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We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a
medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent
fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component
creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide
range of gain-loss ratios. We show that the pair of actively coupled (AC) waveguides can act as a stationary or
integrate-and-fire comparator sensitive to tiny differences in their input powers.
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I. INTRODUCTION

Nonlinear directional couplers are important for various
applications in integrated optics, such as power-sensitive
switches and polarization beam splitters. The twin core
coupler is based on the coherent light exchange between two
optical waveguides placed in close proximity. For low input
intensities, the full power oscillates periodically between the
two waveguides; for higher input levels, the total power is
self-trapped mainly in one of the two channels [1].

The performance of the device can be improved—
the switching power can be reduced while the length is
shortened—by utilizing material losses. The effect of absorp-
tion which is usually regarded as an unavoidable hinderance,
is therefore turned into an advantage here. The dissipation is
balanced by introducing gain into one of the waveguides [2].
Thus, a nonlinear coupler composed of one core with a certain
amount of gain and another one with an equal amount of loss
switches the entire power to one waveguide [3]. Recently this
type of a coupler has attracted a lot of attention as an experi-
mental realization of a PT -symmetric system [4]. It is worth
noting here that the operation of the PT -symmetric coupler
requires the fine-tuning of gain and loss to secure their exact
compensation. We also note that the power switching is ac-
companied by the unbounded power growth in one of the arms
of the device—the growth not saturable by nonlinearity [4].

In this article, we propose an alternative configuration of
gain and loss in the directional coupler. The arrangement
consists of two lossy waveguides placed in an active medium.
Instead of providing power gain in the core of a waveguide,
the structure boosts the evanescent fields which couple the two
channels due to their close proximity. With the choice of the
symmetric gain configuration, the energy is pumped into the
in-phase linear mode of the two-waveguide system while the
antiphase normal mode remains lossy.

The operation of the outlined device (the actively coupled
pair of waveguides, or simply the “AC coupler”) is conditional
on the presence of nonlinearity. As the symmetric mode
starts to grow, it activates the nonlinear response in each
waveguide. The nonlinearity couples the symmetric mode
to the antisymmetric mode, and the latter drains the energy
out of the system securing the overall power balance. The
concept admits generalizations to networks of waveguides,
with various coupling geometries.

The principle of active coupling is not confined to the
realm of nonlinear optics. It can be utilized in any physical
setting consisting of two identical lossy elements, where
the energy is pumped into the symmetric normal mode of
the coupled system. One example of such a dimer is the
atomic Bose-Einstein condensate in a double-well trapping
potential [5] with finite external barriers (allowing the leakage
of atoms out of the system [6]) and the particle injection in the
interwell region. (See Ref. [7] for the quantum version.) Other
examples include coupled LRC (resistor-inductor-capacitor)
circuits [8] and structured metamaterials consisting of pairs
of nonlinear split-ring resonators [9]. A similar principle
underlies the radiative coupling and weak lasing of exciton-
polariton condensates [10]. The latter are highly dissipative
coherent condensates of quasiparticles, where the finiteness of
the quasiparticle lifetime is compensated by an external pump.

The AC coupler is structurally stable; in order to ensure
the gain-loss balance, one need not strive to secure the perfect
equality of gain and loss. Instead, the loss compensation is
achieved in a finite band of gain coefficients. Unlike the usual
nonlinear optical coupler, and unlike the PT coupler, the
observable regimes in the new configuration are determined
by the system parameter values rather than initial conditions.
Furthermore, the system does not exhibit any uncontrollable
growth of optical modes.

II. MODEL

In a single-mode optical waveguide, the optical field is
described by a complex amplitude, �(x,y,z) = E(x,y)ψ(z),
where (x,y) is the plane transversal to the waveguide axis z.
The eigenfunction E(x,y) decays away from the waveguide
core and can be chosen to be real and everywhere positive,
with the norm

∫
E2dxdy = 1.

We consider two parallel identical waveguides. Denoting
x as the coordinate in the direction connecting their centers,
we choose the origin halfway between them. The individual
eigenfunctions E1 and E2 are then centered at x = −x0 and
x = x0, respectively, and satisfy E1(x,y) = E2(−x,y). The
waveguides are embedded in the active medium (Fig. 1)
and gain power through the response of the medium to the
evanescent part of their fields, �1 and �2.

The integral gain of the amplitude ψn(z) over the entire
active region is

∫
αEn(x,y)�dxdy, where �(x,y,z) is the sum
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FIG. 1. (Color online) TheAC coupler: two parallel lossy waveg-
uides coupled via an active medium. The stand-alone vertical plane
shows the eigenfunctions E1(x,0) and E2(x,0).

of the two evanescent fields: � = �1(x,y,z) + �2(x,y,z). The
coefficient α(x,y) � 0 characterizes the active properties of
the medium. The integral gain in the n-th waveguide is then
an1ψ1 + an2ψ2, where

anm =
∫

α(x,y)En(x,y)Em(x,y)dxdy, n,m = 1,2.

With the gain added, the amplitudes ψ1 and ψ2 satisfy

dψ1

dz
+ �ψ1 = iT ψ2 + iβ|ψ1|2ψ1 +

∑
a1nψn, (1a)

dψ2

dz
+ �ψ2 = iT ψ1 + iβ|ψ2|2ψ2 +

∑
a2nψn. (1b)

Here � is the loss rate, β is the nonlinearity strength, and
T quantifies light tunneling between the guides [11]. In what
follows, we assume the focusing nonlinearity, β > 0. We scale
ψ1,2 so that β = 1 and we normalize T to 1.

We note that a12 = a21. Assuming symmetric density
distributions α(x,y) = α(−x,y) we also have a11 = a22. From
E1,2(x,y) > 0 it follows that amn > 0. Using the Schwartz
inequality, one readily checks that a11 is always greater than
a12. All coefficients become equal only when the active
region is very thin: α(x,y) = α0(y)δ(x). In this case we have
a11 = a12 = ∫

α0(y)E2
1(0,y)dy.

In the general situation of symmetrically distributed gain,
we introduce the net loss rate γ = � − a11 and the active
coupling (AC) coefficient a ≡ a12 to obtain

dψ1

dz
+ γψ1 = iψ2 + i|ψ1|2ψ1 + aψ2, (2a)

dψ2

dz
+ γψ2 = iψ1 + i|ψ2|2ψ2 + aψ1. (2b)

In this article, we consider the regime where γ > 0.

III. DYNAMICS OF COUPLED BEAMS

When the net loss exceeds the AC gain (γ > a), all
solutions of Eq. (2) decay to zero:

dP

dz
� 2(a − γ )P. (3)

Here P = |ψ1|2 + |ψ2|2 is the total power of light in the
coupler. Thus in the region below the γ = a line in Fig. 2,
the origin ψ1 = ψ2 = 0 is a globally stable fixed point.

Introducing the symmetric and antisymmetric normal
modes u = ψ1 + ψ2 and v = ψ1 − ψ2 diagonalizes the linear
part of Eq. (2)—but couples the nonlinear terms:

du

dz
+ (γ − a − i)u = i

4
[(|u|2 + 2|v|2)u + v2u∗], (4a)

dv

dz
+ (γ + a + i)v = i

4
[(2|u|2 + |v|2)v + u2v∗]. (4b)

According to Eq. (4a), making a greater than γ turns the
origin into an unstable fixed point. In the a > γ regime with
v(0) = 0, the symmetric mode grows without bound. However
the blow-up of the u mode can be arrested by its nonlinear
coupling to the antisymmetric mode.

Decomposing the complex amplitudes as ψ1 = √
P1e

iφ and
ψ2 = √

P2e
i(φ+θ), we observe that the common part of the

phases of the two beams is expressible through the powers
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FIG. 2. (Color online) The chart of attractors on the (γ,a) plane.
In the empty area below the γ = a line, all initial conditions decay to
zero as t → ∞. In the green strip, the attractors are the fixed points F±.
Pink marks the region where all trajectories wind onto one of the two
limit cycles C±, with one simple oscillation per period (hence “C1”).
In the blue domain the attracting cycles have 2n (i.e., 2,4,8, . . .) simple
oscillations per period. Ochre colors the area where the attractors are
predominantly chaotic; these consist of repeated oscillations with
randomly selected amplitudes. Three insets are phase portraits on the
(P1,P2) plane: a cycle with one and two oscillations per period and a
chaotic attractor.
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they carry and their phase difference:

φ(z) =
∫ z

0

[
P1 +

√
P2

P1
(cos θ + a sin θ )

]
dz + φ(0).

Therefore out of four real variables in the system (2) only three
represent independent degrees of freedom.

This fact is made obvious by transforming the system to an
explicitly three-dimensional form:

Ẋ = −γX − Y, (5a)

Ẏ = −γ Y + X − XZ, (5b)

Ż = −γZ + ar + XY. (5c)

Here X = 1
2 (|ψ1|2 − |ψ2|2) measures the power imbalance

between the two waveguides; Y = i
2 (ψ1ψ

∗
2 − ψ∗

1 ψ2) charac-
terizes the energy flux from the first to the second channel, and
2aZ—where Z = 1

2 (ψ1ψ
∗
2 + ψ2ψ

∗
1 )—is the total gain in the

system. The Stokes variables X, Y , and Z are three components
of the vector r, with r =

√
r2 = P/2. The overdot indicates

differentiation with respect to the fictitious time variable,
t = 2z, which we introduce for the convenience of analysis.

The beam powers P1,2 and the phase difference θ can be
easily reconstructed from the Stokes variables: P1,2 = r ± X

and tan θ = Y/Z. We also note a similarity between Eqs. (5)
and the Lorentz system [12].

IV. SYMMETRY-BROKEN FIXED POINTS

Like the Lorentz system, Eqs. (5) are symmetric under the
reflection of X and Y . As the AC coefficient is increased
beyond a = γ in the weakly dissipative regime (γ < 1),
the fixed point at the origin suffers a symmetry-breaking
(pitchfork) bifurcation. Two stable fixed points F+ and F−
are born, supercritically. These points share the values of r

and Z,

r = (γ 2 + 1)
a

γ
, Z = γ

a
r, (6)

but have opposite X and Y ,

X = −σ

a
r, Y = σ

γ

a
r. (7)

The point F+ has σ > 0 and F− has σ < 0, where σ 2 = (a2 −
γ 2)/(γ 2 + 1). The two points are therefore mirror images of
each other.

Either of the two fixed points represents a pair of light beams
with constant, z-independent, power in each channel. The point
F+ corresponds to a greater power in the second channel
(P1/P2 ≈ γ 2/2 for small γ ), while its mirror reflection F−
has the inverse power ratio. The phases φ1 and φ2 pertaining
to the points F± are linear functions of z, with the phase
difference θ remaining constant.

Figure 3(a) depicts the evolution of the input with a small
power imbalance. We observe that taking P2(0) only slightly
greater than P1(0) is sufficient to select the stationary regime
(F+) with P2 � P1.

FIG. 3. (Color online) Characteristic regimes of the AC coupler.
Shown is |E1(x,0)ψ1(z) + E2(x,0)ψ2(z)|2, with the eigenfunctions

exemplified by E1,2(x,0) = 1√
2πν

exp( −(x±x0)2

2ν2 ), ν = 3
5 x0. (a) The

stationary regime F + evolving out of the initial condition with
P1 = 30, P2 = 33, and θ = 0. Here a = 1 and γ = 0.1. (b) The
limit cycle C+ (a = 9, γ = 1.5). (c) The limit cycle with two
oscillations per period (a = 9, γ = 4.2). (d) The chaotic attractor
(a = 9, γ = 7.6).

V. PERIODIC AND CHAOTIC REGIMES

Linearizing Eqs. (5) about either of the fixed points F±
yields the Jacobian matrix with one real negative and two
complex-conjugate eigenvalues λ. Assume the active coupling
is fixed above the threshold value a = 1 and the net loss γ

is varied. As γ is increased through γc = 1, the complex
eigenvalues cross from Re λ < 0 to Re λ > 0. This is the
signature of the Hopf bifurcation where both F+ and F− lose
their stability while two stable limit cycles of small radius are
born—one around each fixed point.

The limit cycles describe periodic variation of the powers
P1,2 carried by the two waveguides [Fig. 3(b)]. We denote the
cycle born around the point F+ as C+ and the cycle bifurcating
from F− as C−.

Like their parent fixed points F±, the limit cycles C± are
symmetry broken. The cycle C+ has the second waveguide
carrying higher power than the first one, while its mirror-
reflected counterpart C− has P1(z) > P2(z) for all z. When
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FIG. 4. (Color online) The integrate-and-fire limit cycle arising
for γ close to a. (In this plot, γ = 1.9 and a = 2.) The red and blue
line show P2 and P1, respectively.
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FIG. 5. (Color online) The period-doubling transition to chaos
for a = 3. The local minima and maxima of the function P (z) are
plotted against the corresponding value of the loss coefficient. The
inset shows a fine structure of the chaotic region. Periodic orbits
are highlighted (colored blue in the online version), while chaotic
attractors are marked by lighter points (red online).

γ = γc, the frequency of each cycle is given by ω = Im λ =√
a2 − 1. As γ is increased beyond γc, the radius of each cycle

grows and the frequency changes.
The limit cycles with γ near a display an integrate-and-

fire switch dynamics (Fig. 4). Namely, the powers in the two
waveguides grow slowly and synchronously, with one of these
(say, P1) remaining only slightly smaller than the other power
(P2). This is followed by a quick discharge, where the first
waveguide loses practically all its power (P1 = 0) while P2

remains nonzero.
As the loss γ is increased with the value of active coupling

fixed above a = 2.2, the limit cycle suffers a period doubling.
The emerging periodic attractor with two oscillations per
period is shown in Fig. 3(c) and the middle inset in Fig. 2.
When γ is increased further, the limit cycle undergoes a
cascade of higher period-doubling bifurcations (Fig. 5). This
culminates in the emergence of chaotic attractors [Fig. 3(d)
and the top inset in Fig. 2]. The set of parameter values
corresponding to periodic attractors with 2n oscillations per
period (n = 1,2, . . .) is shown in blue in Fig. 2, and the
“chaotic domain” is ochre colored.

VI. CONCLUSIONS

We conclude our study of the AC coupler by crystallizing
its key difference from the PT -symmetric device. While the

latter balances gain in one waveguide with loss in the other,
the former treats its two channels equally. It is the symmetric
and antisymmetric normal modes (rather than the two guides
themselves) that serve as the gain and loss agents in the AC
configuration.

An important advantage of the AC coupler is its structural
stability. For the given loss rate, the system supports stationary
and periodic light beams in a wide range of gain coefficients
rather than for a particular value of a. This is a fundamental
distinction from the PT -symmetric coupler where one has to
tune the gain to match the loss exactly [4].

The new properties exhibited by the device can be utilized
in a variety of applications. One possible setting is an optical
analog of the voltage comparator which swings its output
to one of two values depending on the relation between its
two input voltages. The AC coupler can operate either in the
stationary regime, where the two output values are given by
the fixed points of the system (5), or as an integrate-and-fire
switch (Fig. 4), where one of the waveguides is left powerless
periodically. The period of this oscillator can be tuned simply
by varying the distance between the waveguides. Unlike the
PT -symmetric coupler, no input can trigger an uncontrollable
growth of optical modes in the AC switch.

Finally, we note that the left-right symmetry in the
arrangement of two elements is not a prerequisite for their
active coupling and the device operation. The stable light
propagation requires only the presence of two linear modes,
an excitable and a damped one, and the availability of their
nonlinear coupling giving rise to a negative feedback loop.
Even if the left-right symmetry of the structure is broken
by small perturbations, the AC coupler will remain stably
operational.

The principle of the AC coupling is therefore not exclusive
to a pair of parallel waveguides but can be applied to a
broad range of geometric designs. In particular, it would be
interesting to consider the active coupling of two orthogonally
polarized HE11 modes [13] of a single-mode fiber with gain in
its cladding. On the other hand, the active coupling of spatial
channels in a multicore fiber can improve characteristics
of spatial-division multiplexing [14]. One more potential
application of the AC coupling is to the blow-up-aided pulse
compression in nonlinear fiber arrays [15].
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