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Scaling laws, pressure anisotropy, and thermodynamic effects for blackbody radiation
in a finite cavity
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Finite-size effects for blackbody radiation in a cavity are revealed. We find out simple scaling laws for
thermodynamic functions of blackbody radiation in a finite cavity of arbitrary shape and predict the anisotropy
of blackbody radiation pressure in asymmetric cavities. Special thermodynamic effects accompanying cavities
merge are discussed.
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I. INTRODUCTION

In 1900 Planck introduced the quantum hypothesis and
derived the formula for energy spectral density of blackbody
radiation (BBR) in a cavity [1]. This formula was verified ex-
perimentally in a wide range of temperatures and frequencies.
In the derivation of Planck’s formula it is implied that the
volume of the cavity containing BBR is sufficiently large (see,
e.g. [2], p. 273). Therefore, Planck’s formula is inapplicable
to BBR in a small cavity at a sufficiently low temperature.
A concrete criterion of the Planck’s formula validity was
formulated by Bijl [3]:

T V 1/3 � B ≡ �c

kB

≈ 0.2290 cm K, (1)

where T is the radiation temperature and V is the cavity
volume. The criterion (1) refers also to the Planck’s formula
consequences (e.g., the Stefan-Boltzmann law, Wien’s dis-
placement law, etc.). The following step was done in [4] where
the first correction terms to the Stefan-Boltzmann law were
calculated for the case of a cubic cavity with ideally conducting
walls. Since that time, numerous efforts were made in order
to take into account the finite-size effects in thermal radiation
theory. The list of main research activities in this field, far from
being complete, is given below.

(i) The Weyl’s problem [5], which consists in the calculation
of the eigenvalues distribution of the vector wave equation
in cavities of various shapes and derivation of averaged
expressions for the electromagnetic mode density [6–8].

(ii) Refinements of the Stefan-Boltzmann formula and study
of cavities having various shapes with ideally conducting walls
[6,8,9].

(iii) Corrections to the Stefan-Boltzmann law due to a finite
conductivity of cavity walls [10].

(iv) Consideration of radiation from small particles and
exploration of the particle size influence on the thermal
radiation spectrum [11,12].

The interest in the finite-size effects is growing at the
present time due to the increased experimental capabilities.
Calculation of thermodynamic functions of a hot quark-gluon
plasma was performed in [13] with account of the finite-size
effects. In [14] it was shown that experimental detection of the
deviations from Planck’s formula is within the reach of current
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experimental capabilities. Finally, in [12] the experimental
observation of such deviations was reported: it was detected
that in narrow spectral range thermal radiation may exceed
the value predicted by Planck’s formula. A consistent analysis
of the role of the geometry-dependent corrections to Planck’s
formula is also carried out in [12].

In the present paper, we reveal three finite-size effects for
BBR.

(i) Simple scaling laws determining the behavior of BBR
thermodynamic functions (energy, pressure, entropy, etc.)
when the temperature and/or the cavity volume (at a fixed
shape) is changed.

(ii) The existence of essential anisotropy of blackbody
radiation pressure due to the cavity asymmetry.

(iii) Special thermodynamic effects taking place when finite
cavities with BBR at the same temperature and pressure are
merged.

Dealing with these problems, we specified some details of
the thermodynamic approach to blackbody radiation in a finite
cavity and performed corresponding numerical calculations.
The results of numerical calculations illustrate the discussed
effects.

II. THERMODYNAMIC RELATIONS FOR BLACKBODY
RADIATION IN A FINITE CAVITY AND SCALING LAWS

Let us consider blackbody radiation in a finite cavity of
arbitrary shape. In the present paper, we discuss the case of a
closed cavity with ideally conducting walls. According to [10],
the results obtained under this assumption also give a good
approximation of BBR thermodynamic parameters for the
case of a cavity with metallic walls of finite conductivity. For
the range of conductivities (106–108) Ohm−1 m−1 the relative
error is less than 0.5%.

It is well known that electromagnetic field in the cavity may
be represented as an ensemble of harmonic oscillators corre-
sponding to the eigenmodes of the cavity. The number of these
oscillators is infinite for the cavity of arbitrary volume and at
any temperature. The total field energy is a sum of oscillator
energies: E = ∑

m Em, where m enumerates oscillators of the
ensemble [2,15]. As oscillators are noninteracting, statistically
independent, and distinguishable, the Gibbs distribution is
applicable to the single oscillator:

wm (r) = exp

[
Fm − Em (r)

kBT

]
, (2)
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where r enumerates states of the mth oscillator and the
normalization factor is taken in the form exp( Fm

kBT
); Fm is a free

energy of the mth eigenmode. Relation (2) is valid for radiation
in small cavities at low temperatures, as well as for “standard”
[i.e., corresponding to satisfaction of the Bijl’s criterion (1)]
case.

Applying the canonical distribution method and using the
quantum-mechanical expression for the harmonic-oscillator
energy levels Em(r) = �ωm(r + 1

2 ), where r = 0,1,2, . . . , ωm

is the frequency of the mth mode, one obtains the expression
for the BBR free energy F ≡ ∑

m Fm:

F = kBT
∑
m

ln

[
1 − exp

(
−�ωm

kBT

)]
. (3)

We omit the vacuum term Fvac = 1
2

∑
m �ωm in (3), concerning

ourselves only with the thermal radiation energy (as a result,
the Casimir forces and other vacuum effects will not be taken
into account).

The eigenfrequencies of the cavity ωm depend not only on
its volume but also on its geometrical shape. That is why it is
reasonable to represent the BBR free energy as a function of
the temperature T , cavity volume V , and some dimensionless
parameters λi defining the cavity shape: F = F (T ,V,λi). The
number of such parameters depends on the problem under
consideration (for example, only two parameters are needed
to describe a cuboid shape). As a consequence, we obtain

dF = −S dT − p dV +
∑

i

�i dλi, (4)

where the BBR entropy S, the BBR pressure p, and the
coefficients �i are defined as

S = −
(

∂F

∂T

)
V,λi

, p = −
(

∂F

∂V

)
T ,λi

,

(5)

�i =
(

∂F

∂λi

)
T ,V,λk �=λi

.

The variable p should be understood as the pressure on the
cavity faces averaged in a certain way. The relation between
the parameter p and forces acting on cavity walls may be not so
simple as in the standard case (see Sec. IV). The expression for
the differential of BBR internal energy E = F + T S follows
from (4):

dE = T dS − p dV +
∑

i

�i dλi. (6)

We emphasize that the used definition of the internal energy is
equivalent to the following one: E = ∑

m,r wm(r)Em(r). The
basic equation (6) is valid for a cavity of arbitrary shape.

Now we introduce dimensionless eigenfrequencies
ω̃m = ωmV 1/3/c (c is the speed of light). As the result, Eq. (3)
reads

F = kBT
∑
m

ln

[
1 − exp

(
− �cω̃m

kBT V 1/3

)]
. (7)

From similarity considerations it follows that if the cavity
volume is changed at a fixed cavity shape, parameters
ω̃m = ωmV 1/3/c remain constant. Thus we obtain simple
scaling law for the BBR free energy in the cavity of arbitrary

shape:

F = Tf (T V 1/3), (8)

where the function f is fully determined by the cavity
geometry. If this function of single variable is calculated (or
found from experiment) for the given cavity shape, any of the
BBR thermodynamic parameters at any temperature and cavity
volume may be easily evaluated. Basing on the Eq. (8), it is
easy to obtain corresponding scaling laws in different forms,
for example,

F = −4σ

3c
T 4V �1(τ ), p = 4σ

3c
T 4�2(τ ),

(9)

E = 4σ

c
T 4V �2(τ ), S = 16σ

3c
T 3V �3(τ ),

where �2(τ ) = �1(τ ) + τ
3

d�1
dτ

, �3(τ ) = �1(τ ) + τ
4

d�1
dτ

,
τ = T V 1/3, and σ is the Stefan-Boltzmann constant. One
passes to the standard case in the limit τ → ∞. In this limit
�j (τ ) → 1 j = 1,2,3.

Equations (9) show that the well-known standard relation
between p and E is also correct for BBR in a finite cavity
[with definition of p from Eq. (5)]:

E = 3pV. (10)

Asymptotic expressions describing BBR internal energy were
deduced for particular cases (e.g., cubic cavity) in [4,8]. These
expressions are valid only in limiting cases under the following
conditions: either T V 1/3 � B (high-temperature expansion)
or T V 1/3 � B (low-temperature expansion). Description of
the intermediate temperature region requires numerical com-
putation [see Fig. 1(a)].

III. COMPUTATION TECHNIQUE

To reduce the time needed for numerical calculation of BBR
thermodynamic functions, we used the following method.
Calculating sums like (7), we used direct summation for
eigenfrequencies ω̃m � ω̃e. For eigenfrequencies ω̃m > ω̃e we
replaced the rest of the sum by the corresponding integral. For
example,

E

kBT
=

∑
n,

ω̃n ≤ ω̃e

gn

Bω̃n

T a

[
exp

(
Bω̃n

T a

)
− 1

]−1

+
∫ ∞

ω̃e

Bω̃3

π2T a

[
exp

(
Bω̃

T a

)
− 1

]−1

dω̃, (11)

where B = � c
kB

≈ 0.2290 cm K, n enumerates different eigen-
frequencies, gn is a degeneracy of the eigenfrequency ωn, and
a = V 1/3. The other thermodynamic functions were calculated
similarly. The net result depends to some extent on the choice
of ω̃e. This unwanted circumstance may be removed by
variation of the ω̃e until the net result becomes insensible
to the increase of ω̃e. Typical values of the parameter ω̃e used
in the calculations were 50 and 100. The computational error
estimated by the comparison of the two results was less than
0.05%.

Further we consider the particular case of cuboid cavity
with edges X, Y , Z. The shape of such cavity is described by
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FIG. 1. (Color online) Radiation energy in a cavity normalized to the value predicted by the Stefan-Boltzmann law. (a) Cubic cavity:
solid, dashed, and dash-dotted curves correspond to calculated results, high-temperature expansion [9], and low-temperature expansion [9],
respectively. (b) Cuboid cavities of different shapes: solid, dotted, and dash-dotted curves correspond to α = β = 1 (cube), α = β = 10 (film),
and α = β = 10−2 (rod), respectively.

two dimensionless parameters α = X/Z and β = Y/Z. Then
the normalized eigenfrequencies of the cavity are

ω̃n ≡ ωna

c
= π

(αβ)2/3

√
n2

xβ
2 + n2

yα
2 + n2

zα
2β2, (12)

where n = {nx,ny,nz}. The mode exists if two or three
numbers from the set n are nonzero; in the first case
degeneracy is gn = 1 and in the second—gn = 2 (additional
degeneracy may appear due to the cavity symmetry) [16]. The
obtained results for the BBR internal energy are presented
in Figs. 1(a) and 1(b). Figure 1(a) illustrates the domain of
validity of the asymptotic formulas [9] for the radiation energy.
Comprehensive discussion of these asymptotic formulas for
a cubic cavity is given in [9]. The influence of the cavity
shape on thermodynamic functions of BBR is illustrated in
Fig. 1(b).

IV. ANISOTROPY OF BLACKBODY RADIATION
PRESSURE IN A FINITE CAVITY

It turns out that the effect of pressure anisotropy takes
place for blackbody radiation in a finite cuboid cavity with
unequal edges. That is to say, the pressures on the cavity
faces defined as px = − 1

YZ
( ∂F
∂X

)T ,Y,Z , py = − 1
XZ

( ∂F
∂Y

)T ,X,Z ,
and pz = − 1

XY
( ∂F
∂Z

)T ,X,Y may be unequal in the region of
sufficiently low temperatures. According to (7) and (12),

px = π�c

V

∑
n

gn

(
nx

X

)2

[
exp

(
�ωn

kBT

) − 1
]√(

nx

X

)2 + ( ny

Y

)2 + (
nz

Z

)2
,

(13)

where gn is a degeneracy of the eigenfrequency ωn. The similar
expressions are valid for py and pz. From these expressions
it follows that px + py + pz = 3p [p is defined by Eq. (5)];

this relation is also obvious from Eq. (10) and from the fact
that energy-momentum tensor trace equals zero for the case
of free electromagnetic field. Numerical calculation of the
pressures px , py , pz for the case of asymmetric cavity shows
that the pressures are unequal in the region of sufficiently
low temperatures [Figs. 2(a) and 2(b)]. One can see that these
quantities coincide in the region T V 1/3 � B in accordance
with the fact that in the high-temperature region the radiation
pressure is always isotropic regardless of the cavity shape. The
limits of expressions px/p, py/p, and pz/p at T → 0 may be
also found analytically. If we consider the case X < Y < Z,
the smallest eigenfrequency ω1 corresponding to the set
nlow = {0,1,1} is ω1 = πc

√
Y−2 + Z−2. It is this frequency

that gives a main contribution to the sum (13) at T → 0.
Omitting the other terms of the sum, one may find that px ≈ 0,
py ≈ A

Y 2 , and pz ≈ A
Z2 , where the parameter A is defined

as A = π�c
V

{[exp( �ω1
kBT

) − 1]
√

Y−2 + Z−2}−1. Consequently,

p = 1
3 (px + py + pz) ≈ AZ2+Y 2

3Y 2Z2 and

px/p → 0, py/p → 3Z2

Y 2 + Z2
,

(14)

pz/p → 3Y 2

Y 2 + Z2
.

For the case X = 1 mm, Y = 2 mm, and Z = 3 mm relations
(14) give px/p → 0, py/p → 2.077, and pz/p → 0.923.
These results are in agreement with ones obtained from the
numerical calculations. Consequently, if X < Y < Z, we have
px < pz < py at T → 0. We emphasize that the pressure
anisotropy of BBR should also take place for all asymmetric
cavities under the condition T V 1/3 � B. The illustration of
the effect is given in Fig. 3.
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FIG. 2. (Color online) Pressures on the cavity faces normalized to the “average” pressure p = E

3V
for cavities of different shapes. (a) Solid

and dashed curves correspond to px/p = py/p and pz/p for the rod with edges X = Y = 1 mm, and Z = 10 mm; dash-dotted and dotted
curves correspond to px/p = py/p and pz/p for the film with edges X = Y = 10 mm, and Z = 1 mm. (b) Solid, dotted, and dashed curves
correspond to px/p, py/p, and pz/p for the cuboid with edges X = 1 mm, Y = 2 mm, and Z = 3 mm.

V. FINITE-SIZE EFFECTS ACCOMPANYING
CAVITIES MERGE

Thus some of standard BBR thermodynamic properties are
invalid in the temperature region T V 1/3 � B, e.g., BBR free
energy appears to be a nonlinear, shape-dependent function of
the cavity volume. This affects BBR “behavior” in concrete
thermodynamic processes. Below we will analyze the situation
where the process takes place due to the finite-size effects,
though nothing may occur in the system from the standard
point of view.

Let us consider two identical cubic cavities separated by a
partition. Then one can imagine that the partition is removed
and one cavity of doubled length and volume appears. If
temperatures and pressures of BBR in both cavities are equal,
nothing will occur in the system from the standard point of
view. It turns out that the behavior of the system is another in
the intermediate temperature region T V 1/3 � B.

FIG. 3. (Color online) Illustration of the radiation pressure
anisotropy in a finite cavity.

It is of interest to consider several variants of the cavities
merge. These variants are sketched in Fig. 4. If the partition
is simply destroyed [Fig. 4(a)], the total energy of the system
would conserve (E = const) and the merge of cavities would
be a nonequilibrium process. The temperature of the system
decreases in this case [Fig. 5(a)] and the entropy increases
[Fig. 5(b)]. The qualitative explanation of the effect is as
follows. When the partitions between cubic cavities are de-
stroyed, new eigenfrequencies appear for the electromagnetic
field inside a composite cavity. That is why the statistical
weight of a given system state must increase (when new
modes appear, the number of ways to distribute the energy
between them increases). Hence the entropy increases. The
radiation energy will be redistributed between all modes of
the obtained composite cavity. In fact, the energy passes
from higher eigenfrequencies to the lower ones (which appear
in the composite cavity) and such a redistribution means

FIG. 4. (Color online) Different variants of cavities merge.
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FIG. 5. (Color online) (a) Temperature decrease for BBR in 50 cubes when the partitions between them are removed. Solid and dashed
curves correspond to the situations E = const and S = const, respectively. (b) Entropy increase normalized to the total entropy calculated by
the “standard” way for BBR in 50 cubes when the partitions between them are destroyed. Situation E = const. V is a volume of a single cube.

temperature decrease. Another variant is a quasistatic partition
removal when the system is enclosed into the adiabatic shell
[Fig. 4(b)]. In this case the total entropy S remains constant,
the temperature decreases [Fig. 5(a)], and the total energy of
the system decreases too [Fig. 6(a)]. The third case shown
in Fig. 4(c) corresponds to a quasistatic isothermal partition
removal, i.e., there are external energy sources keeping the
temperature of the system constant. In this situation, energy
supply is needed [Fig. 6(b)]. Calculations are performed for
the case when 50 identical cubic cavities are merged.

As the discussed effects are inessential in the region of
rather high temperatures and big cavity volumes, they are
finite-size effects.

VI. DISCUSSION AND CONCLUSIONS

In the present work, we have explored some specific
properties of blackbody radiation in a finite cavity. All

the discussed regularities are essential in the case of low
temperatures and small cavities. As BBR thermodynamic
functions depend essentially on the cavity geometry, the
standard thermodynamic approach requires specification. We
have derived simple scaling laws for the BBR thermodynamic
functions. In the low-temperature region the anisitropy of
blackbody radiation pressure in asymmetric cavities is pre-
dicted. Special thermodynamic effects accompanying cavities
merge are revealed: if the partition between adjacent identical
cubic cavities with BBR at the same temperature and pressure
is removed, the change of some BBR thermodynamic functions
takes place. Qualitative explanation of the above effects is
proposed.
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FIG. 6. (Color online) (a) Energy decrease normalized to the total energy calculated by the Stefan-Boltzmann law for BBR in 50 cubes
when the partitions between them are removed adiabatically: S = const. (b) Energy increase normalized to the total energy calculated by the
Stefan-Boltzmann law for BBR in 50 cubes when the partitions between them are removed isothermally: T = const.
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