement in the QPT. When the
system moves towards (away from) the critical point, since
Mn increases (decreases), the order of the violated inequality
will increase (decrease) gradually. In the language of m-partite
entanglement, this means that when the system moves towards
(away from) the QPT point, the hierarchy of multipartite
entanglement in ρ̂n will increase (reduce).

We have shown that Mn can be used to measure multipartite
entanglement. In fact, the size effects in Fig. 2(a) can help
us explain the physical meaning of Mn in the context of
condensed-matter physics. According to how the correlations
decay with distance, a system is usually said to have short-
range order (SRO) or long-range order (LRO). If a system is
short range correlated, measures of correlations will usually
converge fast with the increase of the system size. In Fig. 2(a),
the fast convergence of Mn for λ < λc reveals that the
correlations in the system are short ranged. On the other
hand, LRO is usually detected by the nonconvergence of
measures of correlations. For instance, the increase of the
structure factor (a well-known tool to study correlations
in condensed-matter physics; an example can be found in
Ref. [38]) with system size is a widely used signal for LRO.
In addition, the nonconvergence of entanglement entropy (a
measure of bipartite entanglement) in the QPT is also induced
by LRO [7,9,10]. Clearly, the fact that M∗

n increases with n

in the vicinity of the critical point is a crucial indicator of the
appearance of LRO at the QPT of the XY model. Thus, Mn

reveals two significant characteristics of the QPT of the XY

model: multipartite correlation and LRO.

D. Multipartite nonlocality in the critical region

In this section, we will analyze the multipartite nonlocality
in the XY model with the help of the m-grouping models and
the Mermin-Svetlichny inequality (4).

First, we consider the Mermin-Svetlichny inequality where
n − m is even. Now the inequality is expressed as Sm

n =
Tr(ρ̂nM̂n) � 2(n−m)/2, or, alternatively,

Mn � 2(n−m)/2, for n − m even, (7)

which reduces to the Mermin inequality. The Mermin in-
equality has been extensively studied above; therefore, we
are ready to obtain some useful conclusions about the
quantum nonlocality. For example, for n � 4, we have already
identified the violation of Mn � 1 = 20/2; thus, the n-order
Mermin-Svetlichny inequality will be violated for n � 4.
In the grouping-model language, n − 1 (or fewer) grouping
models are needed to reproduce the nonlocal correlation in
ρ̂n (n � 4). Furthermore, as suggested by Fig. 2, violation
of high-order Mermin inequalities will be observed in the
vicinity of λc for a large n. Thus, high-hierarchy-multipartite
nonlocality will be observed in the vicinity of the critical
point.

Second, we consider the Mermin-Svetlichny inequality
where n − m is odd, where the inequality is expressed as
Sm

n = Tr(ρ̂nM̂
+
n ) = M+

n � 2(n−m)/2. The first nontrivial case
is M+

n �
√

2 with n − m = 1. A violation of the inequality
will indicate that n − 2 (or fewer) grouping models are needed
to reproduce the nonlocality in the state. In Fig. 5 we have
shown M+

n for n = 2, . . . ,6 with all {a1,a′
1, . . .} in the x-z
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0.4

0.6

0.8

λ

M+
n
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FIG. 5. (Color online) Violation measure of the Mermin-
Svetlichny inequality as a function of λ for several n, where γ = 1
and n − m is odd.

plane. One can see that no violation is observed. We have also
considered M+

n with all {a1,a′
1, . . .} in the x-y plane and y-z

plane, and no violation is observed either. In addition, in Fig. 5
only one peak point is observed (in M+

6 ); thus, we cannot use
the strategy in Fig. 4(a) to make any reliable estimation. This
suggests that, to observe the violation of the inequality with
an odd n − m, a large subsystem is needed.

E. Genuine multipartite correlation

Whether or not genuine n-partite correlations would be
observed at the QPT point is an interesting topic. First,
we consider multipartite entanglement. Let’s denote Mc

n−1 =
2(n−2)/2 as the rhs of the (n − 1)-order Mermin inequality.
For some n, if we find M∗

n

Mc
n−1

> 1, the (n − 1)-order Mermin
inequality is violated, and genuine n-partite entanglement
is identified. Thus, M∗

n

Mc
n−1

can be used as an indicator for
genuine n-partite entanglement. In Fig. 4(b) we show the
size dependence of M∗

n

Mc
n−1

for n = 3,4,5,6,7. One can see that
M∗

n

Mc
n−1

� 1 for all n, and more importantly, M∗
n

Mc
n−1

decreases
gradually. This suggests that genuine n-partite entanglement
would not be observed at the QPT point.

Second, we consider genuine multipartite nonlocality. In
order to identify genuine n-partite nonlocality, the state ρ̂n

should violate the second-order Mermin-Svetlichny inequality.
In the case where n is even, the inequality reduces to Mn �
2(n−2)/2 = Mc

n−1, or, alternatively, Mn

Mc
n−1

� 1. As suggested by
Fig. 4(b), the violation would never occur. In the case where n

is odd, the inequality reduces to M+
n � 2(n−2)/2 = Mc

n−1. As n

increases, M+
n increases even more slowly than Mn [see Figs. 5

and 2(a)]. Thus, the inequality would not be violated for an
odd n either.

These results suggest that genuine n-partite quantum
entanglement and nonlocality would not be observed in the
XY model by Bell-type experiments [39].

IV. SUMMARY

In this paper, we have studied multipartite quantum
correlations in infinite XY chains with an open boundary
condition. Specifically, we have used the violation measure Mn
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of Bell-type inequalities to evaluate multipartite correlation of
an n-spin subsystem located in the middle of the chains.

Some clues for the critical point λc = 1 have been found
by analyzing Mn and its derivative ∂Mn

∂λ
. First, ∂Mn

∂λ
is divergent

exactly at the critical point for all n. Second, Mn shows quite
different size effects on the two sides of the QPT point. Third,
as n increases, the position of the peaks, i.e., λ∗

n, approaches
the critical point gradually.

The whole interest of this paper is to study how the quantum
correlations spread out among the spins when the system
undergoes a QPT. It is interesting that Mn can characterize the
correlations in the QPT from two different aspects: multipartite
correlations in the field of quantum information theory and
long-range order in the field of condensed-matter physics.
First, we pay attention to the hierarchy of multipartite entangle-
ment and multipartite nonlocality. As long as n is large enough,
an arbitrary-order Mermin inequality (and Mermin-Svetlichny
inequality) would be violated just at the critical point.
Consequently, the n-spin subsystem will show a high hierarchy
of multipartite correlation in the vicinity of the QPT point, and
the hierarchy of multipartite correlation will reduce gradually
when the system moves away from the critical region. We
would like to mention that the quantum nonlocality is detected
for n � 4 in this paper. It is a meaningful extension of previous
studies where quantum nonlocality has not been observed for

n = 2 in many one-dimensional systems [14–19]. The result
shows that in low-dimensional quantum spin models, quantum
nonlocality is present naturally in the form of multipartite
settings, rather than the bipartite setting. Furthermore,
clear evidence shows that genuine n-partite entanglement or
genuine n-partite nonlocality cannot be observed in the QPT of
the XY model by Bell-type experiments. Moreover, we would
like to mention that Mn reveals the long-range correlations in
the QPT. With the increase of n, the peak value of Mn does not
converge in the vicinity of the critical point, which is a crucial
indicator of the appearance of long-range correlations in
the QPT.
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