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Quenching to unitarity: Quantum dynamics in a three-dimensional Bose gas
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We study the dynamics of a zero-temperature Bose condensate following a sudden quench of the scattering
length from noninteracting to unitarity (infinite scattering length). We apply three complementary approaches
to understand the momentum distribution and loss rate. First, using a time-dependent variational ansatz for the
many-body state, we calculate the dynamics of the momentum distribution. Second, we demonstrate that, at short
times and large momenta compared to those set by the density, the physics can be understood within a simple,
analytic two-body model. We make a quantitative prediction for the evolution of Tan’s contact and find features in
the momentum distribution that are absent in equilibrium. Third, we study three-body loss at finite density under
the same dynamic scenario. We find lifetimes that are long compared to the saturation times of large-momentum
modes, and we relate this result to the three-body inelasticity parameter.
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Ultracold atomic physics offers unique opportunities to
study strongly correlated systems due to the tunability of the
s-wave scattering length a via Fano-Feshbach resonances [1].
Particularly interesting are quantum gases at unitarity, where
a is much larger than any other length scale in the system.
Here, the physics is highly nonperturbative due to strong
correlations. Such systems are predicted to exhibit universal
behavior which depends only on the density. Investigations
to date have predominantly focused on the Fermi gas, where
three-body loss is suppressed by statistical repulsion [2]. Over
the last decade, a general consensus has emerged on many
issues surrounding the unitary Fermi gas [3–8]. Theoretical un-
derstanding of the unitary Bose gas is less developed. Although
experiments have been able to measure beyond-mean-field
effects, such as the famous Lee-Huang-Yang correction [9,10]
for values of na3 � 7 × 10−3 (n being the number density),
progress towards unitarity with na3 � 1 is hampered by the
catastrophic scaling of three-body loss. At zero temperature
in the dilute gas, where na3 � 1 and a � rvdW (the van der
Waals length), the three-body recombination constant scales
universally as L3 ∝ �a4/m [11–16]. This a4 scaling renders
any adiabatic transition from the weakly interacting limit to
the unitary limit impractical [17,18]. One approach to limit
loss involves nondegenerate unitary Bose gases [19,20], where
low-recombination regimes can exist [21].

A brazen new approach adopted in a recent experiment
[22] utilizes an effectively diabatic quench of the scattering
length to unitarity, with the initial gas temperature well below
degeneracy. Dimensional analysis requires both the loss rate
and the equilibration rate to scale as n2/3. The experiment
observed the equilibration of large-momentum modes over
a faster time scale than the decay, indicating a substantial
difference between the prefactors of the two rates. This exciting
result indicates a unique route to the realization of a metastable
unitary Bose gas.

In this Rapid Communication, we examine the short-time
dynamics following a quench from noninteracting (a ≈ 0) to
unitarity (a = ∞). We focus on the coherent evolution of the
momentum distribution (particularly at large momenta) and the
time scale for three-body loss. We study and compare results
from several distinct models to understand different aspects of

the problem. First, we use a time-dependent variational ansatz
in a many-body theory with mean-field-like approximations
[23] and a regularized effective potential, expecting the results
to be valid at short times when the condensate depletion is
small. We then compare the results of this many-body calcula-
tion to an exactly solvable two-body model [24]. We argue that
the early stages of time evolution correspond to the buildup of
local correlations between nearby particles (see Fig. 1). The
earliest stages of this evolution would therefore be related
to the dynamics of a two-body system; a similar rationale
was employed for weaker interactions in Refs. [25,26]. This
seemingly naive argument provides intuitive understanding
and a simple analytic formula which agrees remarkably well
with the many-body model at large momentum and short
times. This is perhaps less surprising in light of the connection
between Tan’s contact (which determines the occupation
of large-momentum modes) and two-body collision physics
[27–29]. We also discuss the results of a three-body model
that is designed to explain three-body loss at finite density.
We compare the time scales for which coherent dynamics
occurs to the time scale for three-body loss, finding results
which are consistent with Ref. [22]. Specifically, we observe
that the dynamics of large-momentum modes saturates before
any appreciable three-body loss occurs. Finally, we make
predictions for future experiments regarding the structure of
the momentum distribution and the contact dynamics.

Many-body model. We consider the Hamiltonian

Ĥ =
∑

k

εkâ
†
kâk + 1

2V

∑
k1,k2,q

Ũ (q)â†
k1+qâ

†
k2−qâk1 âk2 , (1)

where V is the system volume, Ũ (q) = ∫
d3r e−iq·rU (r) is the

Fourier transform of the interaction potential, εk = �
2k2/2m,

and âk is a bosonic annihilation operator for a particle of
momentum �k. We use a time-dependent generalization of the
ansatz used in Refs. [30,31]:

|�var(t)〉=A(t)exp

[
c0(t)â†

0 +
∑

k·ẑ>0

gk(t)â†
kâ

†
−k

]
|0〉, (2)

where A(t) is a normalization constant that depends on
the variational parameters {c0(t),gk �=0(t)}, and |0〉 is the
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FIG. 1. (Color online) Immediately following a quench in the
scattering length, the dynamics originates in causally isolated regions
of the cloud. The collective effect of other particles in the system is
modeled by an artificial trap [25,26], tailored to give the particles
a mean interparticle separation which is consistent with that of the
many-body system.

particle vacuum. Provided the condensate depletion is small,
this ansatz is justified by the Bogoliubov-type idea that
the condensed mode behaves as a coherent state and the
excited particles are generated in pairs by the dominant
term â

†
kâ

†
−kâ0â0 in Ĥ . Our variational parameters are related

to momentum occupations via n0(t) = |c0(t)|2 and nk(t) =
|gk(t)|2/(1 − |gk(t)|2). We note that average total particle
number and energy are conserved.

In terms of these amplitudes, the equations of mo-
tion for the system are i�ċ0 = ∂〈Ĥ 〉/∂c∗

0 and i�ġk = (1 −
|gk|2)∂〈Ĥ 〉/∂g∗

k [32]. We solve these coupled equations
numerically, where our initial condition is chosen to be a
noninteracting gas such that gk(0) = 0 for all k �= 0. The short-
range interactions are modeled with an attractive spherical
square well U (r)mr2

0 /�
2 = −(π

2 )2�(r0 − r), where r0 is the
range of the potential and is assumed to be much smaller
than the interparticle spacing. The depth of the well is
chosen such that there is a single two-body bound state at
threshold, so the scattering length diverges [33]. We have found
that the dynamics for momenta k � 1/r0 does not depend
on the specific choice of r0 as long as nr3

0 � 1; additionally,
the computed dynamics is found to scale universally with the
appropriate density units. We discuss the results of this model
after introducing a complementary two-body model.

Two-body model. Based on the idea of dynamics originating
in causally isolated regions of the gas (see Fig. 1), we consider
the dynamics of a two-body wave function in an artificial trap
ψ

(2B)
trap (r; t)=∑

νcνψν(r)e−iEν t/�, with r = r1 − r2 being the
relative coordinate. The summation is over all eigenvalues or
states [24] of the Hamiltonian[−�

2

2μ
∇2

r + 1

2
μωhor

2+ 2π�
2a

μ
δ(3)

reg(r)

]
ψν =Eνψν, (3)

with μ = m/2 being the reduced mass, and δ(3)
reg(r) = δ(r)∂rr

is the Fermi pseudopotential. We expect this approach to be
relevant on time scales much less than the trap period. The
coefficients cν = ∫

d3r ψ
(2B)
trap (r; 0)ψ∗

ν (r) are determined by the
initial condition, which we choose to be the noninteracting
ground state ψ

(2B)
trap (r; 0) = π−3/4a

−3/2
ho e−r2/2a2

ho , where aho =√
�/μωho is the harmonic oscillator length. This trap length

aho is the only free parameter in the two-body model. We

choose aho such that the average separation of the two particles
is 〈r〉 = ∫

d3r r|ψ (2B)
trap (r; 0)|2 = 2aho√

π
:= (4πn/3)−1/3, where

n is the initial density of the actual many-body system.
Thus, the two particles initially have a mean interparticle
separation that is consistent with the many-body system.
At unitarity, the eigenvalues of Eq. (3) are Eν = (2ν +
3
2 )�ωho, with ν ∈ {− 1

2 , 1
2 , 3

2 , . . .}, and the normalized eigen-

states [24] are ψν(r) = Aν
1
r̃
e−r̃2/2H2ν+1(r̃). Here, Hn is a

Hermite polynomial r̃ = r/aho, and Aν = 2−1−ν

π(2ν)!!a3/2
ho

√
�(1+ν)

�(3/2+ν) .

We then find cν =− (−2)ν+1/2π1/4(2ν)!!
ν

a
3/2
ho Aν . With the

momentum-space eigenstates ψ̃ν(k) [32], it is straightfor-
ward to calculate the momentum distribution n

(2B)
k (t) =

(2π )−3| ∑ν cνψ̃ν(k)e−iEν t/�|2. We assume that the center of
mass is untrapped, in which case the total momentum distri-
bution coincides with the relative momentum distribution.

Results. For kaho � 1 and ωhot � 1, the momentum
distribution dynamics reduces to the analytic formula

n
(2B)
k (t) = A

k4

∣∣∣∣ 2j√
π

√
tμ/�ei τ

2 − 1

k
erf(j

√
τ )

∣∣∣∣
2

, (4)

where j = e−iπ/4/
√

2 and τ = t/τk with τk = μ/(�k2) denot-
ing a characteristic time scale for each momentum mode. This
formula is independent of the trapping potential except through
the prefactor A, which we have explicitly verified [32]. We note
the presence of a 1/k5 term in Eq. (4). None of the equilibrium
eigenstates display such behavior. Indeed, any eigenstate can
be written ψ̃ν(k → ∞) = D2/k2 + D4/k4 where D2 and D4

depend only on ν. This 1/k5 term is an intriguing feature of our
nonequilibrium two-body correlations. In equilibrium, correc-
tions to nk at order 1/k5 only arise from three-body contact
conditions in the form nk = C2/k4 + C3/k5×(a log-periodic
function of k) [34–36]. Our work shows how the momentum
distribution can contain additional 1/k5 dependence from
two-body physics when the system is far from equilibrium.

Figure 2 shows the momentum distribution for two rescaled
times ωFt , where ωF = k2

F�/2m is the Fermi frequency, and
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FIG. 2. (Color online) The momentum distribution for two dif-
ferent times ωFt = 0.05 (shown in red) and ωFt = 0.4 (shown in
blue). The solid lines show results from the many-body model, and
the dashed lines show results from the harmonically trapped two-body
model. Note that nk = n(2π )3n

(2B)
k [32]. The inset shows dynamics

of the condensate fraction within the many-body model.
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kF = (6π2n)1/3 is the Fermi momentum [37]. The agreement
between two- and many-body models at high momenta kF �
k � 1/r0, and short times ωFt � 1, is excellent. One can
understand the qualitative agreement by recognizing that the
large-momentum behavior of nk in a many-body system
is determined by the short-distance behavior of the pair
correlation function, which in turn is determined by the so-
lution of an appropriate two-body Schrödinger equation. The
excellent quantitative agreement depends strongly on fixing
the free parameter in the two-body model (aho) such that
〈r〉 = (4πn/3)−1/3. Fixing to this value agrees intuitively with
what one might expect based on the mean interparticle spacing
in the many-body system. At high momenta, both calculations
reveal a dependence nk ∼ 1/k4 (the oscillations are of order
k−5). This behavior is characteristic of short-range two-
body interactions and leads to the thermodynamic parameter
known as the contact C ≡ limk→∞ k4nk (normalized such that∑

k nk = N ) [27]. Our time-dependent simulations show that
the 1/k4 tail first appears at large momenta and propagates into
smaller momenta. The contact initially exhibits linear growth,
which can be extracted from the asymptotics of the two-body
model [32]

C(t) = 2048

(
2n4

35π7

)1/3

ωFt. (5)

This formula agrees (within 6%) with a linear fit to the many-
body numerical data which predicts C(t) ≈ 26.9(1)n4/3ωFt for
ωFt � 0.2.

The oscillations observed in both Figs. 2 and 3(b) are a
general feature of the coherent dynamics following a quench
in the scattering length (also observed in the weakly interacting
regime [38–40]). The many-body and two-body models agree
very well on the amplitude, frequency, and phase of these
oscillations. Although these oscillations were not discussed
in Ref. [22], their observation may be possible with only a
modest increase in signal to noise.

As time exceeds ωFt � 1, the two-body model is heavily
influenced by the artificial trap and becomes invalid. However,
as seen in Fig. 3(a), the many-body model predicts a relaxation
of the contact into an asymptotic value of C ≈ 12n4/3.
Predictions for C in the unitary ground state can be found in
Refs. [41–43] and vary from C ≈ 10–32n4/3. From Fig. 3(a),
we observe the contact reaches an equilibrated value beyond
ωFt ≈ 1. We note that our predictions at large times are not
rigorously justified because the condensate depletion (see inset
in Fig. 2) is large enough to violate assumptions of the ansatz
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FIG. 3. (Color online) (a) Saturation of the contact as a function
of time (blue solid line). The dashed line shows Eq. (5), valid at short
times. (b) Comparison of two-body (dashed) and many-body (solid)
momentum occupation at k = 7kF as a function of time.

[Eq. (2)]. However, comparing with the experimental data of
Ref. [22], we find compelling validation that this approach
captures the essential physics of the large-momentum modes.
Indeed, by fitting our numerical data for the contact to an
exponential function 
C(1 − e−t/τC ) (exactly as in Ref. [22]),
we find τC ≈ 0.4/ωF ≈ 23 μs, consistent with the measured
equilibration time of the largest momenta modes (see Fig. 5 of
Ref. [22]).

Three-body model. One of the crucial results of Ref. [22]
is the long time scale for three-body loss relative to the
observed dynamics at unitarity. With a goal of understanding
this separation of time scales, we introduce a model which
quantifies three-body loss when the energy scale is principally
determined by the density rather than temperature or scattering
length. To our knowledge, this is the first model of its kind.

To begin, we recall the known result that, for temperatures
kBT � �

2/(ma2), three-body loss, described by the rate
equation ṅ = −L3n

3, is independent of a [19,44]:

L3(kBT ) = 36
√

3π2

m3

(1 − e−4η)

(kBT )2
�

5, (6)

where η > 0 is the inelasticity parameter (whose value
depends on atomic species), accounting for decay into deeply
bound dimer states (see Sec. 7 of Ref. [15]). However, Eq. (6)
fails when the gas temperature is below degeneracy: the energy
scale kBT in Eq. (6) should approximate the average collision
energy between three particles [44], but at zero temperature
in a unitary Bose gas, this scale is set by the density (i.e.,
Fermi energy), not the temperature. Substituting kBT → �ωF

in Eq. (6), for the 85Rb experiment [22] (n ≈ 5.5 × 1012 cm−3

and η ≈ 0.06 [45]), we find a lifetime of about 0.20 ms.
Although this estimate is in reasonable agreement with the
observed value of τexp ≈ 0.63 ms, we stress that this approach
is based purely on dimensional analysis and is derived from
the concept of three-body scattering, which loses meaning for
na3 � 1.

In order to understand three-body loss under nonequilib-
rium conditions and account for density-dependent effects
(naturally introducing the role of the Fermi energy), we
numerically solve the three-body problem with a = ∞ [46,47]
in an artificial harmonic trap [48,49] whose confinement
length aho is fixed by the density of the many-body system,
analogous with our two-body model (Fig. 1). Our observed
agreement between two- and many-body models provides
some additional motivation for proceeding as such. References
[25,26] provide additional precedent for this. The inclusion of
a third particle, however, introduces an entirely new set of
states (Efimov states) which have no counterpart in the set
of two-body eigenstates [15]. In our model, each three-body
eigenstate has a finite width (denoted by �β , where β is used
to label the eigenstates). This width corresponds to a finite
lifetime of the respective state due to decay into a deeply
bound dimer plus a free atom and it is parametrized by the
inelasticity parameter η (see [32] and Sec. 7.2 of Ref. [15]).
Here, we adjust our model to reproduce the correct value for
the width of the lowest Efimov state: �0 = 4η/s0E0 [15,32].
One important aspect of our approach is that it does not rely
on the concept of scattering. For our nonequilibrium scenario,
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we define the effective recombination rate as (see Ref. [32])

L∗
3 = 1

n2

∑
β

[
|cβ(aho)|2 �β(aho)

�

]
. (7)

Here, cβ is the probability amplitude of populating the three-
body state β after instantaneously switching a from a ≈ 150a0

(a0 being the Bohr radius) to a = ∞. For the parameters of
the experiment of Ref. [22], this leads to an average lifetime
of τloss = 1/(n2L∗

3) ≈ 1.1 ms, consistent with the observation.
To test the robustness of this result, we allow variations of
aho up to ±50% which leads to variations in the lifetime
from 0.56–2.13 ms. Even the lower limit of this lifetime is
considerably longer than our estimate for the equilibration
time scale of large-momentum modes τC = 0.4/ωF ≈ 23 μs,
obtained from our many-body theory. We find that L∗

3 depends
on η as L∗

3 ∝ η [consistent with Eq. (6)]. We thus suggest a
universal formula τloss/τC ≈ α/η, where α is a dimensionless
constant. Our model predicts α ≈ 2.87. This implies in the
case of 85Rb (η ≈ 0.06) τloss/τC ≈ 47.8; for 7Li, η ≈ 0.21
[19], and we find τloss/τC ≈ 13.7; for 133Cs, η ranges from
0.08–0.19 for different Feshbach resonances [50], implying
τloss/τC ≈ 15.1–35.9; and finally for 39K, η ≈ 0.09 [20], hence
τloss/τC ≈ 31.9.

The key ingredient of such long lifetimes is that the quench
populates only long-lived three-body states whose sizes are
comparable to the mean interparticle spacing (see Ref. [32]).
In fact, we note that the population of the lowest Efimov state
c2

0 is negligible due to its relatively small size. That is crucial
for the stability of the system at nonequilibrium since this
state has the shortest lifetime (1 μs) due to a large weight at
small hyperradius. Indeed, all states (including excited Efimov
states) which do overlap considerably with the initial state
typically have a small probability of finding all three particles
within a small volume ∼r3

vdW, and therefore have much longer

lifetimes. These conclusions do not hold for quenches that are
adiabatic.

In summary, we have explored the short-time evolution of
a degenerate Bose gas upon quenching to an infinite scattering
length. We introduced and solved few- and many-body models
to understand the evolution of the momentum distribution,
with a particular focus on large-momentum modes. We found
an oscillation period associated with each momentum mode
and observed that it scales as 1/k2, demonstrating how
dynamics of higher-momentum modes occurs more rapidly
than lower-momentum modes. We found 1/k5 dependence
in the momentum distribution due to nonequilibrium two-
body correlations. We predicted a linear growth of Tan’s
contact at short times [see Eq. (5) and surrounding text],
and observed a saturation time scale of τC ≈ 0.4/ωF. We
introduced a model for calculating three-body loss at finite
density and calculated the characteristic time scale of loss to
be significantly longer than τC, robust to quite large changes
in our model parameters. These findings are consistent with
experimental results [22]. In closing, we remark that the
final (quasi)equilibrium state of the system following such
a quench is beyond the scope of our current theory. At longer
times, effects due to correlations between larger numbers of
particles presumably become important [36,51,52]. Under-
standing the nature of these higher-order correlations, and at
which time scales they present themselves, remains for future
work.
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