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Perfect imaging of a point charge in the quasistatic regime
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An exact calculation of the local electric potential field ψ(r) in the quasistatic limit is described for the case
of a point electric charge q in a two-constituent composite medium. In the case of an ε2, ε1, ε2 three-parallel-slab
microstructure, where q is in the top ε2 layer and both ε2 layers are infinitely thick while the ε1 layer has a
finite thickness L1, a perfect imaging of the point charge is expected if ε1 = −ε2 is real [J. B. Pendry, Phys.
Rev. Lett. 85, 3966 (2000); R. J. Blaikie and D. O. S. Melville, J. Opt. A 7, S176 (2005); U. Leonhardt, New
J. Phys. 11, 093040 (2009)]. Among our results we find that an infinite resolution image of the point charge q

is only achievable if the actual charge is situated at a distance that is between L1/2 and L1 away from the ε1

layer.
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When rays of light are emitted from a point source in a
medium with refractive index n2 and are then made to pass
through a flat layer with refractive index n1 = −n2 before
re-emerging in the n2 medium, two foci are predicted to occur
sometimes—see the left part of Fig. 1 and Ref. [1]. This
situation is usually called a “Veselago lens.” In a pioneering
paper Pendry then argued that the size of those foci is not
limited by the wavelength, thus raising the possibility that
such a negative index lens would be able to achieve a perfect
image of any object [2]. Since then, much work has been
done on the effects of dissipation and other deviations from
ideal materials, such as surface roughness, upon this intriguing
possibility [3–5]. Experimental efforts have also been made to
achieve the predicted enhancement of resolution [6]. It was
also argued that if the system is in the quasistatic regime,
where the magnetic permeability is unimportant, then it will
suffice to have ε1 = −ε2 real in order to achieve a perfect
image [2].

We would first like to point out that this idea presents
two problems: (a) If the object is a point source (e.g., a
point charge or some other point multipole charge) then
the electromagnetic field has an appropriate mathematical
singularity there. Such a singularity cannot be reproduced at
any other point by Maxwell’s equations. (b) When ε1 = −ε2

that is a highly singular point of those equations. That is, it is an
accumulation point of the eigenvalues of Maxwell’s equations
in the quasistatic limit [7].

Here we tackle the perfect imaging problem by expanding
the local static electric potential field ψ(r) in a series of
eigenfunctions of the quasistatic Maxwell equations. This
leads to an exact expression for ψ(r), when ε1 and ε2

have arbitrary values, as a one-dimensional integral. When
ε1/ε2 = −1 that integral can be calculated in closed form.
For other values of ε1/ε2, in particular when this value has
a nonvanishing imaginary part, the integral can easily be
evaluated numerically. Particularly interesting is its behavior
when ε1/ε2 = −1 + iδ with δ � 1. We will show that this has
important implications for the possibility of achieving perfect
imaging.

Consider a generic two-constituent composite structure
which fills up the entire volume of a large parallel plate
capacitor, like the one shown in Fig. 1. In the static
limit Maxwell’s equations reduce to Poisson’s equation for

ψ(r):

− 4πρ(r) = ∇ · (ε1θ1 + ε2θ2)∇ψ = ε2∇ · (1 − uθ1)∇ψ,

(1)

θ1(r) ≡ 1 − θ2(r) =
{

1 if ε(r) = ε1,

0 if ε(r) = ε2,
(2)

u ≡ 1 − ε1

ε2
, (3)

where θ1 and θ2 ≡ 1 − θ1 are step functions that characterize
the microstructure of the composite medium. The function
ρ(r) which appears on the left-hand side of Eq. (1) represents
a charge density distribution, including the possibility that
ρ(r) = qδ3(r − r0), i.e., a point charge at r0. The capacitor
plates at z = −L2 and z = L′

2 are included in order that
appropriate boundary conditions on ψ(r) may be imposed
there so as to result in a unique solution for ψ(r). When
convenient, we shall take the limits L2 → ∞ and L′

2 → ∞
at the end of the calculation.

Further progress is achieved by defining Green’s function
G0(r,r′) for this system by

∇2G0(r,r′) = −δ3(r − r), (4)

G0(r,r′) = 0 for z = −L2 and z = L′
2. (5)

Using G0, Eq. (1) is transformed into the following integro-
differential equation for ψ(r) [7]:

ψ(r) = ψ0(r) + u�̂ψ, (6)

�̂ψ ≡
∫

dV ′θ1(r′)∇′G0(r,r′) · ψ(r′). (7)

The integro-differential operator �̂ is Hermitian (or self-
adjoint) if the scalar product of scalar functions φ(r), ψ(r)
is defined as

〈ψ(r)|φ(r)〉 ≡
∫

dV θ1(r)∇ψ(r)∗ · ∇φ(r). (8)

The function ψ0(r) is a solution of Poisson’s equation in a
uniform host of ε2 material,

ε2∇2ψ0(r) = −4πρ(r), (9)
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FIG. 1. A three-parallel-slab microstructure that fills the en-
tire volume of a large parallel-plate capacitor. The upper layer
(region III), where ε = ε2, includes a point charge q located at
r0 = (0,0,z0). In the left part z0 < L1/2 while in the right part
z0 > L1, where L1 is the thickness of the intermediate ε1 layer
(region II). Even when all the other linear sizes of this structure
tend to ∞, this configuration is still unsolvable in any simple fashion.
The diagonal dashed lines show how a geometric optics or light rays
description would lead to a focusing of the original point charge in
region III at new points in regions I and II when ε2 = −ε1. The vertical
dot-dashed lines indicate the regions where ψ(r) then diverges in the
case shown on the left side, while the vertical solid lines show where
the dissipation rate diverges.

which must satisfy the same boundary conditions that are
imposed upon ψ(r). That is because G0(r,r′) satisfies the
homogeneous version of those conditions, i.e., it vanishes
when z = −L2 and z = L′

2.
The eigenstates of �̂, which satisfy

snφn(r) = �̂φn, (10)

are also eigenstates of the zero charge density and zero
boundary conditions modification of Eq. (1). The eigenvalues
sn are clearly all real valued since �̂ is self-adjoint. It is also
easy to show that they all lie between 0 and 1 [7]. That is, a
nonvanishing solution of

sφ(r) = �̂φ, s ≡ 1

u
= ε2

ε2 − ε1

cannot exist when ε1 and ε2 are both real and positive. It is
somewhat more difficult to show that �̂ − 1/2 is a continuous
operator, from which it follows that the values of (sn − 1/2)−1

form a discrete unbounded sequence. Thus the eigenvalues
sn form a discrete sequence with one accumulation point at
s = 1/2 [7].

The following formal solution of Eq. (6)

φ = φ0 + �̂

s − �̂
φ0 (11)

can be expanded in a series of the eigenfunctions φn by using
the expansion of the unity operator Î

Î =
∑

n

|φn〉〈φn| (12)

=⇒ φ(r) = φ0(r) +
∑

n

sn

s − sn

〈φn|φ0〉φn(r). (13)

We are interested in calculating ψ(r) in a two-constituent
composite medium for the case where, in the absence of the ε1

constituent, the potential field ψ0(r) would be that of a point
charge q at r0, namely,

ψ0(r) = q/ε2

|r − r0| . (14)

The field ψ(r) is thus equal, up to a constant multiplicative
factor, to Green’s function in the composite medium:

ε2

q
ψ(r) = 1

|r − r0| +
∑

n

sn

s − sn

〈
φn

∣∣∣∣ 1

|r − r0|
〉
φn(r). (15)

Clearly, when s becomes equal to any eigenvalue sn the
appropriate term in this expression will diverge. Recalling
that the sequence of eigenvalues sn has a single accumulation
point at 1/2, i.e., sn → 1/2 as n → ∞, we can also conclude
that when s = 1/2, i.e., when ε1/ε2 = −1, the coefficient
sn/(1/2 − sn) diverges as n → ∞. Whether ψ(r) also diverges
then depends upon the behavior of the other terms in the
sum. Clearly, the sum will diverge unless 〈φn|1/|r − r0|〉
→ 0.

It is also worth recalling that when Re(ε1) or Re(ε2)
is negative, a nonzero imaginary part must be present. If
ε2 represents a conventional dielectric (i.e., ε2 is real and
positive) while ε1 represents a conventional metal in the optical
frequency range (i.e., ε1 has a negative real part and a nonzero
imaginary part) then ε1/ε2 will also have a negative real part
and a nonzero imaginary part with the same sign as Im(ε1).
Consequently

s = 1 − Re ε1
ε2

+ iIm ε1
ε2(

1 − Re ε1
ε2

)2 + (
Im ε1

ε2

)2 .

Due to the nonzero value of Im(s) all the terms in the sum
of Eq. (15) will be finite for such a composite. Neverthe-
less, the behavior of that sum when s is precisely equal
to 1/2, i.e., when ε1/ε2 = −1, is of interest because at
that value the perfect imaging phenomenon is supposed to
occur [2,8,9].

We now apply this approach to the case of three parallel
slabs, as shown in Fig. 1. Here we will focus upon the local
electric potential field produced by a point charge q located at
r0 = (0,0,z0), which is inside region III of the ε2 constituent.
We will make the lateral dimensions of the capacitor Lx and
Ly and the thicknesses of the ε2 layers L′

2 and L2 − L1 very
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large but leave the thickness L1 of the ε1 layer, as well as z0,
z, and ρ ≡

√
x2 + y2, finite.

The relevant eigenfunctions and eigenvalues are [10]

φ±
k (r)

= eik·ρ ·
⎧⎨
⎩

A±
k sinh[k(z + L2)], z ∈ I,

B±
k sinh(kz) + B ′±

k sinh[k(z + L1)], z ∈ II,
C±

k sinh[k(z − L′
2)], z ∈ III,

(16)

s±
k = 1 ∓ e−kL1

2
, (17)

where we assumed kL2 � 1 and kL′
2 � 1 to get Eq. (17), and

will continue to assume that whenever it is convenient. The
coefficients A±

k , B±
k , B ′±

k , C±
k , as well as the eigenvalues s±

k ,
are determined by imposing the continuity conditions on φ±

k at
the interfaces and the normalization condition 〈φ±

k |φ±
k 〉 = 1.

Doing this we find

A±
k = −B±

k
sinh(kL1)

sinh[k(L2 − L1)]
, B ′±

k = ∓B±
k ,

C±
k = ±B±

k
sinh(kL1)

sinh(kL′
2)

.

The eigenvalues clearly satisfy

0 < s+
k < 1

2 < s−
k < 1, (18)

and they all tend to the common accumulation point at s =
1/2 when k → ∞. The normalization condition 〈φ±

k |φ±
k 〉 = 1

leads to

1 = 2kLxLy |B±
k |2 sinh(kL1)[cosh(kL1) ∓ 1]. (19)

The scalar product of ψ0 and φ±
k is given by

〈ψ0|φ±
k 〉 = 2πq

ε2
B±

k e−kz0 (1 ± e−kL1 )[1 ∓ cosh(kL1)].

Substituting these results in Eq. (15) we get the following exact
results for ψ(r) (J0 is a regular Bessel function):

ψ = 4s(1 − s)q

ε2

∫ ∞

0
dk J0(kρ)

e−k(z0−z)

e−2kL1 − (2s − 1)2

= 4qε1

∫ ∞

0
dk J0(kρ)

e−k(z0−z)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in I, (20)

ψ = 2sq

ε2

∫ ∞

0
dk J0(kρ) e−k(z0−z) e

−2k(z+L1) − 2s + 1

e−2kL1 − (2s − 1)2

= 2q

∫ ∞

0
dk J0(kρ) e−k(z0−z) (ε2 − ε1)e−2k(z+L1) − (ε2 + ε1)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in II, (21)

ψ = ψ0 + q(2s − 1)/ε2√
ρ2 + (z + z0)2

− 4s(1 − s)(2s − 1)q

ε2

∫ ∞

0
dk J0(kρ)

e−k(z0+z)

e−2kL1 − (2s − 1)2
= q/ε2√

ρ2 + (z − z0)2

+ ε2 + ε1

ε2 − ε1

q/ε2√
ρ2 + (z + z0)2

+ 4qε1
ε2 + ε1

ε2 − ε1

∫ ∞

0
dk J0(kρ)

e−k(z0+z)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in III. (22)

The integrals in these expressions must be calculated with
caution. When Im(s) �= 0, the denominators in the integrands
never vanish and the integrations converge. By contrast, when
s ∈ (0,1) is real and differs from 1/2 (i.e., ε1/ε2 < 0 but differs
from −1) the denominators always vanish at some point and
the integrations diverge. At the special point s = 1/2, when
ε1/ε2 = −1, the integrations diverge when z lies in certain
ranges. Thus, in region I ψ(r) diverges when z0 − 2L1 < z <

−L1 while in region II it diverges when −L1 < z < −z0.
When Im(s) is nonzero but small, ψ(r) includes a contribution
that is proportional to a power of Im(s) which depends upon z

and is negative when there is a divergence.
An interesting matter is the behavior of the dissipation rate

W (r) = Im[ε(r)]|∇ψ |2/(8π ) when ψ(r) diverges. A detailed
analysis leads to the following conclusions:

W (r) ∝
⎧⎨
⎩

Im(ε2)[Im(ε1 + ε2)]
2(z0−z−2L1)

L1 for r ∈ I,

Im(ε1)[Im(ε1 + ε2)]
2z+2z0

L1 for r ∈ II.

What this means is that even in the limit where Im(ε1) and
Im(ε2) are comparable and tend to 0, the local dissipation rate
will diverge unless

z < z0 − 3L1/2 for r ∈ I,

z > −z0 − L1/2 for r ∈ II.

From this we can conclude that the total rate of dissipation
remains finite only if L1/2 < z0 < L1. In that case the lower
focus z0 − 2L1 satisfies

− 3L1/2 < z0 − 2L1 < −L1. (23)

This means that it lies at a distance which is at most L1/2 below
the ε1 layer. The same results, regarding the divergence of ψ(r)
at well as of W (r), were already obtained in Ref. [5] from
an approximate calculation of ψ(r). By contrast, our results
are based upon Eqs. (20)–(22) which are exact. Obviously,
when W (r) → ∞ we should not ignore the decrease in
magnitude of ψ(r) and ∇ψ(r) as |r − r0| increases. This would
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require repeating our discussion away from the quasistatic
limit. Nevertheless, the apparent impending divergence of
W (r) shows that trying to achieve enhanced resolution with a
Veselago lens must be done with great care.

It is worth noting that when s = 1/2, ψ(r) has the following
exact closed form expressions in those regions of z where it is
nondiverging:

ψ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q/ε2√
ρ2+(z−z0+2L1)2

, r ∈ I,
q/ε2√

ρ2+(z+z0)2
, r ∈ II,

q/ε2√
ρ2+(z−z0)2

, r ∈ III.

These are what would be expected if the point charge is
perfectly imaged at the ray optics foci. What we have shown
is that these perfect images are only valid if the object position
z0 satisfies the above inequalities.

It is also interesting to review what happens when the
point charge q is situated above the ε1 layer by more than
its thickness L1. In that case there is no real focal point even
in ray optics. It is easy to see that the rays in region I appear to
emanate from a virtual focal point r2 = (0,0,z0 − 2L1) which
lies in region II if z0 < 2L1 or in region III if z0 > 2L1—see
the right part of Fig. 1. In that case there is no possibility of
a perfect real image. However, because the virtual focus lies
below z0, the diverging beam of rays emanating from that focal
point is narrower than the original beam emanating from the
object point. This is the situation in the experiment described
in Ref. [6]. The improved resolution observed there is therefore
unrelated to the “perfect imaging” phenomenon.

In summary, we have calculated the quasistatic eigenstates
of a three-parallel-slab ε2, ε1, ε2 microstructure, where the
thickness of the intermediate ε1 layer is L1, and used them
to get an exact result for the electric potential of a point
charge q. We found that the local potential and electric
fields always diverge in certain parts of the system when-
ever ε1 = −ε2 if q is closer than L1 to the intermedi-
ate layer. We have shown that a perfect resolution image

is achievable in a certain limited sense if ε1 = −ε2 is real when
the object lies at a distance between L1 and L1/2 above the ε1

layer. At smaller distances the total dissipation diverges, even
when Im(ε1) and Im(ε2) both tend to 0. At greater distances
there is only a virtual image. We are currently trying to extend
the approach described here so as to apply away from the
quasistatic regime. Some remarks are now in order:

(i) The above considerations will obviously apply to other
point sources of an electric field, e.g., a point electric dipole.

(ii) The eigenstates of (16) are reminiscent of the evanescent
and amplifying (in the absence of an appropriate antonym for
evanescent) waves invoked by Pendry in Ref. [2] to explain
the unlimited resolution in perfect imaging. In particular, the
sinh(kz) and cosh(kz) functions are clearly linear combinations
of an increasing and a decreasing exponential function.
Nevertheless the discussion of this situation that is based upon
the quasistatic eigenstates leads to new insight. In particular,
we now understand how the electric field depends upon r in
the vicinity of the “perfect image” focal points.

(iii) In a previous discussion of the perfect imaging
phenomenon it was assumed that even in the quasistatic limit,
the object to be imaged is essentially a nonuniform plane
wave incident from the top [2]. This differs from the situation
discussed here wherein the incident wave issues from a point
source, which results in an outgoing wave in all directions.
The latter picture is perhaps more relevant to the possibility of
achieving an image with unlimited resolution.

(iv) Our results for the field ∇ψ(r) could also have been
obtained by applying the general results of Ref. [11] for
electromagnetic fields of point sources in a flat multilayered
medium to the problem discussed in this article.
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