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Kerr-free propagation of a near-resonant laser in an atomic vapor
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In this paper, we address the propagation of a near resonant laser inside an atomic vapor in the case when,
due to the Kerr effect, the laser beam would either self-focus or self-defocus. We show, both theoretically and
experimentally, how to get rid of such an alteration in the transverse beam profile without changing any of
the characteristics of the laser light under consideration (wavelength, intensity, etc.), nor of the atomic vapor.
Moreover, our proposed method offers a lot of control on the beam profile, whose transverse size after propagation
may be chosen at will by making use of a second, copropagating laser, whose required wavelength and intensity
may be derived analytically.
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I. INTRODUCTION

The optical Kerr effect [1], which results from the intensity
dependence of the index of refraction, n ≡ n0 + n2I , where I

is the light intensity, is ubiquitous in laser-matter interaction
and may lead to light self-defocusing (if n2 < 0) or self-
focusing (when n2 > 0). This effect may be detrimental for
various applications, e.g., isotope separation [2,3], when one
needs to let a laser light with a specific wavelength, close to
that of a spectral line, propagate inside a given atomic vapor.
In addition to the constraints on the vapor composition and
on the laser frequency, and because of technological issues
or needs to “optimize” a given process, one often has to also
specify the laser intensity, the vapor density, and the length of
laser propagation inside the vapor. It may then happen that,
for all these carefully chosen parameters, the space profile of
the laser field may be significantly modified due to the Kerr
effect, sometimes up to the point that the laser can no longer
propagate, thus making the chosen application ineffective.

In this paper we provide a theoretical analysis, confirmed
experimentally, showing that it is possible to get rid of the Kerr
effect for the laser light of interest (henceforth called laser 1)
by using a second copropagating laser (henceforth called laser
2), as is illustrated in Fig. 1. Indeed, the second laser provides
an additional term in the index of refraction, which now writes
n = n0 + n2I1 − n′

2I2, where I1 and I2 are, respectively, the
intensities of laser 1 and laser 2, and we show here that it is
possible to choose the frequency and intensity of laser 2 so
that n2I1 − n′

2I2 ≈ 0. The Kerr effect induced by the second
laser cancels out that due to the first one, which can then
propagate inside the atomic vapor regardless of the constraints
imposed on the laser or vapor properties. Moreover, it is clear
that, with an appropriate choice of I2, one may change the
sign of n2I1 − n′

2I2 compared to that of n2, thus leading to the
focusing of a laser light that would naturally self-defocus or
vice versa. Hence, our proposed scheme allows one to precisely
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monitor the propagation of virtually any (low intensity) laser
light inside any atomic vapor.

Nevertheless, several conditions need to be satisfied for
our scheme to be effective. In particular, the atoms need to
be treated as three-level systems, levels |0〉, |1〉, and |2〉, as
illustrated in Fig. 2 (levels |0〉, |1〉, and |2〉 may be split into
hyperfine sublevels with no significant change to our basic
results). The three-level approximation is well grounded if
laser 1 (respectively, laser 2) is nearly resonant with transition
|0〉 → |1〉 (respectively, |1〉 → |2〉) but way off resonance with
any other transition, if the Doppler broadening of the spectral
lines is much less than the detunings �1 and �2 defined
in Fig. 2 and if the lifetimes of levels |1〉 and |2〉 are long
enough for such effects as Raman scattering to be negligible.
Moreover, in order to write the laser index of refraction as n =
n0 + n2I1 − n′

2I2, we need to use a perturbative expansion of
the atoms’ polarization up to third order in the field amplitudes,
and the atoms’ response to the laser electric fields needs to be
nearly adiabatic. The latter condition is fulfilled if, for j = 1
or 2, �jτj � 1, τj being the time duration of laser j , while the
perturbative value of polarization is accurate if �j/�j � 1,
where �1 (respectively, �2) is the Rabi frequency of transition
|0〉 → |1〉 (respectively, |1〉 → |2〉).

Usually, the previous conditions are easily met, and they
were indeed satisfied when we performed the experiment on
an atomic vapor of barium, described in Sec. III, which yielded
the results illustrated in Figs. 1 and 6 showing the actual
effectiveness of our proposed scheme. Moreover, the values
for the intensity I2 and the detuning �2 of laser 2, which were
found experimentally to lead to an output profile of laser 1 that
best matched its input profile, are very close to those predicted
theoretically for the Kerr effect cancellation. This validates our
theoretical analysis of the phenomenon.

The paper is organized as follows. In Sec. II, we detail the
theoretical analysis that lets us derive the conditions that must
be met by laser 2 in order to cancel out the Kerr effect on
laser 1. The calculations are first performed for a three-level
atom, and then generalized to allow for a hyperfine structure.
Section III is devoted to the experimental evidence of our
proposed scheme in an atomic vapor of barium, while Sec. IV
concludes and summarizes this work.
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FIG. 1. XY surface plots of laser 1 at the output of a 1-m-long
barium vapor in three situations illustrating the control of the Kerr
effect by a copropagating laser, laser 2. (a) Laser 1 is alone and
its frequency is far enough from the atomic transition for its space
profile to remain nearly unperturbed. (b) Laser 1 is still sent alone
in the vapor but its frequency is tuned near the atomic resonance
(its detuning is �1 = −25.84 GHz, and its intensity is I1 = 3.2 ×
103 W/cm2) which leads to self-focusing due to the Kerr effect.
(c) The input characteristics of laser 1 are the same as those in panel
(b), but the Kerr effect is almost canceled out by making use of a
second copropagating laser whose detuning with respect to resonance
and intensity are, respectively, �2 = −34.17 GHz and I2 = 1.2 ×
106 W/cm2.

II. THEORETICAL ANALYSIS

In our analysis of the Kerr effect cancellation, we assume
that no atom is ionized, and consider two linearly polarized
laser fields with parallel polarizations, propagating along the
z direction, so that the total electric field amplitude can be
written as

E = E1(x,y,z,t)ei(kl1 z−ωl1 t) + E2(x,y,z,t)ei(kl2 z−ωl2 t) + c.c.,

(1)

FIG. 2. (Color online) Energy ladder of the three-level atom.

where ωlj = klj c (j = 1,2) and where E1 and E2 are, respec-
tively, the slowly varying amplitudes of laser fields 1 and 2,
which are such that, for j = 1 or 2, |E−1

j ∂zEj | � klj and

|E−1
j ∂tEj | � ωlj .
Similarly, we assume that the atom polarization, P , can be

written as

P = P1(x,y,z,t)ei(kl1 z−ωl1 t) + P2(x,y,z,t)ei(kl2 z−ωl2 t) + c.c.,

(2)

where P1 and P2 are slowly varying envelopes. Then, within
the paraxial approximation [4], we easily find the following
equations of propagation for Ej (j = 1,2),

∂Ej

∂z
+ 1

c

∂Ej

∂t
− i

2klj

	⊥Ej = iklj

2ε0
Pj , (3)

where 	⊥Ej ≡ ∂2Ej/∂x2 + ∂2Ej/∂y
2.

A. Three-level atom

For the sake of clarity, we first calculate the atom polariza-
tion by making use of the so-called three-level atom approxi-
mation, illustrated in Fig. 2, which amounts to assuming that
the atom only has three levels of energy, |0〉, |1〉, and |2〉, so
that the wave function may be written as

|�〉 = c0|0〉 + c1e
−iωl1t |1〉 + c2e

−i(ωl1+ωl2)t |2〉. (4)

This approximation is well grounded if laser 1 and 2 are,
respectively, nearly resonant with the transitions |0〉 → |1〉
and |1〉 → |2〉, but are way off resonance with any other
atomic transition, and if spontaneous emission from levels
|1〉 or |2〉 is negligible, so that such phenomena as stimulated
Raman scattering are not to be accounted for. Moreover, the
ground atomic level has to be nondegenerate; in particular
there must not be any hyperfine structure (a theoretical analysis
accounting for the hyperfine structure is given in Sec. II B), and
the Doppler broadening of the spectral lines has to be small
compared to the frequency detuning of the laser fields. Then, if
we denote by �ω1 and �ω2 the energy difference between levels
|1〉 and |0〉 and levels |2〉 and |1〉, respectively, and if we de-
note �1 ≡ ω1 − ωl1 and �2 ≡ (ω1 + ω2) − (ωl1 + ωl2) (see
Fig. 2), the Schrödinger equation readily yields the following:

dc0

dt
= i(�∗

1e
iωl1t + �2e

−iωl2t + c.c.)c1e
−iωl1t , (5)

dc1

dt
= −i�1c1 + i(�1e

−iωl1t + �2e
−iωl2t

+ c.c.)(c0e
iωl1t + c2e

iωl2t ), (6)

dc2

dt
= −i�2c1 + i(�2e

−iωl2t +�1e
−iωl1t + c.c.)c1e

iωl2t , (7)

where �1 and �2 are the Rabi frequencies for lasers 1 and
2, �1,2 ≡ μ1,2E1,2/�, with μ1 being the dipole moment of
transition |0〉 → |1〉 and μ2 that of transition |1〉 → |2〉.

We henceforth make use of the so-called rotating-wave
approximation (see Ref. [5]) that amounts to neglecting in
Eqs. (5)–(7) the nonresonant terms, which are those whose
phases vary very rapidly with time. This leads to the following
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Bloch equations for σij ≡ c∗
i cj :

dσ01

dt
= −i�1σ01 + i�1(σ00 − σ11) + i�∗

2σ02, (8)

dσ02

dt
= −i�2σ02 + i�2σ01 − i�1σ12, (9)

dσ12

dt
= −i(�2 − �1)σ12 + i�2(σ11 − σ22) − i�∗

1σ02. (10)

Spontaneous emission has been neglected in the previous
equations, which is valid if the lifetimes, T1 and T2, of levels
|1〉 and |2〉 are such that �1,2T1,2 � 1. If this condition were
not fulfilled, one would just need to replace �1 by �1 + i/T1

and �2 by �2 + i/T2, which would not greatly change the
resolution of Eqs. (8)–(10).

Let us now solve Eqs. (8)–(10) by perturbation. At 0 order
in the field amplitudes, σ00 = 1 while σij = 0 whatever (i,j ) �=
(0,0). Hence, at first order in the field amplitudes, the equation
for σ01 reads

dσ01

dt
= −i�1σ01 + i�1, (11)

which yields, when �−1
1 d�1/dt � �−1

1 ,

σ01 =
∫ t

−∞
i�1(t ′)ei�1(t ′−t)dt ′ (12)

= �1/�1 − 1

�1

∫ t

−∞

d�1

dt ′
ei�1(t ′−t)dt ′ (13)

≈ �1/�1. (14)

From the latter adiabatic [6] value for σ01, we find that, at
lowest order in the field amplitudes,

σ11 ≈ |�1|2/�2
1. (15)

Plugging the value Eq. (14) for σ01 into Eq. (9) for σ02, and
accounting for the fact that |σ01| � |σ12|, one finds

dσ02

dt
≈ −i�2σ02 + i

�1�2

�1
, (16)

which yields, using the same adiabatic approximation as for
σ01,

σ02 ≈ �1�2

�1�2
, (17)

from which one gets

σ22 ≈ |�1|2|�2|2
�2

1�
2
2

. (18)

Plugging the values we found for σ11, σ22, and σ02 into Eq. (10)
for σ12, and making use of the same adiabatic calculation as
that employed to derive σ01 and σ02, we find, at lowest order
in the field amplitudes,

σ12 ≈ �2|�1|2
�2�

2
1

. (19)

Since, from Eq. (18), σ22 is of order 4 in the field amplitudes, at
third order, the identity σ00 + σ11 + σ22 = 1 simply amounts
to σ00 + σ11 = 1, which, from Eq. (15) for σ11 yields

σ00 ≈ 1 − |�1|2/�2
1. (20)

Using this value for σ00, together with Eq. (15) for σ11 and
Eq. (17) for σ02, in Eq. (8) for σ01, we find the following
adiabatic expression for σ01, at third order in the field
amplitudes:

σ01 = �1

�1

(
1 − 2

|�1|2
�2

1

+ |�2|2
�1�2

)
. (21)

Now, from the definition, Eq. (2), of P1 and P2, from Eq. (4)
for |�〉, and from the definition P = N〈�|μ̂|�〉, one finds

P1 = Nμ1σ01, (22)

P2 = Nμ2σ12. (23)

Using the Eq. (21) for σ01 in Eq. (22) for P1, and plugging
this value of P1 into the field equation, Eq. (3), one finds the
following wave equation for E1,

∂E1

∂z
+ 1

c

∂E1

∂t
− i

2k1
	⊥E1

= ik1E1

[
Nμ2

1

2ε0��1
− Nμ4

1|E1|2
ε0�

3�3
1

+ Nμ2
1μ

2
2|E2|2

2ε0�
3�2

1�2

]
, (24)

which straightforwardly shows that the index of refraction,
n(1), for the field E1 reads n(1) ≡ n

(1)
0 + n

(1)
2 I1 − n

′(1)
2 I2,

with

n
(1)
0 = 1 + Nμ2

1

2ε0��1
, (25)

n
(1)
2 = −2Nμ4

1

ε2
0c�3�3

1

, (26)

n
′(1)
2 = −Nμ2

1μ
2
2

ε2
0c�3�2

1�2
. (27)

From these results, it is clear that there is no Kerr effect on
laser 1 if laser 2 is chosen, so that

I2

I1
= 2μ2

1�2

μ2
2�1

, (28)

provided that laser 2 is not subject to focusing, or defocusing,
due to a Kerr-like effect induced by laser 1. From Eq. (19) for
σ12 it is clear that the index of refraction for the field E2 is
n(2) ≡ 1 + n

(2)
2 I1, with

n
(2)
2 = Nμ2

1μ
2
2

ε2
0c�3�2

1�2
. (29)

Hence, when condition (28) is fulfilled,

n
(2)
2 I1 = �1μ

2
2

2�2μ
2
1

n
(1)
2 I2 ≡ n′(2)I2. (30)

From Eq. (30), a necessary condition for laser 2 to be very
little affected by the Kerr effect is (μ2

2�2)/(μ2
1�1) � 1.

More precisely, the power of laser 2 needs to be less than
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FIG. 3. (Color online) Hyperfine levels coupled to the ground
level |0,F0,m0〉 in the case when J0 = 0. Arrows show which levels
are coupled.

the critical one, which scales like λ2
2/n′(2) [5]. In particular,

when designing our experiment on the Kerr-effect cancellation
detailed in Sec. III, we were careful to choose our parameters
so that the power of laser 2 was indeed less than the
critical one.

B. Hyperfine structure and multi-isotope atoms

In this section, we show that our proposed scheme to cancel
the Kerr effect by making use of a second, copropagating, laser
still works when the atoms possess a hyperfine structure and
when the atomic vapor is composed of several isotopes.

1. Hyperfine structure

Atoms with an odd number of nucleons possess a nonzero
nuclear spin, and therefore a hyperfine structure, i.e., a fine
level |i〉 (|i〉 = |0〉,|1〉, or |2〉 for the three-level atom of
Sec. II A), with kinetic momentum Ji , is split into hyperfine
sublevels denoted by |Ji,Fi,mi〉, where Fi is the total kinetic

momentum including the nuclear spin (Fi ≡ Ji + I, I being
the nuclear spin) and where mi is the projection of Fi along
the direction of the laser’s electric fields.

We still assume, in this section, that laser 1 is tuned close
enough to the transition between fine levels |0〉 and |1〉 that no
other fine levels are to be accounted for. Similarly, with regard
to laser 2, we assume that only the transition between fine levels
|1〉 and |2〉 is to be considered. However, within one given fine
level, the energy difference between hyperfine sublevels is
so small that one has to account for all allowed transitions,
|Ji,Fi,mi〉 → |Jj ,Fj ,mj 〉, that satisfy the selection rules Fi −
Fj = 0, ± 1 and mi = mj (because we assume that the lasers
are linearly polarized). The latter condition makes it possible
to consider transitions for a given m independently of those
with m′ �= m. An example of all transitions to be accounted
for between hyperfine sublevels, when the kinetic momentum
of the fine level |0〉 is J0 = 0, and for a given m, is illustrated
in Fig. 3.

The derivation of P1 and P2 when account is made of the
atom hyperfine structure is reported in the Appendix. The
result for P1 is

P1 = N
E1

�

[
αμ̄2

1 − β1μ̄
4
1|E1|2

�2�3
1

+ β2μ̄
2
1μ̄

2
2|E2|2

�2�2
1�2

]
, (31)

where

α ≡
∑
F0

F0∑
m0=−F0

1∑
j=−1

μ2
1,F0,F0+j,m0

g0�1μ̄
2
1

(32)

and where

β1 ≡ 1

g0μ̄
4
1

∑
F0

F0∑
m0=−F0

⎧⎨
⎩
⎛
⎝ 1∑

j=−1

μ2
1,F0,F0+j,m0

⎞
⎠

2

+
1∑

j=−1

1∑
l=−1

1∑
l1=−1

[
μ1,F0,F0+j,m0μ1,F0,F0+l,m0μ1,F0+j+l1,F0+l,m0μ1,F0+j+l1,F0+j,m0

]⎫⎬⎭,

(33)

β2 ≡ 1

g0μ̄
2
1μ̄

2
2

∑
F0

F0∑
m0=−F0

1∑
j=−1

{
μ1,F0,F0+j,m0

1∑
l=−1

1∑
l1=−1

[
μ2,F0+j,F0+j+l,m0μ2,F0+j+l+l1,F0+j+l,m0μ1,F0,F0+j+l+l1,m0

]}
. (34)

In the expressions above, μ̄1 and μ̄2 are, respectively, the mean
dipole moments of transitions |0〉 → |1〉 and |1〉 → |2〉, ∑F0

denotes the sum over all values of the total kinetic momentum,
F0, of level |0〉, and g0 ≡ ∑

F0
(2F0 + 1) is the number of

hyperfine sublevels within level |0〉. Moreover μi,Fi ,Fi+j,mi
is

the dipole moment of the transition |Ji,Fi,mi〉 → |Ji+1,Fi +
j,mi〉, which, by convention, is zero if the transition does not
exist [e.g., Fi + j < 0, or |Fi + j | > max(Fi+1)]. As for �1

and �2, they are defined as in Fig. 2; in our derivation of P1 we
neglected the energy difference between hyperfine sublevels
compared to �1 and �2.

From Eq. (31), it is clear that it is still possible to cancel
out the Kerr effect for a given laser beam by making use of
a second, copropagating laser, provided that the intensities I1

and I2 of lasers 1 and 2 are such that

I2

I1
= β1μ̄

2
1�2

β2μ̄
2
2�1

. (35)

One can easily check that the result obtained in Sec. II A is
recovered since, when the atom has no hyperfine structure, the
sums

∑
F0

in Eqs. (33) and (34) only contain one term, so that
β1 = 2 and β2 = 1.

2. Multi-isotope atomic vapor

Let us now consider the situation when the lasers propagate
inside an atomic vapor composed of a fraction, ηe, of isotopes
with an even number of nucleons, and, therefore, no hyperfine
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structure, and of a fraction, ηo, of isotopes with an odd number
of nucleons which, for the sake of simplicity, are assumed to all
have the same nuclear spin, I. Then, clearly, the polarization,
P1, is just

P1 = N
E1

�

[
(ηe + ηoα)μ̄2

1 − (ηe + ηoβ1)μ̄4
1|E1|2

�2

+ (ηe + ηoβ2)μ̄2
1μ̄

2
2|E2|2

�2

]
, (36)

so that the Kerr effect cancellation is obtained provided that
the condition

I2

I1
= (ηe + ηoβ1)μ̄2

1�2

(ηe + ηoβ2)μ̄2
2�1

(37)

is fulfilled. If the odd isotopes do not all have the same nuclear
spin, and if the fraction of odd isotopes with nuclear spin, Ij ,
is ηj , then, in Eq. (37), the terms ηoβ1 and ηoβ2 only need to
be replaced by

∑
j ηjβ

(j )
1 and

∑
j ηjβ

(j )
2 , where β

(j )
1 and β

(j )
2

are just the values assumed by β1 and β2 for the corresponding
nuclear spin, Ij .

C. Application to barium

Let us now make an explicit calculation, for an atomic vapor
of barium, of the condition that must be fulfilled by I2/I1 in
order to obtain the cancellation of the Kerr effect on laser 1 by
making use of laser 2. The atomic vapor of barium was chosen
for the experiment detailed in Sec. III so that the theoretical
condition for the Kerr cancellation derived here can be directly
compared with that found experimentally.

In its natural state, barium is composed of seven different
isotopes; five of them (132Ba, 134Ba, 136Ba, and 138Ba),
representing about 82% of its composition, have an even
number of nucleons and therefore a 0 nuclear spin [7,8]. The
isotopic abundance of 133Ba is very small, less than 0.1%,
while 135Ba and 137Ba have the same nuclear spin, I = 3/2.
Hence, the condition, Eq. (37), for the Kerr effect cancellation
may be directly applied with ηe = 0.82 and ηo = 0.18.

The ground state of barium (level |0〉) is |6s2,1S0〉 (hence
J0 = 0), and we choose for level |1〉 the level |6s6p,1P1〉
(hence, J1 = 1), whose energy is 18 060.261 cm−1, and
for level |2〉 the level |6s8s,1S0〉 (hence, J2 = 0), whose
energy is 34 371.002 cm−1 [9]. All the allowed transitions
between hyperfine levels we have to account for are given in
Fig. 4.

Because J0 = 0, there is only one possible value for F0,
F0 = I = 3/2, so that g0 = 4. Moreover, because J2 = 0,
so that F2 = F0, the general expressions, Eqs. (33) and (34)
respectively, for β1 and β2 can be cast in the more simple
forms

β1 = 2

4μ̄4
1

F∑
m=−F

⎧⎨
⎩

1∑
j=−1

μ2
1,F,F+j,m

⎫⎬
⎭

2

,

(38)

β2 = 1

4μ̄2
1μ̄

2
2

F∑
m=−F

⎧⎨
⎩

1∑
j=−1

μ1,F,F+j,mμ2,F+j,F,m

⎫⎬
⎭

2

,

with F = 3/2.

FIG. 4. Hyperfine structure levels in the case of the chosen
transitions in 135Ba or 137Ba.

In order to derive β1 and β2, we need to calculate all the
dipole moments, μ1,F,F+j,m and μ2,F+j,F,m, for the transitions
between hyperfine levels. To do so, we use the formula that can
be found in Ref. [10], relating the dipole moment μJ,J ′,F,F ′,m
for the transition |J,F,m〉 → |J ′,F ′,m〉 to the mean value μ̄

of the dipole moment for the transition |J 〉 → |J ′〉:
μJ,J ′,F,F ′,m = (−1)I+J+F ′+F+1−m

√
3(2F + 1)(2F ′ + 1)

×
(

F 1 F ′
−m 0 m

){
J J ′ 1
F ′ F I

}
, (39)

where (F 1 F ′
−m 0 m ) is a three-j symbol and {J J ′ 1

F ′ F I} a
six-j symbol (see Refs. [11,12]). For the barium, the six-
j symbol needs to be calculated with I = 3/2 and, for the
chosen fine levels |1〉 and |2〉, its squared value is always
1/12. Then, using the values of the 3-j symbols that can
be found in Ref. [11], one easily finds that Eq. (38) yields
β1 = 2 while Eq. (39) yields β2 = 1, i.e., exactly the same
values as for an atom with no hyperfine structure. We therefore
conclude that, for the chosen transitions in an atomic vapor of
barium, Eq. (28) yields the condition for the cancellation of
the Kerr effect on laser 1 by laser 2 provided that μ1 and
μ2 are, respectively, the mean dipole moments of transitions
|0〉 → |1〉 and |1〉 → |2〉.

III. EXPERIMENTAL EVIDENCE

A. Setup

In order to check our theoretical prediction of the Kerr-free
laser propagation, an experiment was led on an atomic vapor
of barium using the atomic transitions specified in Sec. II C.
Level |1〉 (6s6p,1P1) corresponds to an energy of 18 060.261
cm−1, while level |2〉 (6s8s,1S0) corresponds to an energy of
34 371.002 cm−1. The mean dipole moment for the transition
|0〉 → |1〉 is well known to be μ1 ≈ 8 D. As regards the
dipole moment for the transition |1〉 → |2〉, we chose the
value published in Ref. [13], μ2 ≈ 0.7 D, which seems quite
accurate [14].

In our Kerr-free experiment, the barium temperature is close
to 900 K, so that for our laser wavelengths, λ1 ≈ 553 nm and
λ2 ≈ 613 nm, the Doppler broadening is (FWHM) �νD =√

8 ln(2)T/M/λ ∼ 1 GHz.
The lifetimes of levels |1〉 and |2〉 are not known perfectly

but may be estimated to be T1 ≈ 20 ns and T2 ≈ 4 μs [15].
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FIG. 5. (Color online) Experimental setup.

Figure 5 shows our experimental setup. The laser source
is composed of a frequency-doubled single-mode-pulsed
YAG:Nd3+ laser (Quanta-Ray DCR3) amplifying the output
of two Coherent Inc. continuous-wave (cw)-stabilized single-
mode ring dye oscillators pumped by two diode pumped solid
state laser (DPSSL) Verdi 5W (Coherent Inc.). The absolute
frequencies of the amplified laser fields are measured with
cw laser wavelength meters (Burleigh WA1000). After spatial
filtering, the transverse distribution is checked by a charge-
coupled device (CCD) camera exhibiting a near transverse
Gaussian profile.

The overlapping of the two beams is carefully adjusted
with the help of a second CCD camera at the exit of the
oven. Temporal pulse profiles (τl = 6 ns duration total pulse
width at half maximum with a nearly Gaussian distribution)
as well as energy per pulse measurements are done before
and after propagation in the atomic vapor with respectively
high-speed photodiodes on a Lecroy 1-GHz bandwidth scope
and calibrated Laser Precision RJ-7200 energy meters. With
the same pump being used for lasers 1 and 2, there is no time
jitter between the two lasers. This laser system is characterized
by a reproducible output spatial distribution. Shot-to-shot
variations of the temporal profile and of the energy per pulse
are lower than a few percent.

The atomic medium is obtained using vapor pressure of
solid barium heated in a temperature-controlled oven of L =
1 m effective length. A vapor pressure of argon is applied to
ensure window protection. Less than 1 Torr was used in order
to obtain a dephasing collision time Tcol as long as possible.
We measured that a pressure of 1 Torr of argon leads to a time
Tcol of the order of 200 ns.

Temperatures in the oven are measured by a thermal sensor
but do not have sufficient reliability to be used for deducing
the barium atomic density. As a consequence, the NL product
in the oven is determined for different temperatures between
870 K and 960 K using the method described in Ref. [16].
At T = 900 K, which is the temperature corresponding to the
experiments described here, we find NL = 5.44 × 1015cm−2.

B. Kerr effect cancellation

The main parameters of the two lasers are summed up
in Table I. From these data, the inverse Fresnel number is
λL/πw2 ≈ 0.3, so that the space profiles are almost not
affected by free propagation (the beam waist increases by

TABLE I. Main experimental parameters for laser 1 and laser 2.

Laser 1 Laser 2

Energy E (μJ) 0.25 120
Beam waista along x, wx (mm) 0.76 0.86
Beam waista along y, wy (mm) 0.88 0.96
Pulse duration (ns) 6 6
Wavelength (nm) 553 613

aThe waist is the radius of 1/e irradiance.

about 4.5% after 1 m of propagation for a Gaussian spatial
profile).

The energy and detuning of laser 1 were chosen so as to
obtain, without laser 2, a clear single filament at the output of
the barium vapor. With laser 2 copropagating, we sought the
parameters (laser 2 energy and frequency detuning) yielding an
output profile for laser 1 which best agreed with the input one.
Figure 1 shows one result of such an experimental procedure
which corresponds to �1 = −25.84 GHz and �2 = −34.17
GHz, with an energy per pulse E1 ≈ 0.25 μJ for laser 1 and
E2 ≈ 120 μJ for laser 2. One can easily check that the power
of laser 1, P1 ≈ 39 W, is way above the critical one, Pc1 ≈ 0.4
W [5,17], so that laser 1 alone is expected to self-focus after
propagating over L ≈ 1 m of barium vapor, as experimentally
observed. By contrast, the power of laser 2, P2 ≈ 1.9 × 104

W, is less than the critical one, Pc2 ≈ 6 × 104 W, so that
the transverse profile of laser 2 is nearly not affected by its
propagation in the atomic vapor of barium, as required for our
process to be effective.

Both �1 and �2 are much larger than the Doppler
broadening, than 1/T1 and 1/T2, and than 1/τl , so that the
analysis of the Sec. II holds. In particular, we showed in
Sec. II C that our theoretical condition to cancel out the Kerr
effect on laser 1 by making use of laser 2 is given by Eq. (28),
which yields

I2

I1

∣∣∣∣
th

≈ 345, (40)

while, experimentally, we find

I2

I1

∣∣∣∣
exp

= E2w
1
xw

1
y

E1w2
xw

2
y

≈ 389. (41)

The theoretical predictions are, therefore, in very good agree-
ment with the experimental results. The relative discrepancy
between the theoretical and experimental values of I2/I1 is
close to 12%, which is within the uncertainties induced by
those on the knowledge of μ2 and on the measurements of
the lasers’ energies and waists. Note moreover that, as may
be seen in Fig. 1, even if they are close, the output profile of
laser 1, when laser 2 is copropagating, does not exactly match
the out of resonance profile. This is mainly because the input
profile of laser 2 does not exactly match that of laser 1 (see
Table I).

C. Control of the output profile of laser 1 using laser 2

Clearly, using laser 2, it is possible to change the sign
of the Kerr index of refraction of laser 1, i.e., make it that
(n(1)

2 I1 − n
′(1)
2 I2)n(1)

2 < 0, and make laser 1 focus while it
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FIG. 6. (Color online) Example of the monitoring of the space
profile of laser 1 obtained by tuning the frequency of laser 2. The
other laser characteristics are identical to those of Fig. 1.

would have defocused when propagating alone, or vice versa.
Actually, the value of (n(1)

2 I1 − n
′(1)
2 I2) can be chosen at will,

so that the atomic vapor can be used as an adaptable lens
that allows one to control the output profile of laser 1 using
laser 2.

The monitoring of the space profile of laser 1, by making
use of laser 2, is illustrated in Fig. 6, where, at constant energy
per pulse, depending on the tuning of laser 2 frequency, we
could make laser 1 focus inside the vapor while it would have
defocused when propagating alone or, conversely, we could
increase the defocussing. For instance, Fig. 6(a) displays the
transverse profile of laser 1 at the exit of the vapor when laser
1 and laser 2 frequencies are far from the atomic resonance,
i.e., when no interaction exists with the atomic vapor. Figure
6(b) represents the output transverse profile of laser 1 for a
detuning �1 = +20 GHz (self-defocusing) and when laser 2
does not interact with the atomic medium (frequency of laser 2
far from the resonance). Figures 6(c) and 6(d) show the output
transverse profile of laser 1 for two values of �2, the first one
leading to focusing (�2 = +15 GHz) and the second one to
an increased defocusing (�2 = −10 GHz).

IV. CONCLUSION

In this paper, we showed that, when two lasers copropagate
inside an atomic vapor, with laser 1 nearly resonant with
the transition |0〉 → |1〉 and laser 2 nearly resonant with the
transition |1〉 → |2〉, as shown in Fig. 2, then the index of
refraction of laser 1 is n = n0 + n2I1 − n′

2I2, where I1 and I2

are, respectively, the intensities of lasers 1 and 2. Hence, by
choosing I2 and the detuning to resonance, �2, of laser 2, so
that n2I1 = n′

2I2, it is possible to cancel out the Kerr effect on
laser 1, which can then propagate with very little distortion of
its transverse profile.

Theoretically, this result is obtained through a resolution
of the Bloch equations using both a perturbative analysis
and the adiabatic approximation. Such approximations are
well grounded provided that, for j = 1 or 2, �j/�j � 1,
and �jτj � 1, where τj is the time duration of laser j , and

where �1 (�2) is the Rabi frequency of transition |0〉 → |1〉
(|1〉 → |2〉).

Moreover, our result on the Kerr effect cancellation mainly
applies when the atoms may be considered as three-level
systems, which leads to the condition Eq. (28) for an effec-
tive cancellation, while accounting for the atoms’ hyperfine
structure (when the nuclear spin is nonzero) is only a technical
difficulty that changes Eq. (28) to Eq. (35). It is noteworthy
that, for the chosen example of barium atoms of Sec. II C,
Eqs. (28) and (35) are actually the same.

In order to prove the effectiveness of our proposed scheme,
we performed an experiment in an atomic vapor of barium.
Experimentally, we chose the intensity, I1, and detuning, �1,
of laser 1 so as to obtain, when this laser propagates by itself,
a clear single filament at the output of the barium vapor,
illustrated in Fig. 1(b). We then let lasers 1 and 2 copropagate
and adjusted the intensity, I2, and detuning, �2, of laser 2 so
as to make the output profile of laser 1 as close as possible
to its input profile, as may be seen by comparing Fig. 1(c)
with Fig. 1(a). Hence, we indeed showed experimentally that,
using laser 2, we could strongly reduce the alteration of the
transverse profile of laser 1 due to its interaction with the
barium vapor. Moreover, the values found for I2 and �2 are
very close to those predicted theoretically (the discrepancy
between the experimental and theoretical values is within the
uncertainties due to the lack of precision on the value of the
dipole moment of the transition |1〉 → |2〉), which validates
our theoretical analysis.

By changing the value of �2, we also showed that we could
make laser 1 focus while, when propagating alone, it would
have self-defocused, or, conversely, increase the defocussing.
Using laser 2 we can therefore choose, at will, the output
profile of laser 1.

In conclusion, we proposed in this paper quite a general
method to cancel out the Kerr effect on a near-resonnant laser
propagating inside an atomic vapor by using the crossed-Kerr
effect induced by a second, copropagating, laser light. The
method is quite efficient, as demonstrated on a barium vapor,
and easy to implement. It moreover allows quite a precise
control of the laser beam propagation whose transverse size at
the vapor output may be chosen at will.
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APPENDIX: THREE-LEVEL SYSTEM WITH HYPERFINE
STRUCTURE.

Let us now address the derivation of the polarization, P ,
when the atoms have a hyperfine structure. As explained in
Sec. IIB1, a given hyperfine level, denoted by |Ji,Fi,mi〉, is
identified by the kinetic momentum, Ji , of its fine level |i〉, by
the value of its total kinetic momentum, Fi = Ji + I, where
I is the nuclear spin, and by the projection, mi , of Fi along
the direction of the laser’s electric fields. Because hyperfine
sublevels are very close to each other, one needs to account
for all allowed transitions, �F = 0, ± 1, between two given
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fine levels |i〉 and |j 〉, which makes the derivation of P more
complicated than when I = 0. However, when the lasers are
linearly polarized, as assumed in this paper, the selection rule
�m = 0 makes it possible to consider transitions for a given
value of m independently of those for m′ �= m. An example of
all transitions one has to account for when the ground level is
such that J0 = 0 (as is the case for barium), and for one given
value of m, is illustrated in Fig. 3.

In order to account for the atom hyperfine structure, we
now write the wave function, |�n〉, of atom n,

|�n〉 =
∑
F0

F0∑
m0=−F0

cn
0,F0,m0

|J0,F0,m0〉

+
∑
F1

F1∑
m1=−F1

cn
1,F1,m1

e−iωl1 t |J1,F1,m1〉

+
∑
F2

F2∑
m2=−F2

cn
2,F2,m2

e−i(ωl1 +ωl1 )t |J2,F2,m2〉, (A1)

where
∑

Fi
represents the sum over all possible values of

the total kinetic momentum, Fi , of level |i〉. As for the atom
polarization, it is

P = 1

�V

N∑
n=1

〈�n|μ̂|�n〉, (A2)

where �V is a small volume of laser-atom interaction (which
nevertheless contains a large number, N , of atoms) about a
given space location �r .

Just like when the atom has no hyperfine structure, we write
the polarization as

P = P1e
−iωl1 t + P2e

−iωl2 t , (A3)

and, if we denote

σn
ij,Fi ,Fj ,m

≡ cn
j,Fj ,m

(
cn
i,Fi ,m

)∗
, (A4)

and if let μi,Fi ,Fi+l,m be the dipole moment of the transition
|Ji,Fi,m〉 → |Jj ,Fi + l,m〉, which, by convention, is zero if
the transition does not exist [i.e., if Fi + l < 0, or Fi + l >

max(F1) or |m| > max(Fi + l)], then

P1 = 1

�V

N∑
n=1

∑
F0

F0∑
m0=−F0

1∑
j=−1

μ1,F0,F0+j,m0σ
n
01,F0,F0+j,m0

,

(A5)

P2 = 1

�V

N∑
n=1

∑
F1

F1∑
m1=−F1

1∑
j=−1

μ2,F1,F1+j,m1σ
n
12,F1,F1+j,m1

.

(A6)

Using the rotating-wave approximation, neglecting the energy
difference between hyperfine sublevels compared to the
detunings �1 and �2 of Fig. 2, assuming that the lifetimes
of these levels are infinite, and denoting

�i,Fi ,Fi+j,mi
≡ μi,Fi ,Fi+j,mi

Ei

�
, (A7)

the Rabi frequency of the transition |Ji,Fi,mi〉 → |Ji+1,Fi +
j,mi〉, one easily finds the Bloch equations

dσn
01,F0,F0+j,m

dt
= −i�1σ

n
01,F0,F0+j,m0

+ i

1∑
l=−1

�1,F0+j+l,F0+j,m0σ
n
00,F0,F0+j+l,m0

− i

1∑
l=−1

�1,F0,F0+l,m0σ
n
11,F0+l,F0+j,m0

+ i

1∑
l=−1

�∗
2,F0+j,F0+j+l,m0

σn
02,F0,F0+j+l,m0

,

(A8)

dσn
12,F1,F1+j,m1

dt
= i(�1 − �2)σn

12,F1,F1+j,m1

+ i

1∑
l=−1

�2,F1+j+l,F1+j,m1σ
n
11,F1,F1+j+l,m1

− i

1∑
l=−1

�∗
1,F1+l,F1,m1

σn
02,F1+l,F1+j,m1

− i

1∑
l=−1

�2,F1,F1+l,m1σ
n
22,F1+l,F1+j,m1

,

(A9)

dσn
02,F0,F0+j,m0

dt
= −i�2σ

n
02,F0,F0+j,m0

+ i

1∑
l=−1

�2,F0+j+l,F0+j,m0σ
n
01,F0,F0+j+l,m0

− i

1∑
l=−1

�1,F0,F0+l,m0σ
n
12,F0+l,F0+j,m0

,

(A10)

where we recall that σn
ij,Fi ,Fj ,m

≡ (cn
i,Fi ,m

)∗cn
j,Fj ,m

. Just like
when the atom has no hyperfine structure, the Bloch equations
are solved by perturbation. At 0 order in the field amplitudes,
and when the thermal energy is much larger than the energy
difference between hyperfine levels, we find,

σ00,F0,F0,m0 = 1/g0, (A11)

where g0 ≡ ∑
F0

(2F0 + 1) is the number of hyperfine sub-
levels within the ground level. Then,

cn
0,F0,m

= e
iϕn

0,F0 ,m

√
g0

, (A12)

where ϕn
0,F0,m

is a phase that depends on the considered atom,
n, and that varies randomly from one atom to the other.
By making use of the adiabatic approximation, one finds from
Eq. (A8) that, at lowest order in the fields amplitudes,

σn
01,F0,F0+j,m0

≈
1∑

l=−1

�1,F0+j+l,F0+j,m0σ
n
00,F0,F0+j+l,m0

�1
.

(A13)
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Plugging Eq. (A12) into Eq. (A13) yields

σn
01,F0,F0+j,m0

≈ 1

g0�1

1∑
l=−1

�1,F0+j+l,F0+j,m0 exp
[
i
(
ϕn

0,F0+j+l,m0
− ϕn

0,F0,m0

)]
. (A14)

Similarly, solving Eq. (A10) by making use of the adiabatic approximation yields, at lowest order in the fields amplitudes,

σn
02,F0,F0+j,m0

≈ 1

�2

1∑
l=−1

�2,F0+j+l,F0+j,m0σ
n
01,F0,F0+j,m0

≈ 1

g0�1�2

1∑
l=−1

1∑
l1=−1

{
�2,F0+j+l,F0+j,m0�1,F0+j+l+l1,F0+j+l,m0 exp

[
i
(
ϕn

0,F0+j+l+l1,m0
− ϕn

0,F0,m0

)]}
. (A15)

From Eqs. (A12), (A14), and (A15) we then find

cn
1,F0,m0

≈ 1√
g0�1

1∑
l=−1

�1,F0+l,F0,m0e
iϕn

0,F0+l,m0 , (A16)

cn
2,F0,m0

≈ 1√
g0�1�2

1∑
l=−1

1∑
l1=−1

�2,F0+l,F0,m0�1,F0+l+l1,F0+l,m0e
iϕn

0,F0+l+l1,m0 , (A17)

so that

σn
11,F1,F1+j+l,m1

≈ 1

g0�
2
1

1∑
l1=−1

1∑
l2=−1

{
�∗

1,F1+l1,F1,m1
�1,F1+j+l1+l2,F1+j+l,m1 exp

[
i
(
ϕn

0,F1+j+l+l2,m1
− ϕn

0,F1+l1,m1

)]}
, (A18)

σn
12,F1,F1+j,m1

≈ 1

g0�
2
1�2

1∑
l=−1

1∑
l1=−1

1∑
l2=−1

{
�2,F1+j+l,F1+j,m1�

∗
1,F1+l1,F1,m1

�1,F1+j+l+l2,F1+j+l,m1e
i(ϕn

0,F1+j+l+l2,m1
−ϕn

0,F1+l1 ,m1
)
}

, (A19)

while σn
22,F0,F0+j+l,m1

, whose expression will not be given here, is clearly of order 4 in the field amplitudes.
When summing σn

12,F1,F1+j,m1
over all atoms, as in Eq. (A6) to find P2 then, because the phases ϕn

0,F0,m0
vary randomly from

one to atom to the other, only terms such that j + l + l2 = l1 give a nonzero contribution. Hence, if we denote by N the atom
density and

�1 ≡ μ̄1E1/�, (A20)

�2 ≡ μ̄2E2/�, (A21)

where μ̄1 and μ̄2 are, respectively, the mean dipole moments of transitions |0〉 → |1〉 and |1〉 → |2〉, then

P2 = N
�2|�1|2
g0�

2
2�1

∑
F1

F1∑
m1=−F1

1∑
j=−1

1∑
l=−1

1∑
l1=−1

�F1,m1,j,l1,l2 , (A22)

where

�F1,m1,j,l1,l2 = μ2,F1,F1+j,m1μ2,F1+j+l,F1+j,m1μ1,F1+l1,F1,m1μ1,F1+l1,F1+j+l,m1

μ̄2
1μ̄2

. (A23)

Let us now calculate P1, and, therefore, σn
01,F0,F0+j,m0

, at
third order in the field amplitudes. Solving Eq. (A8) by making
use of the adiabatic approximation yields

�1σ
n
01,F0,F0+j,m0

=
1∑

l=−1

�1,F0+j+l,F0+j,m0σ
n
00,F0,F0+j+l,m0

−
1∑

l=−1

�1,F0,F0+l,m0σ
n
11,F0+l,F0+j,m0

+
1∑

l=−1

�∗
2,F0+j,F0+j+l,m0

σn
02,F0,F0+j+l,m0

,

(A24)

where σn
11,F0+l,F0+j,m0

and σn
02,F0,F0+j+l,m0

are, respectively,
given by Eqs. (A18) and (A15). Since we are only interested
in P1, we will only calculate σ̄01,F0,F0+j,m0 , which results from
the averaging of σn

01,F0,F0+j,m0
over all the atoms contained in

the considered volume �V ,

σ̄01,F0,F0+j,m0 ≡ 1

N

N∑
n=1

σn
01,F0,F0+j,m0

. (A25)

From Eq. (A12), it is clear that

σ̄00,F0,F0+j,m0 ≡ 1

N

N∑
n=1

σn
00,F0,F0+j,m0

(A26)
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is zero if j �= 0 so that Eq. (A24) yields

�1σ̄01,F0,F0+j,m0 = �1,F0,F0+j,m0 σ̄00,F0,F0,m0 −
1∑

l=−1

�1,F0,F0+l,m0 σ̄11,F0+l,F0+j,m0 +
1∑

l=−1

�∗
2,F0+j,F0+j+l,m0

σ̄02,F0,F0+j+l,m0 , (A27)

and, from Eq. (A18),

σ̄11,F0+l,F0+j,m0 ≡ 1

N

N∑
n=1

σn
11,F0+l,F0+j,m0

= 1

g0�
2
1

1∑
l2=−1

�∗
1,F0+j+l2,F0+l,m0

�1,F0+j+l2,F0+j,m0 , (A28)

while, from Eq. (A15), one finds,

σ̄02,F0,F0+j+l,m0 ≡ 1

N

N∑
n=1

σn
02,F0,F0+j+l,m0

= 1

g0�1�2

1∑
l1=−1

�2,F0+j+l+l1,F0+j+l,m0�1,F0,F0+j+l+l1,m0 . (A29)

In order to conclude the derivation of P1, there only remains to evaluate σ̄00,F0,F0,m0 at second order in the field amplitudes.
This estimate of σ̄00,F0,F0,m0 can be obtained by considering only the transitions from level |0〉 to level |1〉 due to laser 1 and by
neglecting the transitions from level |1〉 to level |0〉 due to the same laser, because the corresponding contributions to σ̄00,F0,F0,m0

will be of higher order. Then,

σ̄00,F0,F0,m0 ≈ 1

g0

⎡
⎣1 −

1∑
j=−1

|�1,F0,F0+j,m0 |2
�2

1

⎤
⎦ . (A30)

Plugging Eqs. (A28)–(A30) into Eq. (A27) and using the value thus found for σ̄01,F0,F0+j,m0 into Eq. (A5) for P1, one finds

P1 = N
E1

�

[
αμ̄2

1 − β1μ̄
4
1|E1|2

�2�3
1

+ β2μ̄
2
1μ̄

2
2|E2|2

�2�2
1�2

]
, (A31)

where

α ≡
∑
F0

F0∑
m0=−F0

1∑
j=−1

μ2
1,F0,F0+j,m0

g0�1μ̄
2
1

, (A32)

and where

β1 ≡ 1

g0μ̄
4
1

∑
F0

F0∑
m0=−F0

⎧⎨
⎩
⎛
⎝ 1∑

j=−1

μ2
1,F0,F0+j,m0

⎞
⎠

2

+
1∑

j=−1

1∑
l=−1

1∑
l1=−1

[
μ1,F0,F0+j,m0μ1,F0,F0+l,m0μ1,F0+j+l1,F0+l,m0μ1,F0+j+l1,F0+j,m0

]⎫⎬⎭,

(A33)

β2 ≡ 1

μ̄2
1μ̄

2
2

∑
F0

F0∑
m0=−F0

1∑
j=−1

{
μ1,F0,F0+j,m0

1∑
l=−1

1∑
l1=−1

[
μ2,F0+j,F0+j+l,m0μ2,F0+j+l+l1,F0+j+l,m0μ1,F0,F0+j+l+l1,m0

]}
. (A34)

The condition for a Kerr-free propagation of laser 1 can thus now be written

I2

I1
= β1μ̄

2
1�2

β2μ̄
2
2�1

. (A35)
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