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Double-double electromagnetically induced transparency with amplification
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We show that an alkali-metal atom with a tripod electronic structure can yield rich electromagnetically-induced-
transparency phenomena even at room temperature. In particular we introduce double-double electromagnetically
induced transparency wherein signal and probe fields each have two transparency windows. Their group velocities
can be matched in either the first or second pair of transparency windows. Moreover, signal and probe fields can
each experience coherent gain in the second transparency windows. We explain using a semiclassical dressed
picture to connect the tripod electronic structure to a double-� scheme.
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Electromagnetically induced transparency (EIT) exploits
interfering electronic transitions in a medium to eliminate
absorption and dramatically modify dispersion over a narrow
frequency band with applications including slow light, reduced
self-focusing and defocusing [1], and quantum memory [2].
Microscopically, a three-level � electronic structure suffices
to explain EIT. Double EIT (DEIT) extends EIT to creating
two simultaneous transparency windows, one for a signal and
the other for a probe field, with the aid of a third coupling
field [3–7]. Double EIT is valuable for coherent control
and enabling long-lived nonlinear interactions between weak
fields, which could enable deterministic all-optical two-qubit
gates for quantum computing.

Whereas the � atom suffices to explain EIT, DEIT requires
at least four levels such as the tripod � atom [3] in Fig. 1(a).
The same atom is shown in Fig. 1(b) for the semiclassical
dressed state picture [8], which has two lower (|1〉 and |3〉) and
two upper (|±〉) levels after eliminating the strong coupling (c)
field. We introduce the semiclassical dressed representation of
the �-atom master equation as a powerful tool for intuiting
double-DEIT phenomena including amplification.

This semiclassical dressed model of the � scheme cor-
responds effectively to a double � system, and double �

schemes have been studied experimentally [9]. With our semi-
classical dressed state analogy, we show that this � electronic
structure exhibits rich EIT phenomena, namely, what we now
call double-DEIT (DDEIT). Our DDEIT phenomenon has the
property that both the signal and the probe fields can each have
two EIT windows given the right parameter choices. The wide
importance of EIT in, for example, slow light in atomic vapors
[7], optical fibers [10], and Bose-Einstein condensates [11] as
well as in solid-state systems such as optonanomechanics [12]
and superconducting artificial atoms [13], indicates the broad
applicability of our DDEIT properties.

One particular aspect of our system, namely, the second
EIT window for the probe, has been predicted [14] and
observed experimentally [7,15], but this previously observed
effect corresponds only to one aspect of our system, namely,
a double window for the probe and not to our full DDEIT for
both signal and probe fields. Moreover, previous work on the
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�-atom scheme focused on equal detuning between driving
fields, whereas we are exploring rich phenomena outside this
restrictive domain. These second EIT windows for each of
the signal and probe fields exhibit coherent gain, which had
not previously been expected. We now reprise the dynamics
of the driven � atom [3]. For � ≡ 1 and σ̂ıj := |ı〉〈j |, the
free Hamiltonian is Ĥ0 = ∑4

ı=1 ωıσıı . For ωıj := ωı − ωj ,
the � atom is driven by a probe field with frequency ωp =
ω41 − δp, a coupling field with frequency ωc = ω42 − δc,
and a signal field with frequency ωs = ω43 − δs . In terms of
Rabi frequencies �x for x ∈ {p,c,s}, the driving Hamiltonian
is Ĥdr(t) = 1

2 (�peiωpt σ̂14 + �ce
iωct σ̂24 + �se

iωs t σ̂34 + H.c.),
with H.c. the Hermitian conjugate.

Under a rotating-frame transformation with respect to Â =
3δpσ̂11 + (2δp + δc)σ22 + (2δp + δs)σ̂33 + 2δpσ̂44, the resul-
tant time-independent Hamiltonian is [3] Ĥ = δpcσ22 +
δpsσ33 + δpσ44 + (�pσ41 + �cσ42 + �sσ43 + H.c.)/2, with
δxy := δx − δy . The Lindblad master equation is

ρ̇ = i[ρ,Ĥ ] +
4∑

ı<j

γjı

2
(σijρσji − σjjρ − ρσjj )

+
4∑

j=1

γφj

2
(σjjρσjj − σjjρ − ρσjj ), (1)

including spontaneous emission and dephasing. The decay
rates depicted in Fig. 1(a) are γj := ∑

i<j (γji + γφj ) and the
steady-state density-matrix ρ̄ solution is known [3]. We now
provide analytic solutions, which we verified numerically by
solving Eq. (1) in the steady state.

Given ρ̄, optical susceptibility of the � medium can be
calculated. We first consider the probe-field case and later the
signal-field case, which is similar. We calculate the optical
response to the probe field using the off-diagonal steady-state
density-matrix element ρ̄14,

ρ̄14 = �p

i(ρ11 − ρ44) + �s

γ3−2iδps
ρ̄43

γ4 − 2iδp + |�c|2
γ2−2iδpc

+ |�s |2
γ3−2iδps

, (2)

with

ρ̄43 = �∗
s

−i(ρ33 − ρ44) + �∗
p

γ3−2iδps
ρ̄41

�43 + 2iδs + |�c|2
γ3+γ2+2iδsc

(3)
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the optical response for the signal field and �kl = γk + γl . We substitute Eq. (3) into Eq. (2) to obtain

ρ̄14 = i�p

(ρ11 − ρ44)
(
�43 + 2iδs + |�c|2

�32+2iδsc

) + (ρ11 − ρ44) |�p |2
γ3−2iδps

+ (ρ44 − ρ33) |�s |2
γ3−2iδps(

�43 + 2iδs + |�c|2
�32+2iδsc

)(
γ4 − 2iδp + |�c|2

γ2−2iδpc
+ |�s |2

γ3−2iδps

) + |�p |2
γ3−2iδps

(
γ4 − 2iδp + |�c|2

γ2−2iδpc

) . (4)

For an atomic gas in three dimensions with N the
atomic density and d14 the dipole moment, the linear optical
susceptibility is [3]

χp = N |d14|2
ε0

ρ̄14

�p

. (5)

Our Eq. (4) generalizes the previous expression for the
response function [3], which focuses on the special case of
equal detuning between all fields and ignores signal-field and
nonlinear probe-field terms.

We calculate and plot Im[χp] (absorption) in Fig. 2. In
order to explain the parameter choices in Fig. 2, we refer to
Fig. 1(a). Specifically, we consider 87Rb and assign |1〉, |2〉,
and |3〉 to the 5S1/2 level with F = 1, mF = 0 and F = 2,
mF = {−2,0}, respectively. Level |4〉 corresponds to the 5P1/2

level with F = 2 and mF = −1. The decay rates [7] and field
strengths are given in the Fig. 2 caption for atomic density
1014cm−3.

Figure 2 exemplifies the features inherent in Eq. (4). First
consider the case that �s ≡ 0, which decouples |3〉 from the
dynamics and restores ordinary �-atom EIT. The semiclassical
dressed picture of Fig. 1(b) clarifies the dynamics where we
introduce two dressed states |±〉. The �s ≡ 0 line in Fig. 2
shows two EIT absorption peaks at δ±

p corresponding to |1〉 ↔
|±〉 transitions, respectively.

(a) (b)

FIG. 1. (Color online) (a) Four-level tripod electronic structure
with high-energy state |4〉 and lower-energy levels |1〉, |2〉, and |3〉
in order of increasing energy. Transitions are driven by probe (p),
coupling (c), and signal (s) fields with frequencies ωx and detunings
δx with x∈ {p,c,s}. Decay rates for level |i〉 are γi for i ∈ {2,3,4}.
(b) Same atom in the semiclassical dressed state picture for strong c

field, which corresponds to a double-� level structure. Levels |2〉 and
|4〉 are hybridized into |±〉.

Mathematically, the semiclassical dressed picture is ob-
tained by the unitary transformation [8,16]

ρ �→ UρU †, U =

⎛
⎜⎜⎝

1 0 0 0

0 ϑ 0 ϑς

0 0 1 0
0 −ϑς∗ 0 ϑ

⎞
⎟⎟⎠, (6)

with ς :=
√

|�c|2+δ2
c +δc

�c
and ϑ := 1√

1+|ς |2 . In this semiclassical

dressed basis

ρ̄1− =
(

ϑς + iϑ�∗
c

γ2 − 2iδpc

)
ρ̄14 (7)

and

ρ̄1+ =
(

ϑ − iϑς∗�∗
c

γ2 − 2iδpc

)
ρ̄14, (8)

which are plotted in Fig. 3. Equations (7) and (8) are useful
because the undressed state ρ̄14 corresponds to interfering
transitions to ρ̄1±.

For �s �= 0, we see in Fig. 2 that the second absorption
peak at δ+

p is split by a transparency window with negative
absorption, i.e., gain. This splitting of the second peak is due
to the formation of a double-� electronic structure [9] shown
in Fig. 1(b). Specifically, level |+〉 gives the absorption peak
at δ−

p , but the peak at δ+
p is split by competing transitions

|1〉 ↔ |−〉 and |3〉 ↔ |−〉.
This explanation of competing transitions elucidates the

splitting of the δ+
p peak but not the presence of gain in the sec-

ond EIT window (δp = δs). In Fig. 3 gain in ρ̄1+ is evident over
a wide domain of δp but cancels everywhere in the sum ρ̄1+ +
ρ̄1− except in the narrow second EIT window. This gain is due
to off-resonant driving to one of the upper levels. Both Imρ̄1±

20 10 10 20
δp MHz

0.2

0.1

0.1

0.2

Im χ p

FIG. 2. (Color online) Absorption Im[χp] vs probe detuning δp

for γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, �c = γ4, �s = 0.3γ4,
�p = 0.2γ4, δs = 9 MHz, and δc = 0 with all terms of Eq. (4)
included (solid line), with ρ43 ≡ 0 imposed (dashed line), the gain
term (dot-dashed line), the nonlinear absorption term (dotted red line),
and the case that �s ≡ 0 (dotted line).
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FIG. 3. Plot of Im(χ1±) vs probe detuning δp for the same
parameters as in Fig. 2 with ρ̄1+ (dashed line), ρ̄1− (dotted line),
and ρ̄1+ + ρ̄1− (solid line).

contribute to the probe susceptibility, which is proportional to
ρ̄14. The gain for the |1〉 ↔ |+〉 is overwhelmed by the loss
due to driving the |1〉 ↔ |−〉 transition on or near resonance.
This loss overwhelms the gain leading to no gain for the probe
transition except in a narrow window as seen in Fig. 3.

As this gain is initially surprising, we investigate further
using the undressed picture of Fig. 1(a). In the undressed
picture the population in |2〉 and |4〉 vanishes at steady state
because there is no decay from |3〉 to |2〉, i.e., γ32 = 0. Any
population pumped by the coupling field to |4〉 will then decay
to |1〉 and |3〉. At steady state, the population will be distributed
between states |1〉 and |3〉. Thus, gain is not due to population
inversion in |4〉 or due to hidden population inversion in |±〉
but rather due to quantum coherence inherent in ρ̄43, which is
due to signal-field driving.

Mathematically, gain due to signal-driven coherence is
evident in Eq. (2), which is a sum of two terms: one
proportional to population difference ρ11 − ρ44 and the other
proportional ρ̄43. Gain occurs at δp = δs for which the
imaginary part of the first term is positive and the imaginary
part of the second term is negative. Probe gain arises due
to signal-driven coherence via |1〉 ↔ |3〉 coherence: ρ̇13 =
(− 1

2γ3 + iδps)ρ13 − i
2 (−ρ14�

∗
s + ρ43�p), which shows that

20 10 10 20
δp MHz

0.2

0.1

0.1

0.2

Re χ p

FIG. 4. Plot of Re[χp] vs probe detuning δp for the same
parameters as in Fig. 2.

this coherence is responsible for coupling the signal- and
probe-driven transitions. This |1〉 ↔ |3〉 coherence is crucial
to establish the requisite interfering channels in order to enable
gain to outweigh the effects of absorption [17,18].

The amplification can be partially understood as a Raman
gain by ignoring level |2〉 and considering just the � system
corresponding to the three levels |1〉, |3〉, and |4〉. Under the
two-photon resonance condition, the signal pumps and the
probe behave as an anti-Stokes field [19–21]. However, EIT
effects introduce new physics. Specifically, the following usual
Raman-gain conditions are not required in our system: The
pump does not need to be much stronger than the Stokes field,
population inversion of the lower levels is not required, and
detuning from the upper level can be small. Equations (4)
and (9) show dependence on population differences ρ11 − ρ44

and ρ33 − ρ44, which reduces to the usual Raman population
condition ρ33 − ρ11 in the limit |�s | = |�p|.

Probe dispersion is shown in Fig. 4. Group velocity is
constant in each of the two EIT windows. For detuning
δp chosen at the center of each window, dispersion is zero
so the ratio of group velocities for each EIT window is
thus the inverse of the ratio of the slopes for each window.
From the plot, the group velocity at the first window evidently
exceeds the group velocity at the second window for the given
parameters.

The optical response of the signal field is given by

ρ̄34 = i�s

(ρ33 − ρ44)
(
γ4 + 2iδp + |�c|2

γ2+2iδsc

) + (ρ33 − ρ44) |�s |2
γ3+2iδps

+ (ρ44 − ρ11) |�p |2
γ3+2iδps(

�43 − 2iδs + |�c|2
�32−2iδsc

+ |�p |2
γ3+2iδps

)(
γ4 + 2iδp + |�c|2

γ2+2iδpc

) + |�s |2
γ3+2iδps

(
�43 − 2iδs + |�c|2

�32−2iδpc

) . (9)

The corresponding absorption and dispersion curves for the
signal field are plotted in Figs. 5(a) and 5(b), respectively.

Similar to the probe-field cases shown in Figs. 2 and 4, we
observe two EIT windows in the signal-field absorption plot
and gain in the second window. From Figs. 2 and 5 we see that
the first probe and signal EIT windows are both centered at δc.
The second EIT windows are centered at δp = δs , which differs
from δc. Gain is present in each of the linear susceptibilities
for the signal and probe second EIT windows. Simultaneous
slowing of beams and matching their group velocities is
advantageous for enhancing interbeam interactions, such as
for cross-phase modulation.

Here we have two transparency windows for each of
the signal and probe beams. Now we seek to match group
velocities for each of the signal and probe fields for the first
EIT window and also for the second EIT window. In other
words, we wish to have DEIT for the signal and probe for
the first EIT windows and also to have DEIT for the second
EIT windows of each of the signal and probe. Through this
DDEIT phenomenon, one could send bichromatic signal and
probe fields through the medium with the lower-frequency
chromatic component of the signal and probe fields traveling
with one simultaneously matched group velocity and the
upper-frequency chromatic component also traveling through
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FIG. 5. (a) Absorption and (b) dispersion as a function of the signal detuning δs , analytical (solid line) and numerical (dotted line) solutions
with �s = 0.2γ4, �p = 0.3γ4, δp = 9 MHz and the other parameters as in Fig. 2.

the medium at a different but simultaneously matched group
velocity

For group-velocity matching in 87Rb with the same param-
eters as before, we choose field strengths �s = 0.3γ4 = �p

and �c = 1.0γ4. The resultant group velocities are nearly
identical at 60.7 and 60.8 ms−1 for the probe and signal fields,
respectively, in the first EIT window and 10.9 ms−1 for both
the probe and signal field in the second EIT window. The
two EIT windows for each signal and probe are separated
by �c/2 = 9.0 MHz with a first-window full width at half
maximum of 10.5 MHz and a second-window width of 2 MHz.

The second window is quite narrow but experimentally
resolvable. This second EIT window for the probe has been
observed for the 87Rb D1 line, although the width and other
features of this window were not investigated [15]. Thus,
simultaneous matching of signal and probe group velocities
in each of the two EIT windows should be possible with
reasonable experimental parameters.

Thus far we have assumed natural linewidths but now
consider robustness subject to driving-field linewidth broad-
ening and temperature-dependent Doppler broadening. Laser
linewidth broadening dephases atomic transitions but does
not modify atomic populations [22], hence is accounted
for by a dephasing-rate replacement [15,23] γφ → γφ +
� in Eq. (1) with � the full width at half maxi-
mum of the laser line. Specifically, we modify the ho-
mogeneous dephasing rates by the laser-broadened de-
phasing rates for each of the probe, coupling, and sig-
nal fields and assume independence of all driving-field
sources.

Doppler broadening is accounted for by averaging the
complex susceptibility over a Maxwell distribution of
velocities. For the D1 line of 87Rb, two-photon transitions are
completely Doppler-free because the three driving fields drive
approximately equal transition frequencies ωp ≈ ωc ≈ ωs .
Therefore, each δxy in Eqs. (4) and (9) does not change
under Doppler broadening. We compute the imaginary part
of susceptibility using the same parameters as in Fig. 2 but for
room temperature, i.e., 300 K, and show the result in Fig. 6. A
comparison of these figures shows a reduction of EIT window
width commensurate with past observations [24].

Furthermore, we observe a reduction in transparency and
gain due to both the driving-field linewidth effect [23] and
Doppler broadening [25]. Despite Doppler broadening, both

windows are still evident and the second window is evidently
more robust than the first with respect to Doppler broadening.
The narrowness of the transparency window imposed by
Doppler broadening could produce an ultraslow group velocity
[26].

In summary, we have shown that a tripod � electronic
energy structure in a four-level atom can yield rich phenom-
ena, in particular double-double electromagnetically induced
transparency with gain. We have used a semiclassical dressed
picture to connect the � electronic structure to a double-�
electronic structure to explain how each signal and probe
field experience DEIT windows; this representation simplifies
the master equation and engenders an intuitive understanding
of �-atom coherent phenomena especially those that would
otherwise appear as complicated dispersive phenomena. In the
well studied case of DEIT, a signal and probe would each have
an EIT window such that both fields can be slowed at the same
time and also could interact via cross-phase modulation. In our
case DDEIT exhibits DEIT for both the first EIT windows of
the signal and probe and also for the second windows.

Our DDEIT scheme should be experimentally feasible and
we have employed realistic parameters for 87Rb including
driving-laser linewidths and temperature [7,15]. Double EIT
for the second EIT windows for the signal and probe fields
do not just replicate the nature of the first because the second

15 10 5 5 10 15
δp MHz

0.010

0.005

0.005

0.010

0.015
Im χp

200 100 100 200
δp MHz

0.010

0.005

0.005

0.010

0.015
Im χ p

FIG. 6. Plot of Im[χp] as a function of probe detuning δp for the
same parameters as in Fig. 2 with laser linewidths �p = �c = �s =
0.1 MHz and T = 300 K. The inset shows a magnified graph where
EIT and gain are evident.
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windows also show coherent gain and our scheme could be
especially interesting for controlling bichromatic signal and
probe fields.

We acknowledge valuable discussions with S. Rebic and
P. Anisimov and support from AITF, CIFAR, PIMS, NSERC,
and the China Thousand Talents Program.
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[23] B. Lü, W. H. Burkett, and M. Xiao, Phys. Rev. A 56, 976

(1997).
[24] C. Y. Ye and A. S. Zibrov, Phys. Rev. A 65, 023806 (2002).
[25] G. Vemuri and G. S. Agarwal, Phys. Rev. A 53, 1060 (1996).
[26] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R.

Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully,
Phys. Rev. Lett. 82, 5229 (1999).

021802-5

http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1103/PhysRevA.70.032317
http://dx.doi.org/10.1103/PhysRevA.70.032317
http://dx.doi.org/10.1103/PhysRevA.70.032317
http://dx.doi.org/10.1103/PhysRevA.70.032317
http://dx.doi.org/10.1103/PhysRevA.72.062319
http://dx.doi.org/10.1103/PhysRevA.72.062319
http://dx.doi.org/10.1103/PhysRevA.72.062319
http://dx.doi.org/10.1103/PhysRevA.72.062319
http://dx.doi.org/10.1103/PhysRevLett.97.063901
http://dx.doi.org/10.1103/PhysRevLett.97.063901
http://dx.doi.org/10.1103/PhysRevLett.97.063901
http://dx.doi.org/10.1103/PhysRevLett.97.063901
http://dx.doi.org/10.1103/PhysRevA.73.010301
http://dx.doi.org/10.1103/PhysRevA.73.010301
http://dx.doi.org/10.1103/PhysRevA.73.010301
http://dx.doi.org/10.1103/PhysRevA.73.010301
http://dx.doi.org/10.1364/OL.33.002659
http://dx.doi.org/10.1364/OL.33.002659
http://dx.doi.org/10.1364/OL.33.002659
http://dx.doi.org/10.1364/OL.33.002659
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1364/OL.32.002771
http://dx.doi.org/10.1364/OL.32.002771
http://dx.doi.org/10.1364/OL.32.002771
http://dx.doi.org/10.1364/OL.32.002771
http://dx.doi.org/10.1103/PhysRevA.66.063808
http://dx.doi.org/10.1103/PhysRevA.66.063808
http://dx.doi.org/10.1103/PhysRevA.66.063808
http://dx.doi.org/10.1103/PhysRevA.66.063808
http://dx.doi.org/10.1016/S0030-4018(02)01826-6
http://dx.doi.org/10.1016/S0030-4018(02)01826-6
http://dx.doi.org/10.1016/S0030-4018(02)01826-6
http://dx.doi.org/10.1016/S0030-4018(02)01826-6
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1103/PhysRevLett.104.193601
http://dx.doi.org/10.1103/PhysRevLett.104.193601
http://dx.doi.org/10.1103/PhysRevLett.104.193601
http://dx.doi.org/10.1103/PhysRevLett.104.193601
http://dx.doi.org/10.1103/PhysRevA.66.015802
http://dx.doi.org/10.1103/PhysRevA.66.015802
http://dx.doi.org/10.1103/PhysRevA.66.015802
http://dx.doi.org/10.1103/PhysRevA.66.015802
http://dx.doi.org/10.1088/0953-4075/40/16/002
http://dx.doi.org/10.1088/0953-4075/40/16/002
http://dx.doi.org/10.1088/0953-4075/40/16/002
http://dx.doi.org/10.1088/0953-4075/40/16/002
http://dx.doi.org/10.1103/PhysRevA.53.2627
http://dx.doi.org/10.1103/PhysRevA.53.2627
http://dx.doi.org/10.1103/PhysRevA.53.2627
http://dx.doi.org/10.1103/PhysRevA.53.2627
http://dx.doi.org/10.1016/0370-1573(92)90135-M
http://dx.doi.org/10.1016/0370-1573(92)90135-M
http://dx.doi.org/10.1016/0370-1573(92)90135-M
http://dx.doi.org/10.1016/0370-1573(92)90135-M
http://dx.doi.org/10.1103/PhysRevA.55.3900
http://dx.doi.org/10.1103/PhysRevA.55.3900
http://dx.doi.org/10.1103/PhysRevA.55.3900
http://dx.doi.org/10.1103/PhysRevA.55.3900
http://dx.doi.org/10.1103/PhysRev.137.A1787
http://dx.doi.org/10.1103/PhysRev.137.A1787
http://dx.doi.org/10.1103/PhysRev.137.A1787
http://dx.doi.org/10.1103/PhysRev.137.A1787
http://dx.doi.org/10.1103/PhysRev.133.A37
http://dx.doi.org/10.1103/PhysRev.133.A37
http://dx.doi.org/10.1103/PhysRev.133.A37
http://dx.doi.org/10.1103/PhysRev.133.A37
http://dx.doi.org/10.1103/PhysRevA.49.438
http://dx.doi.org/10.1103/PhysRevA.49.438
http://dx.doi.org/10.1103/PhysRevA.49.438
http://dx.doi.org/10.1103/PhysRevA.49.438
http://dx.doi.org/10.1103/PhysRevA.56.976
http://dx.doi.org/10.1103/PhysRevA.56.976
http://dx.doi.org/10.1103/PhysRevA.56.976
http://dx.doi.org/10.1103/PhysRevA.56.976
http://dx.doi.org/10.1103/PhysRevA.65.023806
http://dx.doi.org/10.1103/PhysRevA.65.023806
http://dx.doi.org/10.1103/PhysRevA.65.023806
http://dx.doi.org/10.1103/PhysRevA.65.023806
http://dx.doi.org/10.1103/PhysRevA.53.1060
http://dx.doi.org/10.1103/PhysRevA.53.1060
http://dx.doi.org/10.1103/PhysRevA.53.1060
http://dx.doi.org/10.1103/PhysRevA.53.1060
http://dx.doi.org/10.1103/PhysRevLett.82.5229
http://dx.doi.org/10.1103/PhysRevLett.82.5229
http://dx.doi.org/10.1103/PhysRevLett.82.5229
http://dx.doi.org/10.1103/PhysRevLett.82.5229



