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Success probabilities for universal unambiguous discriminators between unknown pure states
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A universal programmable discriminator can perform discrimination between two unknown states, and the
optimal solution can be approached via discrimination between the two averages over the uniformly distributed
unknown input pure states, as has been widely discussed in previous works. In this paper, we consider the
success probabilities of the optimal universal programmable unambiguous discriminators when applied to the
pure input states. More precisely, the analytic results of the success probabilities are derived with the expressions
of the optimal measurement operators for the universal discriminators, and we find that the success probabilities
are independent of the dimension d while the amount of copies in the two program registers is equal. The
success probability of the programmable unambiguous discriminator can asymptotically approach that of the
usual unambiguous discrimination (state comparison) as the number of copies in the program registers (data
register) goes to infinity.
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The discrimination between quantum states is a basic tool
in quantum information processing, and this is a nontrivial
problem since an unknown state cannot be perfectly cloned
[1]. Usually, there are two basic strategies to achieve state
discrimination: minimum-error discrimination (MD) [2–4],
with a minimal probability for the error, and unambiguous
discrimination (UD) [5], with a minimum probability of
inconclusive results. In those works, a quantum state is chosen
from a set of known states, but we do not know which and we
want to determine the actual states.

The discrimination problems above are dependent on the
set of states to be distinguished, and the device for the
discrimination is not universal but specifically designed for
the states. As in the spirit of programmable quantum devices
[6], it is interesting to design a discrimination device that
does not need to change as the input states change. Such a
universal device that can unambiguously discriminate between
two unknown qubit states was first constructed by Bergou
and Hillery [7]. In this programmable quantum device, two
possible states enter two program registers as “programs,”
respectively, and the data register is prepared with a third state
(guaranteed to be one of the two possible states) which one
wishes to identify. One amazing feature of this discriminator is
that the states in the device can be unknown, which means no
classical knowledge on the states is provided, and it is capable
of distinguishing between any pair of states in this device.

Later, the generalizations and the experimental realizations
of programmable discriminators were introduced and widely
discussed [8–13]. The problems with multiple copies in
program and data registers or with high-dimensional states
in the registers were considered. Furthermore, the case in
which each copy in the registers is the mixed state was also
treated [11]. In most of these works, either the unambiguous
discrimination or the minimum-error scheme was used, and
quite recently, the two strategies were unified in Ref. [13] by
introducing an error margin. With multiple copies and high-
dimensional pure states in the registers, the optimal solution
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and success probability are hard to obtain. However, by taking
the average of the unknown states, the task is equivalent to
the discrimination of known mixed states in previous works.
Because the equivalent mixed states are highly symmetrical
objects, the success probabilities for discrimination between
them, or the average success probabilities (ASPs), can be
derived and then the optimal solution is obtained using the
symmetry properties. The ASPs can be used to determine
the optimality of the discriminators, i.e., the discriminators
with the maximal ASPs are optimal. In fact, as mentioned
before, the unknown pure states instead of the average mixed
states are distinguished in most cases, and the ASP is not the
success probability when the device works. Therefore, it is
useful and meaningful to obtain the success probabilities for
the programmable discrimination between the pure states, or
pure success probabilities (PSPs) for short. Moreover, if we
have the PSP, we take its average and we can obtain the ASP.
Unfortunately, except for the results in a few special simple
cases [7,8], PSPs for the general case with multiple copies and
high-dimensional states have still not been obtained.

The main purpose of this paper is to evaluate the PSPs
of the optimal universal unambiguous discriminators between
two unknown pure states for the general case. Following the
optimal measurement operators for the universal unambiguous
discriminator in Ref. [9], we show that the PSPs are related
to Wigner’s D function and the Clebsch-Gordan (CG) co-
efficients for the angular momentum coupling. The analytic
results of PSPs can be obtained with the exact expressions of
Wigner D function and the CG coefficients.

I. UNIVERSAL PROGRAMMABLE UNAMBIGUOUS
DISCRIMINATORS

The general case of the programmable discriminators has
been systematically studied [9], and the optimal solutions are
obtained with the representation theory of the U(d) group and
the Jordan basis method. The discriminator consists of two
program registers A and C, and one data register B. It is
assumed that systems A and C are prepared in the states |φ1〉
and |φ2〉, each with nA and nC copies, respectively, and system
B is prepared in nB copies of either |φ1〉 or |φ2〉, with a priori
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probabilities η1 and η2, such that η1 + η2 = 1. Such a device
can measure and then may distinguish the total input states

|�1〉 = |φ1〉⊗nA

A |φ1〉⊗nB

B |φ2〉⊗nC

C ,
(1)

|�2〉 = |φ1〉⊗nA

A |φ2〉⊗nB

B |φ2〉⊗nC

C ,

with the unknown qudit states |φ1〉 and |φ2〉 in d-dimensional
Hilbert space H. Mathematically, this programmable dis-
criminator is defined by the elements of a universal POVM
{�1,�2,�0}, where �1(�2) is associated with the input state
|�1〉(|�2〉), and �0 corresponds to an inconclusive result.
Without loss of generality, we assume that nA ≥ nC , and we
set n1 = nA + nB,n2 = nB + nC,N = nA + nB + nC .

It is not difficult to see that the state |�1〉 lies in the tensor
space H1 = H[n1] ⊗ H[nc], while |�2〉 in H2 = H[nA] ⊗ H[n2].
H[n] is the totally symmetric subspace of the n-partite Hilbert
space H⊗n, and [n] is a Young diagram. The irreducible basis
|[ν1]
ω1

〉1 forming the complete orthogonal basis of H1 can be

obtained by the coupling of the irreducible bases of H[n1]

and H[nc], where all the possible Young diagrams for [ν1]
constitute a set S1 = {[N − k,k] : k = 0,1, . . . ,nC} and ω1 =
1,2, . . . ,d [ν1], with d [ν1] the dimension of the irreducible space
labeled by [ν1]. Similarly, one has the complete orthogonal
basis |[ν2]

ω2
〉

2
for H2, and besides the Young diagrams in S1, [ν2]

can take ones in the set S2 = {[N,N − k] : k = nC + 1,nC +
2, . . . , min(nA,n2)} when nA > nB . Furthermore, H2 = H2 ⊕
H⊥

2 , where H2 is spanned by all the bases |[ν2]
ω2

〉
2

with [ν2] ∈ S1

while H⊥
2 is spanned by those with [ν2] ∈ S2. H⊥

2 is orthogonal

to both H1 and H2, and the basis {|[ν1]
ω1

〉1 : [ν1] ∈ S1,ω1 =
1,2, . . . ,d [ν1]} for H1 and the basis {|[ν2]

ω2
〉2 : [ν2] ∈ S1,ω2 =

1,2, . . . ,d [ν2]} for H2 form the Jordan basis [9,14].
Now, we can introduce the optimal measurement operators

for the universal programmable unambiguous discriminators,

�1 =
nC∑
k=1

dk∑
ω=1

1 − q
opt
k,1

1 − O2
k

|ψ⊥
k,ω〉2〈ψ⊥

k,ω|,

�2 =
nC∑
k=1

dk∑
ω=1

1 − q
opt
k,2

1 − O2
k

|ψ⊥
k,ω〉1〈ψ⊥

k,ω| + 1⊥, (2)

�0 = 1 − �1 − �2,

where dk = d [N−k,k], and 1⊥ and 1 are the identity operators on
H⊥

2 and H = H1 ∪ H2, respectively. |ψ⊥
k,ω〉1 and |ψ⊥

k,ω〉2 are

normalized orthogonal vectors to |[ν]
ω 〉1 and |[ν]

ω 〉2, respectively,
in the subspace spanned by them, and Ok are the inner products
of the Jordan basis dependent only on the Young diagram
[λ] = [N,N − k]. The parameter q

opt
k,1 is taken as

q
opt
k,1 =

⎧⎪⎪⎨
⎪⎪⎩

1 for η1 < ck,√
η2d1

η1d2
Ok for ck ≤ η1 ≤ dk,

O2
k for η1 > dk,

(3)

q
opt
k,2 = O2

k /q
opt
k,1, and the boundaries ck = d1O

2
k /(d2 + d1O

2
k )

and dk = d1/(d1 + d2O
2
k ). Details for this section are dis-

cussed in Ref. [9]. We will address the PSPs in the following
section.

II. PSPs FOR UNIVERSAL UNAMBIGUOUS
DISCRIMINATORS

Since the unambiguous discriminators are universal, the
optimal operators �0, �1, and �2 are applicable for the PSPs
to the discrimination between the pure states |�1〉 and |�2〉.
Armed with the expressions of the optimal operators in Eq. (2),
the optimal success probability reads

P = η1〈�1|�1|�1〉 + η2〈�2|�2|�2〉. (4)

To give the exact expression of PSP, let us consider
〈�1|�1|�1〉 first. With the expression of �1 and the rela-
tionship

〈�1|ψ⊥
k,ω〉2〈ψ⊥

k,ω|�1〉 = (
1 − O2

k

)〈
�1

∣∣∣[λ]
ω

〉
1

〈[λ]
ω

∣∣∣�1

〉
,

we have 〈�1|�1|�1〉 = ∑
[λ]∈S1

(1 − q
opt
k,1)〈�1|1[λ]|�1〉, where

1[λ] = ∑d [λ]

ω=1 |[λ]
ω 〉1〈[λ]

ω | is the identity operator on the irre-
ducible representation space labeled by [λ] = [N,N − k]. The
following lemma is very useful to calculate the PSPs.

Lemma. The expectation of the operator 1[λ] with respect to
|�1〉 can be expressed as

〈�1|1[λ]|�1〉 =
∑
M

∣∣∣∣∣
∑

l

D
( nC

2 )

l
nC
2

C
N
2 −k,M
n1
2

n1
2 ,

nC
2 l

∣∣∣∣∣
2

, (5)

where D
( nC

2 )

l
nC
2

are the Wigner D function [15], and C
N
2 −k,M
n1
2

n1
2 ,

nC
2 l

are the CG coefficients [16].
For readability, we postpone the detailed proof of this

lemma to the technical appendix. Plugging the exact expres-
sions of CG coefficients and Wigner D function into Eq. (5),
and by some algebra, we have

〈�1|1[λ]|�1〉 = (N − 2k + 1)n1!nC!

k!(N − k + 1)!

(
sin2 β

2

)nC

× 2F1

(
n1 − k + 1,k − nC ; 1; − cot2 β

2

)
,

where 2F1(a,b; c; z) is the Gauss hypergeometric function
[17]. Finally, we can obtain

η1〈�1|�1|�1〉 = a(1 − |〈φ1|φ2〉|2)nC ,

where the relationship sin2 β

2 = 1 − |〈φ1|φ2〉|2 has been used
and

a = η1

nC∑
k=1

(
1 − q

opt
k,1

) (N − 2k + 1)n1!nC!

k!(N − k + 1)!

× 2F1

(
n1 − k + 1,k − nC ; 1; − cot2

β

2

)
.

Similar discussions can be carried out for 〈�2|�2|�2〉, and
one can also obtain

η2〈�2|�2|�2〉 = (b + c)(1 − |〈φ1|φ2〉|2)n2 ,

with

b = η2

nC∑
k=1

(
1 − q

opt
k,2

) (N − 2k + 1)n2!nA!

k!(N − k + 1)!

× 2F1

(
nA − k + 1,k − n2; 1; − cot2 β

2

)
,
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c = η2

min(nA,n2)∑
k=nC+1

(N − 2k + 1)n2!nA!

k!(N − k + 1)!

× 2F1

(
nA − k + 1,k − n2; 1; − cot2 β

2

)
.

Now, the exact values of PSPs can be expressed as

P = a(1 − |〈φ1|φ2〉|2)nC + (b + c)(1 − |〈φ1|φ2〉|2)n2 . (6)

This is the main result in this paper, and in the following we
will use it to discuss some specific cases.

III. REMARKS AND DISCUSSION

(i) From Eq. (3), it is easy to notice that the parameters
q

opt
k,1 and q

opt
k,2 may be dependent on the dimension d of the

Hilbert space H unless nA = nC , and thus the values of PSPs
are generally dependent on d. As the reference states |φ1〉
and |φ2〉 are completely unknown, there is no priority for one
data register to own more copies than the other one, so we
set nA = nC = m,nB = n in this section. The PSPs are now
independent of the dimension d, which is very different from
the cases for the averages of the input states, where the ASPs
are always dependent on d. This is reasonable since the average
of the overlap |〈φ1|φ2〉| over the unknown states |φ1〉 and |φ2〉
is always related to d.

(ii) When n goes to infinity while m is finite, from Eq. (6),
we have the asymptotic limit of PSP for each finite m,

Pm ≡ lim
n→∞ P =

m∑
k=1

amk

(
cos2 β

2

)m−k (
sin2 β

2

)k

, (7)

where the coefficients amk in each term can be calculated,
and if we further define a00 = 1 and am0 = 1, the values of
amk(m ≥ k ≥ 0) can be listed in the following:

m = 0 : 1
m = 1 : 1 1
m = 2 : 1 2 1
m = 3 : 1 3 3 1
m = 4 : 1 4 6 4 1

...
...

...
...

...
...

...
...

...
...

...
...

In the triangular array above, each entry happens to be the
sum of the two upper entries, and this is the celebrated
Pascal’s triangle, a geometric representation of the binomial
coefficients. Hence the elements in the array above are the
binomial coefficients, say amk = (mk ). As a result,

Pm = 1 −
(

cos2 β

2

)m

= 1 − |〈φ1|φ2〉|2m. (8)

The asymptotic limit above for n → ∞ can be achieved in
a different approach. As n is infinite, the unknown state in the
data register can be exactly reconstructed via quantum state
tomography [18,19]. Denote the reconstructed state by |φ0〉,
and then |φ0〉 is the state |φi〉 (i = 1 or 2) with probability ηi .
While the state in the data system is known, the discrimination
between the total states comes down to determining whether
the state |φ0〉 is equal to the state in program system A or C.
With m copies of states in both program systems, we have

m pairs of states |φ0〉|φ1〉 and m pairs of |φ0〉|φ2〉, and the
task can now be completed by the state comparisons [20]
of the two states in the 2m pairs. More precisely, for each
pair |φ0〉|φi〉(i = 1 or 2), we project the state |φi〉 onto |φ⊥

0 〉,
the state orthogonal to |φ0〉 in the space spanned by |φ1〉 and
|φ2〉, and the measurement result associated with the projection
operator E⊥

0 = |φ⊥
0 〉〈φ⊥

0 | gives the right answer of comparison.
Thus, the failure probability of the comparison for each pair
is 1 − 〈φi |E⊥

0 |φi〉 = |〈φ0|φi〉|2, and the success probability
for at least one pair is 1 − ∏

i |〈φ0|φi〉|2m = 1 − |〈φ1|φ2〉|2m,
holding for both |φ0〉 = |φ1〉 and |φ0〉 = |φ2〉. Since the
discrimination task succeeds unless the state comparisons of
the 2m pairs of states all fail, the success probability via state
comparisons is P ′

m = 1 − |〈φ1|φ2〉|2m, which is explicitly the
same as that in Eq. (8).

(iii) For the averaged input states, the programmable
unambiguous discriminator reduces to the usual unambiguous
discrimination between known states as m goes to infinity
[10,11]. The situation for the pure input states has not been
involved, and now we can address this problem here. Since
nA = nC , we have

P =
m∑

k=1

(
1 − η1q

opt
k,1 − η2q

opt
k,2

) nC
2 −k∑

l=− nC
2

∣∣∣∣D( nC
2 )

l
nC
2

C
N
2 −k,

n1
2 +l

n1
2

n1
2 ,

nC
2 l

∣∣∣∣
2

,

(9)

where the relationship Eq. (5) has been used. With large m, us-
ing the normal approximation for the binomial distribution, one

can obtain |D( nC
2 )

l
nC
2

|2 ≈ 1√
2πσ

exp[− (m/2+l−μ)2

2σ 2 ], which is a nor-

mal distribution with the expectation μ = m cos2(β/2) and the
variance σ 2 = m cos2(β/2) sin2(β/2). Therefore, as m → ∞,

|D( nC
2 )

l
nC
2

|2 ≈ 1
m

δ( l
m

+ 1
2 − cos2 β

2 ), and then l ≈ l0 ≡ (cos2 β

2 −
1/2)m is required for the nonzero terms in Eq. (9), yield-

ing P ≈ ∑m
k=1(1 − η1q

opt
k,1 − η2q

opt
k,2)|C

N
2 −k,

n1
2 +l0

n1
2

n1
2 ,

nC
2 l0

|2. To obtain

the asymptotic limit of the CG coefficient C
N
2 −k,

n1
2 +l0

n1
2

n1
2 ,

nC
2 l0

for large m, we first investigate the two expressions

Ĵ
2
/m2|( n1

2
nC

2 )N
2 − k, n1

2 + l0〉 and Ĵ
2
/m2| n1

2
n1
2 , nC

2 l0〉, where
Ĵ = ĴAB + ĴC is the total angular momentum for the whole
system. Notice that |( n1

2
nC

2 )N
2 − k, n1

2 + l0〉 is the eigenvec-

tor of Ĵ
2

with the eigenvalue (N
2 − k)(N

2 − k + 1), and

we easily have (set � = 1) Ĵ
2
/m2|( n1

2
nC

2 )N
2 − k, n1

2 + l0〉 ≈
(1 − k

m
)2|( n1

2
nC

2 )N
2 − k, n1

2 + l0〉. Define ĵ± = ĵ x ± iĵ y for

angular momentum operators, and then Ĵ
2 = Ĵ

2
AB + Ĵ

2
C +

2Ĵ z
ABĴ z

C + Ĵ+
ABĴ−

C + Ĵ−
ABĴ+

C . So, with some algebra, we can

have Ĵ
2
/m2| n1

2
n1
2 , nC

2 l0〉 ≈ cos2 β

2 | n1
2

n1
2 , nC

2 l0〉. In the deriva-
tion above, the angular momentum relationships ĵ±|JM〉 =√

J (J + 1) − M(M ± 1)|JM ± 1〉 have been applied. Now,
we know that the angular momentum vectors |( n1

2
nC

2 )N
2 −

k, n1
2 + l0〉 and | n1

2
n1
2 , nC

2 l0〉 are both the eigenvectors of the

same Hermitian operator Ĵ
2
/m2, and therefore the CG

coefficient C
N
2 −k,

n1
2 +l0

n1
2

n1
2 ,

nC
2 l0

vanishes unless the two corresponding

eigenvalues are equal, say (1 − k/m)2 ≈ cos2(β/2) for large
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m. Further notice that
∑nC

k=0 |C
N
2 −k,

n1
2 +l0

n1
2

n1
2 ,

nC
2 l0

|2 = 1, and we can

conclude that |C
N
2 −k,

n1
2 +l0

n1
2

n1
2 ,

nC
2 l0

|2 ≈ 1
m

δ( k
m

− 2 sin2 β

4 ) as m → ∞.

Using the results above, Eq. (9) reduces to P ≈ (1 − η1q
opt
k,1 −

η2q
opt
k,2)|k/m=2 sin2(β/4). Further from Eq. (3), and together with

Ok ≈ (1 − k/m)n for large m [9], finally one has

Pn ≡ lim
m→∞ P =

⎧⎪⎨
⎪⎩

η2
(
1 − cos2n β

2

)
for η1 < e,

1 − 2
√

η1η2 cosn β

2 for e ≤ η1 ≤ f,

η1
(
1 − cos2n β

2

)
for η1 > f,

(10)

with the boundaries e = cos2n β

2 /(1 + cos2n β

2 ) and f =
1/(1 + cos2n β

2 ).
The asymptotic limit for m → ∞ in Eq. (10) is exactly

the same as that for the usual unambiguous discrimination
between two known sates |φ1〉⊗n and |φ2〉⊗n with inner
product |⊗n〈φ1|φ2〉⊗n| = cosn(β/2). Actually, this asymptotic
limit can indeed be approached by the usual unambiguous
discrimination strategy here. As m is infinite, we can also
reconstruct the unknown states in program registers via
quantum state tomography, and the problem comes down to
determining whether the states in the data system are |φ1〉⊗n

or |φ2〉⊗n.
(iv) Although they received little attention before, optimal

measurement operators are important in the universal unam-
biguous discrimination. The expressions of these operators
in Eq. (2) reveal the symmetry properties in the universal
unambiguous discrimination, which are rather useful in the
derivation of our results in this paper. Before our work,
the PSPs were achieved only for a few simple examples since
the general case is much more complicated without the explicit
expressions of the optimal measurement operators. More
significantly, the expressions of these operators theoretically
represent the measurements in the experiments, and with
them one can design the optimal universal unambiguous
discriminators in the laboratory.

IV. CONCLUSIONS AND SUMMARIES

We derive the analytic expressions of PSPs for the universal
programmable unambiguous discriminators using the explicit
expressions of the optimal measurement operators given in
Ref. [9]. Since pure states are actually input, PSPs are the
success probabilities when the device works, and we show
that the optimal programmable unambiguous discriminator is
equivalent to the usual unambiguous discrimination between
the pure input states in the data register as the number of
copies in the program registers goes to infinity, and equivalent
to a series of state comparisons as the number of copies in
the data register goes to infinity. Similar conclusions hold for
the averaged input states, and moreover, our result is more
general, allowing for the arbitrary a priori probabilities η1 and
η2, arbitrary dimension d, and arbitrary number of copies in the
registers. It is the PSPs, instead of the ASPs, that are directly
observed in the laboratory, and hence the results in this paper
will be useful and helpful for the experimental realization of the
universal unambiguous discriminators in the future. We expect

that our results could lead to further theoretical or experimental
consequences.
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APPENDIX: PROOF OF THE LEMMA

First, notice that |φ1〉 and |φ2〉 are two states in H, so there
always exists a certain d-dimensional unitary transformation
u ∈ U(d) such that

|φ′
1〉 = u|φ1〉 = |0〉,

(A1)

|φ′
2〉 = u|φ2〉 = e−i

α+γ

2 cos
β

2
|0〉 + ei

α−γ

2 sin
β

2
|1〉,

where |0〉 and |1〉 are two orthogonal bases of H, and
the unknown parameters α, β, and γ are Euler angles of
the rotation group with cos β

2 = |〈φ1|φ2〉|, β ∈ [0,π ], and
α,γ ∈ [0,2π ). Without any knowledge about |φ1〉 and |φ2〉,
it is impossible to determine the exact expression of u, but
it does exist, and this is enough. Now, we have a new state
|�′

1〉 = u⊗N |�1〉.
Secondly, recall that |[λ]

ω 〉1(ω = 1,2, . . . ,d [λ]) are the irre-
ducible bases for the representation labeled by [λ], and then
one can have u⊗N1[λ](u⊗)† = ∑d [λ]

ω=1 |[λ]
ω 〉〈[λ]

ω |, where the bases

|[λ]
ω 〉(ω = 1,2, . . . ,d [λ]) are the irreducible basis of both the

permutation group SN and the unitary group U(d), and can be
transformed to |[λ]

ω 〉1 by the subduction coefficients (SDCs) of
the permutation group SN [21]. Then,

〈�1|1[λ]|�1〉 =
d [λ]∑
ω=1

〈
�′

1

∣∣∣[λ]
ω

〉〈[λ]
ω

∣∣∣�′
1

〉
. (A2)

Thirdly, |φ′
1〉 and |φ′

2〉 can be regarded as states of the spin-
1/2 system with |0〉 and |1〉 the spin-up and spin-down bases.
Thus, for the state |�′

1〉, the system consisting of A and B has
the angular momentum jAB = n1/2, while the system C has
jC = nC/2. Based on these, |�′

1〉 can be expressed as a linear
combination of angular momentum basis

|�′
1〉 =

nC
2∑

l=− nC
2

D
( nC

2 )

l
nC
2

(α,β,γ )

∣∣∣∣n1

2

n1

2

〉∣∣∣∣nC

2
l

〉
, (A3)

with α, β, and γ the unknown parameters in Eq. (A1).
The bases |[λ]

ω 〉 which contribute to Eq. (A2) should be the

eigenstates such as | n1
2

nC

2 (N
2 − k)M〉 with the total angular

momentum J = N/2 − k and its z component M , where
k = 0,1, . . . ,nC and M = k − N

2 ,k − N
2 + 1, . . . ,N

2 − k for
each k, and substituting this and Eq. (A3) into Eq. (A2), one
can have Eq. (5). �
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