
PHYSICAL REVIEW A 89, 014103 (2014)

Free-particle wave function and Niederer’s transformation
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The solutions to the free Schrödinger equation discussed by P. Strange (arXiv:1309.6753) and A. Aiello
(arXiv:1309.7899) are analyzed. It is shown that their properties can be explained with the help of Niederer’s
transformation.
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I. INTRODUCTION

Recently Strange [1] considered a specific solution to
the one-dimensional free-particle Schrödinger equation in
which the space and time dependence are not separable. The
solution exhibits a few peaks in probability density which
accelerate with time. It has been analyzed [1] in quantum
and semiclassical regimes along the same lines as the Airy
accelerating solution constructed by Berry and Balazs [2].
Strange’s solution was further generalized to two dimensions
by Aiello [3].

In the present Brief Report we show that the form and
properties of such a solution are direct consequences of
Niederer’s transformation [4] relating, both on the classical and
quantum levels, the harmonic oscillator and the free particle
of the same mass. We generalize the results presented in
Ref. [1] concerning the behavior of the probability density
and its relation to the properties of the family of classical tra-
jectories. It is also shown that the solutions under consideration
can be easily generalized to any dimension.

II. NIEDERER’S TRANSFORMATION

Niederer [4] (see also Ref. [5]) constructed the mapping
which transforms the harmonic oscillator motion into the
free one. Given the d-dimensional oscillator described by the
Lagrangian

L = m

2
�̇x2 − mω2

2
�x2, (1)

we consider the following point transformation:

τ = 1

ω
tan (ωt), t = 1

ω
arctan (ωτ ),

�y = �x
cos (ωt)

, �x = �y(1 + ω2τ 2)−
1
2 . (2)

One easily checks the following identity:

Ldt = m

2

(
d �y
dτ

)2

dτ − d
(mω

4
sin (2ωt)�y2

)
, (3)

which tells us that �y(τ ) describes free motion provided �x(t)
obeys the harmonic oscillator equation of motion. In particular,
the mapping (2) transforms harmonic motion in the interval
(− π

2ω
, π

2ω
) (half of the period) into the free dynamics for −∞ <

t < ∞.
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Transformation described by Eqs. (2) has its quantum
counterpart. Namely, if ψ(�x,t) obeys the Schrödinger equation
for harmonic oscillator, then

χ (�y,τ ) = (1 + ω2τ 2)−
1
4 e

imω2τ

2(1+ω2τ )
�y2

ψ

×
(

�y(1 + ω2τ 2)−
1
2 ,

1

ω
arctan (ωτ )

)
(4)

is a solution to the free Schrödinger equation. The structure of
the relation given by Eq. (4) is transparent. First, the arguments
of the wave function are replaced by the appropriate functions
of the new ones according to the classical formulas (2). Then
two factors are added: The first one accounts for proper
normalization while the second one is related to the fact that
under the transformation (2) the Lagrangian transforms by a
total derivative [cf. Eq. (3)].

The inverse transformation reads

ψ(�x,t) = [cos (ωt)]−
1
2 e− imω

2 tan (ωt)�x2
χ

( �x
cos (ωt)

,
1

ω
tan ωt

)
.

(5)

Taking d = 1 and ψ(x,t) as the eigenfunction of the harmonic
oscillator Hamiltonian,

ψ(x,t) = 1√
2nn!

(
mω

π

) 1
4

e−iω(n+ 1
2 )t e− mωx2

2 Hn((mω)
1
2 x),

(6)

one arrives at formula (2) from the Strange paper [1] provided
the identification ω = 1

tc
has been made.

One can also easily construct multidimensional solutions.
For example, let us take d = 2 and let ψ(�x,t) be a common
eigenfunction of energy and angular momentum; up to a
normalization factor,

ψn,l(�x,t) = e
−iω

(
n+ |l|

2 + 1
2

)
t
e− mωr2

2 r |l|F (−n,|l| + 1,mωr2).

(7)

Applying Eq. (4) to ψ0,l , one arrives at the wave function
considered by Aiello [3]. In a similar way one can construct
three- and higher-dimensional examples.

Let us now come back to the one-dimensional case. We
would like to analyze the behavior of the probability density
for the solutions under consideration. Let ψn(x,t) be the nth
stationary solution. Then Eq. (4) implies

|χ (y,τ )|2 = (1 + ω2τ 2)−
1
2 ρn(y(1 + ω2τ 2)−

1
2 ), (8)
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ρn(x) being a time-dependent probability density for the
stationary state of the harmonic oscillator. Now, ρn(x) has
n + 1 maxima. Therefore, the probability density |χ (y,τ )|2
has n + 1 peaks yn(τ ) which travel with time along hyperbolic
trajectories,

yn(τ ) = yn(0)(1 + ω2τ 2)
1
2 , (9)

and broaden according to (1 + ω2τ 2)
1
2 law. This generalizes

to any n the findings of Ref. [1] for n = 2.
Berry and Balazs [2] found the solution to the free

Schrödinger equation in the form of a wave packet propagating
in space without distortion and with constant acceleration.
Although not being square integrable it does not provide a
counterexample to the Ehrenfest theorem, the appearance of
accelerated motion for the free particle is slightly disturbing.
Therefore, Berry and Balazs proposed an explanation of this
fact based on considering the family of classical trajectories
that are related, via semiclassical analysis, to the wave function
under consideration; the acceleration of the packet is ascribed
to the curvature of the envelope of this family.

In the case of the solution considered by Strange, which
is normalizable, the Ehrenfest theorem cannot be broken.
However, the probability density possesses several peaks
which travel with acceleration. As shown by Strange in
the n = 2 case, their acceleration can be also related to
the behavior of some family of classical trajectories. The
picture based on Niederer’s transformation allows us to
give a simple interpretation for any n. The nth eigenstate of
the harmonic oscillator Hamiltonian corresponds to the family
of classical trajectories parametrized by an angle α,

x(t,α) =
√

2En

mω2
cos (ωt + α), (10)

which, in view of Eq. (2), yields the family of free trajectories,

y(τ,α) =
√

2En

mω2
(cos α − ωτ sin α). (11)

The envelope of this family is obtained by solving

∂y(τ,α)

∂α
= 0 (12)

with respect to α and reinserting into Eq. (11). This yields

y(τ ) = ±
√

2En

mω2
(1 + ω2τ 2)

1
2 . (13)

Now, x± = ±
√

2En

mω2 are the classical turning points restricting
the classically allowed region for the harmonic oscillator
motion with the energy En. In the semiclassical regime, n � 1,
n� fixed, the extreme maxima of probability density are placed
at points differing by an O( 1

n
) distance from the turning

points. Therefore, Eq. (4) tells us that Eq. (13) describes,
in the semiclassical limit, the motion of extreme maxima of
the probability density for the corresponding free Schrödinger
equation.

III. CONCLUSION

We have shown that the “exotic” solutions to the free
Schrödinger equation considered recently [1,3] can be easily
generated by using Niederer’s transformation [4,5]. Their
slightly peculiar properties are naturally explained in terms
of this transformation.

We considered here only solutions to the free Schrödinger
equation, which are the images, under the Niederer transfor-
mation, of stationary states of harmonic oscillators. However,
there are also other interesting states of the harmonic oscillator
which could generate some interesting free wave functions.
For example, coherent states yield the Gaussian packet of
constant width oscillating according to the classical equations
of motion. This and other similar cases will be studied
elsewhere.
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