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Tunable higher-order sideband spectra in a waveguide-coupled photonic crystal molecule beyond
the weak-excitation approximation
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We investigate light transmission obtained from a hybrid optical system composed of a pair of directly coupled
photonic crystal cavities called a photonic crystal molecule, a single semiconductor quantum dot, and a waveguide
beyond the weak-excitation approximation. We take account of nonlinear terms in the Heisenberg-Langevin
equations and give an effective method to deal with such a problem. It is shown, owing to the presence of
nonlinear terms, that the efficient generation of high-order sidebands with large amplitudes can be realized
with experimentally achievable system parameters. The results obtained here may be useful for gaining further
insight into the properties of solid-state cavity quantum electrodynamics (CQED) system and find applications
in harnessing the CQED nonlinearity to manipulate photons in a photonic crystal platform.
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Photonic crystal nanocavities are chip-based resonators
which resonantly confine light to ultrasmall mode volume V

with extremely low losses, giving rise to ultrahigh quality
Q factor (i.e., a high Q/V ratio), greatly enhanced light-
matter interaction at the nanoscale, and strong nonlinear
optical response between optical fields [1,2]. In recent years,
a pair of directly coupled photonic crystal cavities, also
called a photonic crystal molecule (PCM), have attracted
great attention in many diverse areas of research, ranging
from nanophotonics [3], biochemical sensing [4], and slow
light engineering [5–7] to cavity quantum electrodynamics
(CQED) [8–10]. This molecular analogy stems from the
observation that confined optical modes of a photonic crystal
nanocavity and the electron states of atoms behave similarly.
Consequently, a single photonic crystal cavity is called
“photonic atom” and a pair of coupled photonic crystal cavities
may be understood as a photonic analog of a molecule.
Two-dimensional (2D) planar photonic crystals have emerged
as an excellent device platform for realizing PCMs because
of their compactness and integrability in realizing all-optical
chips. Remarkably, it is also possible to deterministically
couple semiconductor quantum emitters such as quantum dots
(QDs) to photonic crystal cavities both spatially and spectrally
in the strong-coupling regime [11]. The PCM coupled to
quantum emitters forms the first step towards building a broad
range of applications such as an integrated cavity network
[12], quantum computing [13], and quantum simulation [14].
Some novel quantum phenomena [15–18] have been predicted
experimentally and theoretically in the PCM.

In this Brief Report, we introduce a method to generate
higher-order sideband spectra with a single semiconductor
QD strongly coupled to a PCM beyond the weak-excitation
approximation. When optical driving power is not too low
and not too high (see Fig. 2 below), the weak-excitation
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approximation is invalid and the nonlinear terms in the
Heisenberg-Langevin equations need to be taken into account.
Here, the composite system is coherently driven by an external
two-tone laser field which consists of a continuous-wave
control field and a nanosecond pulsed probe field and prop-
agates through the optical waveguide. By doing fast Fourier
transformation, the frequency spectral output of the temporal
response, which exhibits the property of high-order sidebands,
can be achieved in this coupled QD-cavity-waveguide system.
The present approach is proposed in a planar photonic crystal
cavity-waveguide structure that is compatible with large scale
integration for the development of complex devices on a
chip.

As illustrated in Fig. 1, the hybrid optical device is made
up of a PCM, a two-level QD and a waveguide. Here the PCM
is formed by embedding two separated point defects into a
photonic crystal platform with the cavity frequency tunable
by changing the geometrical parameters of the defects. The
waveguide is formed by row defects in which light propagates
due to the coupling between the adjacent defects. Details of the
device design have been experimentally reported in detail in
Refs. [8,19]. The first cavity is side coupled to the waveguide
with the coupling rate κe. The QD with the transition frequency
ωQD is placed in the first cavity, and the cavity mode is
coupled to the |1〉 ⇔ |2〉 transition with the coupling strength
gcav . Owing to the finite overlap of cavity photonic wave
functions, two cavities with resonance frequencies ωa1 and
ωa2 can directly couple with photon-hopping strength J which
can be efficiently modulated by the distance between the
two cavities. This photon tunneling can be achieved using
quantum channels, such as the waveguide made by a series
of coupled point defects [20]. Using the 2D planar photonic
crystal structure, the initial input two-tone laser field, which
includes a continuous-wave control field and a nanosecond
pulsed probe field Sin(t) = sce

−iωct + spf (t)e−iωpt , where
ωc and ωp are the carrier frequencies, sc and sp are the
peak amplitudes of the control and probe driving fields,
f (t) is the normalized probe-field envelopes, is guided by
optical waveguide in the crystal plane [21–23]. Under the
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FIG. 1. (Color online) (a) Schematic illustration of the coupled
system composed of a PCM, a two-level QD and a waveguide.
The first microcavity containing the two-level QD is side coupled
to the row defect waveguide with the coupling strength κe. The direct
coupling of the two single-mode cavities (the coupling rate is denoted
by J ) can arise due to the finite overlap of their photonic wave
functions. The |1〉 ⇔ |2〉 transition of QD is coupled to the mode â1

of the first microcavity with the coupling strength gcav . A two-tone
field consisting of continuous-wave control laser and Gaussian-type
pulsed laser is injected into the waveguide via grating couplers [19].
Sin and Sout denote the input and the output field in the waveguide.
The bubble gives energy configuration of the two-level QD and the
coupling scheme of the cavity mode. |1〉 and |2〉 denote the ground
and excited states of the semiconductor QD, respectively.

electric-dipole approximation (EDA) and rotating-wave ap-
proximation (RWA), the Hamiltonian describing this compos-
ite system is given in a rotating frame at the frequency of the
control laser ωc by [8,19]

Hrot = ��QDσ̂22 + ��a1â
†
1â1 + ��a2â

†
2â2

+ �J (â1â
†
2 + â

†
1â2) + i�gcav(â1σ̂21 − â

†
1σ̂12)

+ i�
√

ke[(sc + spf (t)e−i�t )â†
1 − (s∗

c

+ s∗
pf (t)ei�t )â1], (1)

where �QD = ωQD − ωc, �a1 = ωa1 − ωc, �a2 = ωa2 − ωc,
and � = ωp − ωc are respectively the detunings of the QD
resonance frequency ωQD , the first cavity resonance frequency
ωa1, the second cavity resonance frequency ωa2, and the
frequency of the probe laser ωp from the control laser ωc.
In the above Hamiltonian (1), â1(2) and â

†
1(2) are the bosonic

annihilation and creation operators of the first (second) cavity
mode. The symbols σ̂mn = |m〉〈n| (m,n = 1,2) for m �= n are
the electronic transition or projection operators between the
states |m〉 and |n〉 and σ̂mm = |m〉〈m| (m = 1,2) represent
the electronic population operators involving the levels of the
QD (see also the bubble of Fig. 1). sc and spf (t) are the
field amplitudes of the two-tone driving laser propagating
in the waveguide, which is directly related to the power
propagating in the waveguide by P (cw)

c = �ωcs
2
c and Pp(t) =

�ωps2
pf 2(t), respectively. In what follows, we consider that

the probe driving laser is Gaussian-type pulsed field, i.e.,
f (t) = exp[−2 ln 2(t − t0)2/t2

p], where t0 is the center time of
the pulse, and tp is the full width at half maximum (FWHM) of

the intensity envelope [24]. In this case, the maximum power
of the driven probe pulse is P (max)

p = �ωps2
p.

The evolution of the coupled system can be described
by the Heisenberg-Langevin equations. In this work, we are
interested in the mean response of the coupled system, so the
operators can be reduced to their expectation values. Including
losses in both the cavity and QD, as well as cavity excitation,
we apply the Heisenberg-Langevin formalism to attain the
evolution equations as follows:

da1

dt
= −(i�a1 + κi1/2 + κe/2)a1 − iJ a2 − gcavσ12

+√
κe[sc + spf (t)e−i�t ], (2)

da2

dt
= −(i�a2 + κi2/2)a2 − iJ a1, (3)

dσz

dt
= −γspon(σz + 1/2) + gcava

∗
1σ12 + gcava1σ

∗
12, (4)

dσ12

dt
= −(i�QD + γspon/2 + γdph)σ12 − 2gcava1σz, (5)

with σz = (σ22 − σ11) /2. κi1 and κi2 are the cavity intrinsic
decay rates, which is related to the cavity quality factor by
κi1 = ωa1/Q1 and κi2 = ωa2/Q2. γspon is the QD spontaneous
emission decay rate, and γdph is the QD dephasing rate,
respectively. The derivation of Eqs. (4) and (5) uses the
well-known mean-field (factorization) assumption 〈ÂB̂〉 =
〈Â〉〈B̂〉 [25]. This set of coupled equations are ordinary
nonlinear differential equations of complex functions instead
of operators, and describe the time evolution of the coupled
QD-cavity-waveguide system.

The Heisenberg-Langevin equations (2)–(5) are nonlinear,
and it is very difficult to get an analytic solution to these
equations. As usual, the weak-excitation approximation is
adopted to deal with such a problem [26,27], where all
the electrons are predominantly in the ground state of the
semiconductor QD, i.e., σ11(t) ≈ 1 and σ22(t) ≈ 0 with σ11 and
σ22 being the population of the QD ground and excited states.
By assuming this so-called weak-excitation approximation,
σz(t) ≈ −1/2 for all time, one can substitute σz(t) with its
average value of −1/2, and thus linearize the equations. The
Heisenberg-Langevin equations are reduced to a set of linear
equations. Using the linearization of the Heisenberg-Langevin
equations, a type of dipole-induced transparency (DIT) can be
well described [27,28], which is an analog of electromagneti-
cally induced transparency (EIT) in an atomic system [29–32].
A procedure that ignores these nonlinear terms has been
commonly adopted in many previous studies [27,28,33–44].
In the present work, we take into account the nonlinear terms
such as −2gcava1σz, gcava

∗
1σ12 and gcava1σ

∗
12 in the above

Heisenberg-Langevin equations. We find that these nonlinear
terms can give rise to some interesting phenomena of the
coupled QD-cavity-waveguide system, such as the efficient
generation of higher-order sidebands. Concretely, the higher-
order sideband processes are such that when the control laser
field with frequency ωc and the probe laser field with frequency
ωp are incident upon the photonic crystal waveguide, the
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spectral components of the transmission field in Fig. 1 can
be generated with frequencies ωc ± n�, where n is an integer
that represents the order of the sidebands.

Now we choose the relevant experimental parameters. As
noted above, the photon-hopping (or cavity-cavity hopping)
strength J can be efficiently adjusted by the distance between
the two cavities, so we discuss three different ranges for J ,
i.e., (i) the large coupling case J 	 gcav , (ii) the competition
case J ≈ gcav , and (iii) the large hopping case J 
 gcav . For
the coupled system, we set the cavity intrinsic decay rate to
κi1/2π = κi2/2π = 28 GHz corresponding to a cavity quality
factor of 11 900, the coupling rate between the waveguide
and cavity to be κe/2π = 2.9 GHz, and the QD spontaneous
emission decay rate and dephasing rate are set to γspon/2π =
0.16 GHz and γdph/2π = 5.8 GHz, respectively. The cavity-
QD coupling strength is set to gcav/2π = 13.4 GHz. We
also assume that the QD electron is initially populated in
the ground state |1〉. All these parameters of the coupled
system are chosen from a recent experiment [19], and are used
throughout the work. The values of gcav , κi and κe satisfy the
strong-coupling condition gcav > (κi + κe)/4, ensuring that
the system operates in the strong-coupling regime.

At first, we establish the criterion when the weak-excitation
approximation fails and when the nonlinear terms has to
be considered. By solving Eqs. (2)–(5) numerically, Fig. 2
displays the steady-state value of the population difference σz

as a function of optical driving power P (cw)
c for two different

values of the QD-cavity coupling strength (a) gcav = 13.4 GHz
(strong-coupling regime) and (b) gcav = 6.7 GHz (weak-
coupling regime) when P (max)

p = 0. It is clearly shown that
the steady state is bistable and the dashed (solid) line in Fig. 2
indicates the unstable (stable) solutions. Whether or not the
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FIG. 2. (Color online) Population difference σz as a function of
optical driving power P (cw)

c for two different values of the QD-cavity
coupling strength: (a) gcav = 13.4 GHz (strong-coupling regime) and
(b) gcav = 6.7 GHz (weak-coupling regime). The solid and dotted
lines correspond to the stable and unstable branches, respectively.
The other system parameters for simulation are chosen as P (max)

p =
0, J/2π = 1 GHz, κi1/2π = κi2/2π = 28 GHz, κe/2π = 2.9 GHz,
γspon/2π = 0.16 GHz, γdph/2π = 5.8 GHz, �QD/2π = �a1/2π =
�a2/2π = 0, respectively.

QD-cavity coupling condition is strong, increasing the driving
power P (cw)

c in Fig. 2 results in a prominent change of the
population difference σz of the QD. From the figure we can also
note that the value of the population difference σz is confined
between −1/2 and 0. For the case of low excitation power,
the approximation σz ≈ −1/2 is valid for both the strong-
and weak-coupling regimes between QD and cavity. In this
case, the nonlinear nature of the QD can be neglected safely.
Therefore, at low excitation power this approximation matches
the actual output quantitatively and successfully explains a lot
of theoretical and experimental observations in a linear regime.
However, with increasing the driving power P (cw)

c , this model
fails completely, as the approximation σz ≈ −1/2 becomes
invalid. For sufficiently high driving power, however, one can
approximate σz → 0. Generally the QD is saturated and Eq. (5)
reduces to dσ12/dt = −(i�QD + γspon/2 + γdph)σ12. In view
of these factors, one needs to retain the dynamics of the σz

term in the Heisenberg-Langevin equation when the driving
power is not too low and not too high.

The output field Sout (t) can be obtained by using the input-
output relation Sout (t) = Sin(t) + √

κea1(t) [45,46]. Equations
(2)–(5) are very difficult to solve analytically for Sout . The
output spectra can be numerically obtained by performing fast
Fourier transform of Sout (t), i.e., S(ω) = | ∫ ∞

−∞ Sout (t)e−iωtdt |,
where ω is the spectrometer frequency. Before passing to the
results of the numerical calculation, it should be noted that
the spectra obtained a shift for a frequency ωc, because the
Heisenberg-Langevin equations describe the evolution of the
optical field in a frame rotating at the frequency ωc. With regard
to the fast Fourier transform, there are positive frequencies and
negative frequencies. If the data are real, then both positive and
negative frequencies have the same amplitude. If the data are
complex, then positive and negative frequencies have different
amplitudes [47].

Figure 3 shows the frequency spectral output of the trans-
mission field in the coupled QD-cavity-waveguide system for
three different values of J . First, we consider the large coupling
case, i.e., J/2π = 1 GHz in Fig. 3(a). As shown in figure, the
higher-order sidebands can be generated in the transmitted
frequency spectra. For positive frequencies, the amplitude of
the second-order sideband is smaller, more than one order
of magnitude, than the amplitude of the first-order sideband.
As the sideband order is further increased, the amplitude of
the higher-order sidebands is almost kept unchanged. For
negative frequencies, as can be seen from Fig. 3(a), the
amplitude of the higher-order sidebands is decreased slowly
when the sideband order is increased gradually. Second, with
increasing J , e.g., J/2π = 20 GHz in Fig. 3(b) corresponding
to the competition case, the first-order positive and negative
sidebands are similar to Fig. 3(a). As compared with Fig. 3(a),
the amplitudes of second-order to seventh-order sidebands for
positive frequencies are enhanced. Moreover, the amplitude
of other higher-order sidebands for both positive and negative
frequencies is decreased obviously when the sideband order
is increased. Last, for the large hopping case, i.e., J/2π =
80 GHz in Fig. 3(c), as the sideband order is increased, the
amplitude of the higher-order sidebands for both positive and
negative frequencies is decreased rapidly. The maximum order
of the sidebands is only up to 8.
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FIG. 3. (Color online) Frequency spectral output from the photonic-crystal system of Fig. 1 with a two-tone laser beam incident
on the waveguide for three different values of J : (a) J/2π = 1 GHz, (b) J/2π = 20 GHz, and (c) J/2π = 80 GHz. The other system
parameters for simulation are chosen as P (cw)

c = P (max)
p = 90.2 nW, gcav/2π = 13.4 GHz, κi1/2π = κi2/2π = 28 GHz, κe/2π = 2.9 GHz,

γspon/2π = 0.16 GHz, γdph/2π = 5.8 GHz, �/2π = 50 MHz, �QD/2π = �a1/2π = �a2/2π = 0, tp = 50 ns, and t0 = 4 μs, respectively.

The phenomenon above is the result of the intricate
competition and balance including two kinds of the couplings,
i.e., the cavity-cavity hopping J and the QD-cavity coupling
gcav . J as the coupling strength of the two modes indirectly
influences the coupling strength of the QD with the cavity
mode. In the large coupling case J ≈ 0.07gcav , the whole
system can be considered as two identical Jaynes-Cummings
model (JCM) subsystems weakly interacting with each other.
As a result, a lot of high-order sidebands can be obtained
and the corresponding amplitudes are large. In the opposite
case, for large hopping J ≈ 6gcav , the photon tunneling, i.e.,
the excitation-transfer between two subsystems, dominates the
evolution process. So only a few order sidebands appear and
the amplitude of the higher-order sidebands for both positive
and negative frequencies is decreased quickly.

Before ending, it is worth emphasizing that high-order
sidebands shown in Fig. 3 are clearly narrow and resolved,
which can be described by the uncertainty relation of time and
frequency. According to the uncertainty relation of time and
frequency, it is straightforward to calculate the uncertainty of
the frequency as �ω ∼ 2π/�t . Here, the pulse lasts about 2tp,
so �t ≈ 2tp. Making good use of the relationships 2tp�/2π ∼
5, we can arrive at �ω ∼ �/5. As a result, the high-order
sideband generation is relatively narrow and resolved.

In conclusion, we have theoretically explored optical
nonlinear transmission characteristics of a waveguide-coupled
photonic crystal molecule embedding a two-level semiconduc-
tor QD in the strong-coupling regime. The system is driven
by an external two-tone laser field (not too low and not too
high), so the weak-excitation approximation is invalid and the
nonlinear terms in the Heisenberg-Langevin equations need to
be taken into account. By doing fast Fourier transformation,
the frequency spectral output of the temporal response can
be achieved in such a hybrid optical system. The results
clearly show that robust high-order sidebands with large
amplitudes can be generated efficiently with experimentally
available system parameters. This investigation may provide
further insight into the understanding of solid-state cavity
quantum electrodynamics system and find applications in
chip-scale high-speed optical communications in a photonic
crystal platform.
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[34] A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat,

Phys. Rev. A 75, 053823 (2007).
[35] L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin,

Phys. Rev. A 72, 052330 (2005).
[36] C. Y. Hu, W. J. Munro, and J. G. Rarity, Phys. Rev. B 78, 125318

(2008).
[37] C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, Phys.

Rev. B 80, 205326 (2009).
[38] A. Majumdar, N. Manquest, A. Faraon, and J. Vučković, Opt.
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