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Identification of the Keldysh time as a lower limit for the tunneling time
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By using first-principles arguments, based on the time-energy uncertainty principle in the form given by
Mandelstam and Tamm, we show that the Keldysh time represents a lower limit for the tunnel time. We use the
definition of the tunnel time as identified in a recent numerical investigation [C. R. McDonald et al., Phys. Rev.
Lett. 111, 090405 (2013)]; it is the time it takes for the unperturbed initial ground-state wave function to evolve
into the field-perturbed final eigenstate which is the quasistatic field dressed resonance.
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In a seminal paper, Keldysh gave the first theoretical
description of laser-driven ionization of atoms with ionization
potential |E0| [1–3]; the strong laser field is characterized by
field strength F and frequency ω. A semiclassical integration
of the Schrödinger equation revealed that ionization can be
characterized by the Keldysh parameter γk as multiphoton or
as tunnel ionization [4,5] in the limits of γk > 1 and γk � 1,
respectively. The Keldysh parameter is defined as the ratio of
the Keldysh time τk and the laser oscillation period T0 = 2π/ω

and is given by γk = 2πτk/T0. To fully appreciate the meaning
of the γk parameter, a physically satisfactory interpretation of
τk is required.

The Keldysh time can be written as τk = l/|v|, where
l = |E0|/F is the barrier width and v = i

√|E0|/2 is the
average speed of an electron under the static barrier [6,7].
This definition offers the following interpretation: the Keldysh
time is the time it takes a classical electron with average
velocity v to cross the static barrier of length l. For this
reason τk is sometimes referred to as the Keldysh tunnel
time. The electron velocity is imaginary because classically
the electron is not allowed to enter the barrier. As a result, this
interpretation, although intuitive, is unsatisfactory. The lack of
understanding of the Keldysh time has been highlighted by the
discrepancy between recent measurements of the tunnel time
[8] and various theoretical definitions [1,9].

The goal of this Brief Report is to derive τk from basic
principles of quantum mechanics without the need to rely
on a semiclassical approximation. As a result, the meaning
of the Keldysh time is revealed as presenting a lower limit
to the tunnel time. Our work builds on the tunnel time as
identified in a recent paper [10], through a numerical analysis
of one-dimensional (1D) model atoms perturbed by an external
electric field F that is suddenly switched on. A schematic
of the dynamical processes is presented in Fig. 1. In regular
quasistatic ionization theory, the bound system would start
ionizing with the full static ionization rate [11]. In reality,
the bound system builds up ionization via two channels,
the tunnel (horizontal) ionization channel and the single- or
multiphoton (vertical) channel. The ionization buildup ends
when the quasistatic resonance with static ionization rate w(F )
is realized. The dash-dotted line represents the total ionization
rate as would be obtained by a complete numerical solution of
the Schrödinger equation; it contains both ionization channels.
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In Ref. [10] it was shown how the vertical channel can be
filtered out to isolate the tunneling dynamics alone, which
is represented by the solid line in Fig. 1. Both the tunnel
ionization rate and the full ionization rate reach the same static
ionization rate w(F ), but over different response times τt and
τf , respectively. The response time τt was defined as the tunnel
time in Ref. [10]; it is the time it takes for the bound state
to develop the underbarrier tunneling components of the final
quasiresonance state, so that full tunnel ionization with rate
w(F ) occurs.

The tunnel time τt was found numerically to be proportional
to and longer than the Keldysh time τk. Furthermore, τt

was generally shorter than τf , the response time of the full
ionization rate. As a result, the Keldysh time τk was found to
be the shortest time over which the system can respond. In
this sense, the numerical analysis suggested that the Keldysh
time presents a lower limit to the tunnel time. The purpose of
our Brief Report is to prove this conjecture by first-principles
arguments and to explore its consequences.

The following derivation relies exclusively on the time-
energy uncertainty principle, as established by Mandelstam
and Tamm [12–14]. This allows us not only to put the
numerical findings of Ref. [10] on a more rigorous theoretical
footing, but also to generalize the definition of the tunnel
time to three-dimensional (3D) atomic systems. Most of the
papers that have dealt so far with the tunneling problem have
investigated reduced-dimensionality (1D) systems with the
notable exception of Ref. [15], where the lateral spreading of
the tunneling wave function has been used as a quantum clock
to measure the tunnel time. The use of a realistic 3D model
is important because it facilitates the comparison between
theoretical and experimental results. Finally, our analysis does
not rely on the semiclassical approximation commonly used
in the analysis of the tunnel time.

The concept of tunnel time has been hotly debated for a long
time and many possible definitions have been proposed so far
[9,15–18]. Our work adds two main points. First, the Keldysh
time is equal to the Mandelstam-Tamm (MT) time. The MT
time is the time over which the ground state cannot respond
to the external perturbation [19,20]. As a result of the equality
of MT time and Keldysh time, the Keldysh time represents a
lower limit for the tunnel time. Consequently, the tunnel time,
independently of the exact definition, has to be larger than the
Keldysh time. Second, our analysis reveals that tunnel time
and Keldysh parameters emerge from the same underlying
concept, as they should: the time it takes the particle wave
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FIG. 1. Schematic of the tunneling process for a step-function
switch-on. The dotted line represents the full ionization rate w(t). The
solid line is the filtered ionization rate (labeled “Tunneling Rate”).
The constant line represents the static ionization rate w(F ).

function to evolve from the ground state into the quasistatic
field dressed resonance. Thus, the definition of Keldysh time
and the Keldysh parameter are brought in line. Finally, the
identified definition of Keldysh and tunnel time can be used
for a more accurate quantitative interpretation of the Keldysh
parameter.

Our analysis starts from an atomic system perturbed by a
laser electric field with a step-function switch-on from 0 to
F . We work within the single-particle approximation; atomic
units are used throughout. At t = 0 the atomic electron is in
the ground state |0〉 of the unperturbed Hamiltonian H0 with
energy eigenvalue E0 < 0. The Hamiltonian H of the system
is given by

H =
{
H0 for t < 0,

H0 − F · x = H0 − Fx for t � 0,
(1)

where H0 = −∇2/2 + V with V the potential energy operator,
and F presents the strength of the static electric field directed
along the x axis (F = F x̂). The potential energy V is a general
inverse-square-law function of the form V (x) = −K2/|x|λ,
with 0 < λ < 2 and K a numerical coupling constant. Atomic
units are used throughout. Because of the presence of the
perturbation, the state |0〉 has a nonzero energy uncertainty
δE =

√
〈H 2〉 − 〈H 〉2 for t > 0. Here, all expectation values

are taken with respect to |0〉; this is the case throughout the
rest of this Brief Report unless otherwise stated.

It is straightforward to show the equality of MT time τMT

and Keldysh time τk by using the following observations. Due
to the symmetry of the potential V (x), the initial position
and momentum expectation values are 〈x〉 = 〈p〉 = 0, and,
thus, 〈H 〉 = E0 and 〈H 2〉 = E2

0 + F 2〈x2〉. This results in

δE = F
√

〈x2〉.
Because of the spherical symmetry of the potential V ,

we have, for the position and momentum uncertainty, δx =√
〈x2〉 − 〈x〉2 = δy = δz and δpx =

√
〈p2

x〉 − 〈px〉2 = δpy =
δpz; therefore, δE = Fδx = α F

δpx
= αF

√
3

2〈T 〉 . The term α =

δxδpx � 1/2 is a numerical constant and 〈T 〉 = 1
2 〈p2〉 =

3
2 〈p2

x〉 = 3
2 (δpx)2 is the average kinetic energy of the un-

perturbed ground state. We stress that α depends only on
the form of the ground state and not on the electric field
strength F .

Applying the quantum virial theorem [3,14] to the
Hamiltonian H0, we find a simple relation between 〈T 〉 and
the unperturbed energy, namely, E0 = λ−2

λ
〈T 〉. Therefore, we

can rewrite the MT time as

τMT = 1

α

√
2λ

3(λ−2)E0

F
=

√
λ

3α2(2 − λ)
τk = cτk. (2)

For the Coulomb interaction λ = 1, α = 1/
√

3 [3], and,
hence, the MT time is identical to the Keldysh time; that
is, τMT = τk =

√−2E0

F
. For potentials with a different λ the

MT time has the same dependence on the field strength F

as the Keldysh time, the only difference being the numerical
coefficient in Eq. (2). As a result, the Keldysh time represents
a lower limit for the tunnel time needed for the atomic ground
state to develop into the quasistatic resonance and to fully
develop tunnel ionization: τk � τt.

The MT time-energy uncertainty relation [12–14] implies
that the electron wave function does not evolve significantly
for t < τMT = 1/δE. In fact, Mandelstam and Tamm proved
that τA—the time it takes for the average value 〈0|Â|0〉 of
any observable Â to change significantly—must be larger than
τMT, i.e., τA � τMT. As the MT time is identical to the Keldysh
time, the expectation value of any observable, and also the
wave function itself, cannot evolve in a time shorter than τk.
This holds important implications for the tunneling time.

In many theoretical investigations [9], the time evolution
of an operator Âclock is chosen as a possible quantum clock to
measure the tunnel time, e.g., the spin of the tunneling particle
in the gedanken Larmor clock experiment. It should be stressed
that different quantum clocks may measure different tunneling
times. However, by virtue of our MT analysis, the evolution
(of the expectation value) of any operator Âclock must unfold
in a time longer than τMT = τk . Consequently τk represents
a lower limit for the tunneling time of an atomic system, as
measured by any quantum clock.

The identification of the Keldysh time as a lower limit
for the tunnel time is also important, as it allows a unified
interpretation of the tunnel time and the Keldysh parameter γ ,
based on the same concept: the time it takes the ground state
in the presence of a laser field to evolve into the quasistatic
resonance state. Whereas the Keldysh time defines the time
over which the system is too inert to respond to the external
perturbation, the tunnel time sets the time over which the final
quasistatic resonance state is reached.

The Keldysh parameter γk = ωτk = ω
√

2|E0|/F , for an
atomic electron interacting with a laser field F (t) = F sin(ωt),
compares the Keldysh time with a quarter laser cycle T0/4 =
(π/2)ω ≈ ω. When γk = 1, we can conclude that the Keldysh
time is of the order of a quarter cycle; consequently tunneling
cannot happen, as the atom cannot respond to the laser
perturbation within τk. As a result, ionization is dominated
by multiphoton ionization. Alternatively, we could define a
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modified Keldysh parameter γt = ωτt . Here τt is the tunnel
time as defined in Ref. [10] for a particle in a monochromatic
laser field, i.e., the time over which the quasistatic resonance
has been realized and tunnel ionization has fully developed. For
this definition, γt = 1 means that tunneling can fully develop
over a quarter cycle and that the system will dominantly ionize
via tunnel ionization.

As a result, our analysis enables a more accurate quanti-
tative interpretation of when tunnel or multiphoton ionization
dominates. Multiphoton and tunnel ionization are dominant

for γk � 1 and for γt � 1, respectively. The range between
γk and γt defines the transition region between tunnel and
multiphoton ionization.

The preceding analysis has shown that it is possible to
establish the meaning of the Keldysh time τk as a lower limit
to the tunnel time, using only basic principles of quantum
mechanics. An extension of our analysis to short-range
potentials is straightforward. This corroborates the conclusions
drawn from numerical analysis in Ref. [10] in terms of simple,
first-principles arguments.
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