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We develop a numerical method to calculate the Bethe logarithm for resonant states. We use the complex
coordinate rotation (CCR) formalism to describe resonances as time-independent Schrödinger solutions. To get
a proper expression for the Bethe logarithm we apply the generalization of the second order perturbation theory
to an isolated CCR eigenstate. Using the developed method we perform a systematic calculation of the Bethe
logarithm for metastable states in the antiprotonic helium He+p̄ atoms with a precision of 7–8 significant digits.
We also recalculate the nonrelativistic energies with improved precision using CODATA10 recommended values
of masses. Along with a complete set of corrections of mα7 order and the leading contributions of mα8 order,
that has allowed us to get theoretical values for ro-vibrational transition frequencies for the He+p̄ atoms with an
uncertainty of 0.1–0.3 MHz.
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I. INTRODUCTION

Precision spectroscopy of the antiprotonic helium is con-
sidered as one of the possible ways to improve the CODATA
value for the atomic mass of an electron [1,2] assuming the
validity of the CPT symmetry at this level of accuracy. Since
the discovery of a long-lived fraction of antiprotons in helium
[3] and the first laser experiments [4] a great progress in
precision from ppm to ppb level has been achieved [5,6].
More details on this exotic system may be found in Refs. [7]
and [8].

On the other hand, it was shown that individual states
of the antiprotonic helium may be treated numerically with
high precision [9]. Despite the fact that these states appear
in the continuum of the nonrelativistic Hamiltonian operator
as resonances having antiprotons in nearly circular orbitals
with total orbital angular momentum of an atom L ∼ 30–36,
they allow us to calculate very precisely taking into account
their resonant nature [10] together with many higher order
(in powers of the fine structure constant α) relativistic and
radiative corrections [11].

The major goal of the present paper is to get a fractional
precision of one part in 1010 for the theoretical transition
frequencies, which should be compared with the CODATA10
[1] uncertainty limits for the atomic mass 4.1 × 10−10. To
achieve that we need to solve two problems. The first one is
to calculate the nonrelativistic Bethe logarithm for individual
metastable states with an accuracy of seven significant digits
going beyond the usual bound state formalism [10]. The
second is to obtain the complete set of contributions of
various corrections of mα7 order. The latter was carried out
recently in Refs. [12,13]. The former will be considered here
below.

In our derivation of the Bethe logarithm formalism for the
resonant states we utilize the quantum numbers generally used
in the few-body calculations, namely, the total orbital angular
momentum L and the vibrational (or excitation) quantum
number. When we turn to the antiprotonic helium specifically,
we switch to more conventional for this system notation: the
principal quantum number n and orbital angular momentum l

of an antiprotonic orbital. These two sets of quantum numbers
are related as follows: L = l, v = n − l − 1.

II. RESONANCES AND THE COMPLEX COORDINATE
ROTATION APPROACH

To have a rigorous background for our calculations we
need to give a brief outline of the complex coordinate rotation
(CCR) method [14] along with some basics for the perturbation
theory for isolated resonant states. The Coulomb Hamiltonian
for a system of pointlike particles is analytic under dilatation
transformations

[U (θ )f ](r) = emθ/2f (eθr), H (θ ) = U (θ )HU−1(θ ), (1)

for real θ and can be analytically continued to the complex
plane. The complex coordinate rotation method [14] “rotates”
the coordinates of the dynamical system (θ = iϕ), rij →
rij e

iϕ , where ϕ is the parameter of the complex rotation. Under
this transformation the Hamiltonian changes as a function
of ϕ

Hϕ = T e−2iϕ + V e−iϕ, (2)

where T and V are the kinetic energy and Coulomb potential
operators. The continuum spectrum of Hϕ is rotated on
the complex plane around branch points (“thresholds”) to
“uncover” resonant poles situated on the unphysical sheet
of the Reimann surface in accordance with the Augilar-
Balslev-Combes theorem [15]. The resonance energy is then
determined by solving the complex eigenvalue problem for the
“rotated” Hamiltonian

(Hϕ − E)�ϕ = 0. (3)

The eigenfunction �ϕ obtained from Eq. (3) is square inte-
grable, and the corresponding complex eigenvalue E = Er −
i�/2 defines the energy Er and the width of the resonance �,
the latter being related to the Auger rate as λA = �/�.

The use of a finite set of N basis functions reduces the
problem (3) to the generalized algebraic complex eigenvalue
problem

(A − λB)x = 0, (4)

where A = 〈�ϕ|Hϕ|�ϕ〉 is the finite N × N matrix of the
Hamiltonian in this basis, and B is the matrix of overlap B =
〈�ϕ|�ϕ〉.
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To evaluate the nonrelativistic Bethe logarithm for the CCR
states a second-order perturbation theory is necessary. The
relevant background is provided by the theorem [16].

Theorem. Let H be a three-body Hamiltonian with
Coulomb pairwise interaction, and W (θ ) be a dilatation
analytic perturbation. Let E0 be an isolated simple resonance
energy [discrete eigenvalue of H (θ )]. Then for β small, there
is exactly one eigenstate of H (θ ) + βW (θ ) near E0 and

E(β) = E0 + a1β + a2β
2 + · · ·

is analytic near β = 0. In particular,

a1 = E′(0) = 〈�∗
0 (θ )|W (θ )|�0(θ )〉,

(5)

a2 =
∑
n�=0

〈�∗
0 (θ )|W (θ )|�n(θ )〉〈�∗

n (θ )|W (θ )|�0(θ )〉
E0 − En(θ )

.

It is assumed that the wave functions are normalized as
〈�∗

θ ,�θ 〉 = 1. Coefficients a1, a2, etc. do not depend on θ

if only branches uncover E0 and its vicinity on the complex
plane.

III. LEADING ORDER RADIATIVE CORRECTIONS
AND THE BETHE LOGARITHM

The complete spin-independent contribution of orders mα5

and mα5(m/M) for a one electron molecular-type system
may be expressed by three terms: the one-loop self-energy
correction, the transverse photon exchange term, and the
vacuum polarization [17,18].

The one-loop self-energy correction (R∞α3) has the fol-
lowing form:

E(3)
se = α3 4

3

[
ln

1

α2
−β(L,v) + 5

6
− 3

8

]
〈ZHeδ(rHe)

+Zp̄δ(rp̄)〉, (6)

where

β(L,v) = 〈J(H −E0) ln[(H −E0)/R∞]J〉
〈[J,[H, J]]/2〉 (7)

is the nonrelativistic Bethe logarithm [19] for a bound state of
the three-body system. Here J = ∑

a Zapa/ma is the electric
current density operator of the whole system. It is known that
the Bethe logarithm is one of the most difficult quantities to
evaluate numerically in atomic physics. So far, for the case of
the antiprotonic helium it was calculated based on the closed-
channel variational approximation for the initial wave function
[10]. In this case a state may be considered as a “true” bound
state. This approximation was limited in accuracy by four to
six significant digits, and become unsatisfactory for present
level theoretical estimates.

The next term is the recoil correction of order R∞α3(m/M)
[17,18]:

E
(3)
recoil =

∑
i=1,2

Ziα
3

Mi

{
2

3

(
− ln α − 4β(L,v) + 31

3

)
〈δ(ri)〉

− 14

3
Q(ri)

}
, (8)

where β(L,v) is the same Bethe logarithm quantity as in
Eq. (6), Q(r) is the so-called Araki-Sucher term [20]:

Q(r) = lim
ρ→0

〈
�(r − ρ)

4πr3
+ (ln ρ + γE)δ(r)

〉
.

The last term is the one-loop vacuum polarization:

E(3)
vp = 4α3

3

[
− 1

5

]
〈ZHeδ(rHe) + Zp̄δ(rp̄)〉. (9)

The two quantities, the Q(r) term and the mean value the
δ-function operator, which appear in Eqs. (8) and (9), can
be easily evaluated for a CCR wave function of a stationary

TABLE I. Multipolarities of the Auger transition �l, nonrelativistic energies Enr (in a.u.), Auger widths � (in a.u.), expectation values of
operators: p4

e , δ(rHe ), and δ(rp̄), and the Bethe logarithm values, β(n,l), for the Auger states of 4He+p̄ atom.

(n,l) �l Enr �/2 p4
e δ(rHe ) δ(rp̄) β(n,l)

(31,30) 3 −3.67977478748142(4) 4.76010 × 10−9 26.070960 0.92622196 0.12144043 4.578969(1)
(32,31) 4 −3.507635038808513(2) 5.36 × 10−13 28.308650 0.99382380 0.11308041 4.560196(1)
(33,32) 4 −3.353757870683624(4) 1.060 × 10−12 30.718284 1.0664983 0.10445828 4.5416885(4)
(34,32) 3 −3.2276763794925(1) 2.7236 × 10−9 34.530626 1.1808674 0.09255952 4.512829(1)
(34,33) 4 −3.216244238932181(1) 1.38 × 10−13 33.304865 1.1443963 0.09561357 4.523626(1)
(35,32) 3 −3.1166797957470(5) 6.97306 × 10−8 38.370061 1.2958621 0.08121154 4.488492(4)
(35,33) 4 −3.10538267542400(5) 2.67 × 10−12 37.278814 1.2635240 0.08387045 4.496653(1)
(35,34) 5 −3.0934669077893306 — 36.069959 1.2275614 0.08659337 4.5061577(4)
(36,33) 3 −3.0079790935681(3) 2.9186 × 10−9 41.233444 1.3819867 0.07291740 4.474194(2)
(36,34) 4 −2.996335447851055(3) 2.66 × 10−13 40.168790 1.3503395 0.07513623 4.4812666(4)
(37,34) 4 −2.91118093936496(5) 2.60 × 10−12 44.174191 1.4702684 0.06466985 4.4608414(4)
(37,35) 5 −2.8992821832621387(5) 1.2 × 10−15 43.186472 1.4409042 0.06644874 4.4667491(3)
(38,34) 3 −2.8365246011112(6) 1.6029 × 10−9 48.000302 1.5848214 0.05532901 4.4441865(5)
(38,35) 4 −2.825146809449515(3) 1.64 × 10−13 47.185112 1.5605892 0.05662323 4.4484354(3)
(39,34) 3 −2.771011573490(1) 0.9920 × 10−8 51.574881 1.6918639 0.04717053 4.430698(3)
(39,35) 4 −2.76023334548707(3) 0.93 × 10−12 50.925521 1.6725710 0.04806117 4.433733(1)
(40,35) 4 −2.70328321643503(5) 1.91 × 10−12 54.349323 1.7751252 0.04075701 4.421998(5)
(40,36) 4 −2.69262484981043(3) 2.02 × 10−12 53.823828 1.7594940 0.04122551 4.424271(1)
(41,35) 3 −2.6531667754306(4) 1.4400 × 10−9 57.423461 1.8672689 0.03463431 4.412720(3)
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TABLE II. Multipolarities of the Auger transition �l, nonrelativistic energies Enr (in a.u.), Auger widths � (in a.u.), expectation values of
operators: p4

e , δ(rHe ), and δ(rp̄), and the Bethe logarithm values, β(n,l), for the Auger states of 3He+p̄ atom.

(n,l) �l Enr �/2 p4
e δ(rHe ) δ(rp̄) β(n,l)

(31,30) 3 −3.5073727202819(5) 3.3424 × 10−9 28.309519 0.99368837 0.11287882 4.559722(1)
(32,31) 4 −3.348832173150003(2) 5.169 × 10−12 30.803393 1.0689407 0.10401090 4.540686(1)
(33,31) 3 −3.2195072516355(1) 8.2761 × 10−9 34.744079 1.1871602 0.09174227 4.511062(1)
(33,32) 4 −3.20767231244689(1) 7.8 × 10−13 33.484950 1.1497243 0.09489883 4.522121(1)
(34,31) 3 −3.1061288628903(2) 7.925 × 10−10 38.697601 1.3055346 0.08005938 4.486207(2)
(34,32) 4 −3.09445096699891(2) 1.709 × 10−11 37.595341 1.2729446 0.08281128 4.4945424(5)
(34,33) 5 −3.082114107332030(1) — 36.355772 1.2360854 0.08559822 4.5041924(5)
(35,32) 3 −2.9954043586889(1) 8.1608 × 10−9 41.676373 1.3951949 0.07158519 4.471761(1)
(35,33) 4 −2.983373123874257(5) 1.303 × 10−12 40.593960 1.3630401 0.07383439 4.4788451(4)
(36,32) 3 −2.9087979813554(5) 5.7466 × 10−9 45.621175 1.5132762 0.06138275 4.452989(2)
(36,33) 4 −2.89719228821683(3) 2.915 × 10−10 44.720654 1.4866058 0.06315237 4.4582350(5)
(36,34) 5 −2.88491261972020(1) — 43.723769 1.4569802 0.06491865 4.4640761(4)
(37,33) 3 −2.8219630311214(2) 4.2678 × 10−9 48.642644 1.6040396 0.05369086 4.441533(3)
(37,34) 4 −2.81026108564305(5) 7.6 × 10−13 47.831121 1.5799277 0.05494800 4.4456893(6)
(38,33) 3 −2.756217741055(2) 3.4239 × 10−8 52.279701 1.7129557 0.04549272 4.428246(1)
(38,34) 4 −2.74517414926844(2) 3.90 × 10−12 51.647733 1.6942064 0.04633993 4.4310677(4)
(39,34) 4 −2.688292963759(2) 1.130 × 10−9 55.114275 1.7980611 0.03907099 4.419510(4)
(40,35) 4 −2.62832405152957(1) 6.7 × 10−13 57.840699 1.8798956 0.03318082 4.4118712(5)

solution for a metastable state. In what follows in this
section we explain how calculation of the nonrelativistic Bethe
logarithm for a bound state may be extended to resonant states
using the complex coordinate rotation formalism.

The Bethe logarithm for a “rotated” state in the coordinate
system rotated by the same angle ϕ (rij → rij e

iϕ) is expressed:

β(L,v) = 〈Jϕ(Hϕ−E0) ln[(Hϕ−E0)/R∞]Jϕ〉
〈[Jϕ,[Hϕ, Jϕ]]/2〉 , (10)

where Hϕ and Jϕ are the rotated operators of the Hamiltonian
and the charge current density. It is better to rewrite this

quantity in an equivalent form as an integration over the virtual
photon energy k:

β(L,v)

=
∫ Eh

0 kdk
〈
Jϕ

(
1

E0−Hϕ−k
+ 1

k

)
Jϕ

〉+ ∫ ∞
Eh

dk
k

〈
Jϕ

(E0−Hϕ )2

E0−Hϕ−k
Jϕ

〉
〈[Jϕ,[Hϕ,Jϕ]]〉/2

.

(11)

Its integrand may be expressed via a basic function J (k),
the contribution of the second order perturbation of a virtual

TABLE III. Theoretical predictions to transition frequencies, (n,l) → (n′,l′), (in MHz) between metastable states and comparison with the
latest experiment [6]. Calculations are performed with CODATA10 recommended values.

Transition Theory Experiment

4He+p̄ (32,31) → (31,30) 1 132 609 223.8(2) 1 132 609 209(15)
(34,33) → (35,32) 655 062 102.2(2)
(35,33) → (34,32) 804 633 058.3(1) 804 633 059(8)
(36,34) → (35,33) 717 474 002.0(2) 717 474 004(10)
(37,34) → (36,33) 636 878 152.1(1) 636 878 139(8)
(37,35) → (38,34) 412 885 132.7(2) 412 885 132(4)
(38,35) → (39,34) 356 155 990.8(4)
(39,35) → (38,34) 501 948 755.1(2) 501 948 752(4)
(40,35) → (39,34) 445 608 572.4(4) 445 608 558(6)
(33,32) → (31,30) 2 145 054 858.1(2) 2 145 054 858(5)
(36,34) → (34,32) 1 522 107 060.3(2) 1 522 107 062(4)

3He+p̄ (32,31) → (31,30) 1 043 128 580.4(2) 1 043 128 609(13)
(34,32) → (33,31) 822 809 172.2(3) 822 809 190(12)
(35,33) → (34,32) 730 833 930.2(1)
(36,33) → (35,32) 646 180 412.6(2) 646 180 434(12)
(36,34) → (37,33) 414 147 509.3(3) 414 147 508(4)
(38,34) → (37,33) 505 222 281.1(3) 505 222 296(8)
(35,33) → (33,31) 1 553 643 102.4(3) 1 553 643 100(7)
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photon emission and absorbtion,

J (k) = 〈Jϕ(E0−Hϕ−k)−1Jϕ〉. (12)

We neglect retardation as is usual for the nonrelativistic Bethe
logarithm calculations [19]. It is worth noting that J (k) does
not depend on ϕ for a complete (infinite) basis set, and thus
the final value for β(L,v) will not depend on the “unphysical”
parameter—the rotational angle. Meanwhile, the number itself
should be complex with the imaginary part being the radiative
correction contribution to the Auger decay rate. The actual
calculation of the Bethe logarithm for the metastable states
of the antiprotonic helium is performed as a straightforward
generalization of the numerical scheme derived in Ref. [21],
and all the technical details may be found there.

IV. THE VARIATIONAL WAVE FUNCTION

In our CCR calculations, the initial quasibound state of the
antiprotonic helium atom as well as the intermediate states,
which appears in the second order perturbation calculations of
the Bethe logarithm, are taken in the form [22,23]

�L(l1,l2) =
∞∑
i=1

{Ui Re[e−αiR−βir1−γi r2 ]

+Wi Im[e−αiR−βir1−γi r2 ]}Y l1,l2
LM (R̂,r̂1), (13)

where Y l1,l2
LM (R̂,r̂1) are the solid bipolar harmonics as defined

in Ref. [24], and L is the total orbital angular momentum
of a state. The initial states have normal spatial parity: π =
(−1)L. Complex parameters αi , βi , and γi are generated in a
quasirandom manner:

Re[αi] = [⌊
1
2 i(i + 1)

√
pα

⌋
(A2 − A1) + A1

]
,

(14)
Im[αi] = [⌊

1
2 i(i + 1)

√
qα

⌋
(A′

2 − A′
1) + A′

1

]
,

�x� designates the fractional part of x, pα and qα are
some prime numbers, and [A1,A2] and [A′

1,A
′
2] are real

variational intervals, which need to be optimized subjecting the
“minimax” principle of the Rayleigh-Ritz variational method.
Parameters βi and γi are obtained in a similar way.

The intermediate states span over L′ = L,L ± 1 with the
spatial parity π = −(−1)L, where L is a total orbital angular
momentum of the initial quasibound state. The basis set of
intermediate states is composed of a regular part and two
extra short-distance trial functions (for ri → 0, i = 1,2) with
exponentially growing parameters (see details in Ref. [21]).

To keep the required numerical stability the quadruple and
sextuple precision arithmetics have been used.

V. RESULTS

The results of numerical calculations are presented in
Tables I and II. The nonrelativistic energies and widths were re-
calculated with improved precision and using the CODATA10
recommended values for physical constants [1]. The basis
sets for these variational CCR calculations were taken up to
N = 7000 basis functions. In the tables we also present data for
the expectation values of the p4

e , δ(rHe ), and δ(rp̄) operators.
These numbers are of particular importance for evaluating
the leading order relativistic corrections (mα4) with precision
better than 100 kHz in ro-vibrational transition frequencies.
The last column contains data of the CCR calculations of the
Bethe logarithm, which are our main result of this work. Only
the real part of β(n,l) is shown. We estimate that the values
presented have a precision of 7–8 significant digits. It allows
us to claim that the uncertainty arising in the leading order
radiative contribution mα5 is now below 100 kHz.

In Table III a list of transition frequencies of spectroscopic
interest both for 4He+p̄ and 3He+p̄ atoms are collected. The
theoretical data contains a complete set of contributions up
to mα7 order and the leading contributions of the mα8 order
[13]. The error bars indicate mainly the uncertainty, which is
caused by the numerical inaccuracy in the one-loop self-energy
calculations. The whole budget of the contributions for the
(36,34) → (34,32) transition of the 4He+p̄ atom, and a total
list of the corrections, which were included, are discussed
in detail in Ref. [13]. The last column gives a comparison
with the best available experimental measurements for these
transitions.

In conclusion, the results of the calculations presented
here allows us to infer the electron-to-(anti)proton mass
ratio from comparison of theoretical data of Table III and
future improved experimental measurements with the ultimate
relative precision of about 10−10. That is about an order of
magnitude more precise than the CODATA recommended
value for the atomic mass of an electron.
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