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Relationship between the degree of polarization, indistinguishability, and entanglement
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We address a recently established inequality P � I that constrains the degrees of polarization P and
indistinguishability I. We derive said inequality within three different frameworks, discussing its respective
physical meaning. We show that in its original formulation the inequality involved a single degree of freedom,
and that only by entangling polarization and path (momentum) in laboratory space, can such an inequality
represent a constraint between these degrees of freedom. We show how this could be done with the help of a
Mach-Zehnder-like array. We discuss this multipurpose device, which can be employed to address several issues
of current interest, such as tests of the complementarity principle, partial coherence stemming from unobserved
degrees of freedom, geometric phases of entangled states evolving on the Schmidt sphere, etc. Besides its
experimental feasibility, the proposed device serves as a tool for studying common features of quantum and
classical entangled states. In particular, it serves for testing a newly proposed measure of coherence, called Bell’s
measure, using experimental techniques that are independent of those already employed.
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I. INTRODUCTORY REMARKS

It has been recently argued [1] that the degree of polar-
ization (P) and Mandel’s degree of indistinguishability [2]
(I) are mutually constrained by P � I. This remarkable
result falls in line with other constraints that address quantum
complementarity. This key concept of quantum theory states
that full knowledge of some property precludes full knowledge
of a conjugate one. The most representative example of this
feature is wave-particle duality. When dealing, for instance,
with interferometric arrays, “which-path information” (WPI)
and visibility V of the interference pattern are known to be
complementary quantities. Now, while wavelike behavior has
been quantified in terms of visibility since the early years
of classical optics, it is only recently that several measures
have been proposed to quantify particlelike behavior, or
WPI. One of these measures is Mandel’s I, which satisfies
I � V [2]. Another one is the so-called “predictability”
W := |w2 − w1|, where wi represents the probability that a
particle entering a two-arm interferometer goes along path
i = 1,2. In this case, it holds W2 + V2 � 1 [3]. Alternatively,
one can use D, a parameter introduced by Englert [4], dubbed
“distinguishability,” which satisfies D2 + V2 � 1.

Whereas quantities such as I and W quantify our a
priori which-way knowledge, D refers to the available WPI
being stored in a which-way marker or detector [4]. Thus, D
requires coupling the path degree of freedom to an auxiliary
physical system that serves as a marker through the mea-
surement of some adequate observable. This distinguishing
feature that puts I and W on one side and D on the
other, is also reflected by the mathematical derivation of
the corresponding inequalities. The inequalities satisfied by
I and W are derived within a single Hilbert space, while
the inequality satisfied by D involves two Hilbert spaces.
As for experimental tests, the constraint D2 + V2 � 1 has
been confirmed under various configurations that include
all-or-nothing cases (D,V ∈ {0,1}) [5], intermediate situations
(D,V ∈]0,1[) [6], and delayed-choice conditions [7]. The
constraint P � I appears to be of the kind of Englert’s
inequality, i.e., one which involves two degrees of freedom

(DOF). If this would be so, then a series of experimental
tests could be performed in order to exhibit a complementarity
between P and I that would mirror the one holding between
V and D. Thus, besides fringe visibility, also polarization
would depend on whether WPI is available or not. Now, it
is quite astonishing that polarization and wavelike behavior
happen to be complementary properties, because producing
fully polarized electromagnetic waves is just as possible as
producing fully polarized photons. However, when P = I, a
photon behaving like a particle (I = 0) should be completely
unpolarized, while with no available WPI (I = 1), light
should behave as a completely polarized wave. Furthermore,
experimental facts seem to be at odds with polarization being
constrained by WPI. Consider, for example, a polarizing beam
splitter. It can fully determine a photon’s polarization just
in connection with path information. As a second example,
consider spin-1/2 particles. A constraint similar to P � I
would apply in this case as well, due to the kinematical identity
between all binary DOF. However, the standard way to fix the
spin of a particle is to let it pass through a Stern-Gerlach
apparatus and then select one of the two possible paths that
the particle can take, thereby “polarizing” it precisely in
connection with WPI. These seemingly paradoxical situations
prompt us to take a closer look at the derivation of the
aforementioned inequality that was presented in [1]. As we
will show below, in order to give physical sense to a constraint
like P � I, two DOF must be involved. That is, by entangling
polarization with a second degree of freedom, e.g., the path
of the light’s beam, P becomes constrained. This constraint
comes from the unresolved degree of freedom with which
polarization has been entangled.

The above state of affairs has recently attracted much
attention, sparking a series of contributions within the general
framework of entanglement and coherence theory [8–13]. It
has been realized that partial coherence is not exclusively
attributable to random fluctuations, but also to the act of
ignoring a degree of freedom with which the observed one
is entangled. Kagalwala et al. [13], for example, recently
explored this issue by dealing with one-dimensional scalar
beams such as E(x) = Eeψe(x) + Eoψo(x). This can be seen
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as an entangled state, as E(x) exists simultaneously in two
independent vector spaces. The components Ee and Eo belong
to one space, and ψe(x),ψo(x) to another one, namely, the
space of even and odd functions [13]. It should be stressed
that entanglement is not necessarily related to nonlocality,
which is often referred to as the most prominent feature of
quantum mechanics. Indeed, entanglement becomes possible
whenever we deal with two vector spaces. There can be
different types of entanglement, depending on the nature of
the degrees of freedom being involved. There can be, for
instance, entanglement between two different modes, such
as polarization and path, that are carried along by a single
entity, be it a classical light beam or a photon. Alternatively,
we can consider a single mode, e.g., spin, being attached to
two different, spatially separated particles. This is the case
usually addressed in quantum mechanics when dealing with
nonlocality.

It is thus possible to have entangled modes in the classical,
as well as in the quantum domain. Once the kinematic nature of
entanglement has been recognized [9,14–17], fruitful results
can be derived. For example, Qian and Eberly have shown
that the degree of polarization can be thought of as a measure
of entanglement between two degrees of freedom [17]. The
two DOF being considered in this case are represented,
respectively, by vectors in “laboratory space,” Span{x,y},
and by vectors in “function space,” whose elements are
statistical functions Ex,Ey . These are the components of a
transverse field E = xEx + yEy in the case of a beam. Now,
the degree of polarization is usually introduced as a measure
of statistical correlations between Ex and Ey . By bringing
entanglement to the fore, Qian and Eberly [17] have shown
how to generalize polarization beyond the planar-transverse
case, as dimensionality of the two entangled spaces becomes
irrelevant within their framework. This is so because the
tool used to define polarization is Schmidt decomposition,
which applies irrespective of dimensionality. Thus, once we
have realized that the light field is an intrinsically entangled
field, polarization appears as a concept that captures both
the vector nature and the statistical nature of that field [17].
Analogous considerations apply for any two entangled degrees
of freedom, e.g., those addressed in [13].

Mandel’s approach [2] to interference of light beams can be
seen under the same perspective. It highlights the connection
between statistical correlations and indistinguishability of two
interfering beams. The states being considered in this case are
of the form |ψ〉 = α1|ψ1〉 + α2|ψ2〉, with |ψi=1,2〉 representing
the two-way alternative of an interferometric array. There is a
close relationship between the approaches followed by Mandel
and by Qian and Eberly. Indeed, in both cases one deals with
a space of statistical functions: analytic signals in one case,
and field components in the other case. As for the second
space, it is laboratory space in Qian-Eberly’s treatment, i.e., a
two-dimensional one for a beam-type field. In Mandel’s case,
the second space is path space, which is also two dimensional.
As we show below, there is a formal identity between Mandel’s
degree of indistinguishability I and a corresponding quantity
in Qian-Eberly’s approach to polarization. However, such a
formal identity should not be promoted to a physical identity,
as a consequence of which wave-particle duality could be
addressed within the two frameworks. In order to connect

polarization and indistinguishability we must go beyond the
intrinsic entanglement that Qian-Eberly and Mandel have
considered. Thus, we must proceed similarly to Kagalwala
et al. [13], who managed to entangle two otherwise indepen-
dent degrees of freedom: polarization and spatial parity. This
kind of entanglement should be distinguished from the intrinsic
entanglement that was recognized by Qian and Eberly when
dealing with polarized states of the form E = xEx + yEy , or
by Mandel when dealing with interferometric states of the
form |ψ〉 = α1|ψ1〉 + α2|ψ2〉.

The present work addresses the above issues with the
help of an interferometric array whose primary light source
could be either classical or quantal. The array, which is based
on a scheme discussed in [18], entangles polarization and
path DOF. It allows us to manipulate the coherence of both
polarization and path DOF by ignoring one of them. Moreover,
we can also manipulate both DOF at the same time, thereby
exploring the so-called Schmidt sphere, a parameter space that
can be used to describe two-party entanglement, and which is
topologically equivalent to the Poincaré sphere. In this way,
one can generate Berry phases for entangled states and test
results like those derived by Sjöqvist [19].

II. ENTANGLEMENT AND POLARIZATION:
THE QIAN-EBERLY APPROACH

Let us briefly discuss Qian and Eberly’s approach to
polarization [17]. As already said, it generalizes the notion of
polarization that applies to light beams with transverse electric
vector E = xEx + yEy , to the case E = xEx + yEy + zEz.
Qian and Eberly treated E as a tensor product of spatial
unit vectors, x,y,z, and complex-valued functions Ex,Ey,Ez

that belong to a statistical function space. In the case of
a beam, i.e., when Ez = 0, the degree of polarization can
be defined in terms of quantities such as 〈ExE

∗
y 〉, where

brackets denote ensemble average. These quantities measure
statistical correlations between different components of E.
In order to generalize the notion of polarization beyond the
beamlike case, one can invoke entanglement [17]. Indeed,
the degree of polarization turns out to be given by the
degree of separability of the two spaces involved. By Schmidt
decomposition, it is always possible to express E in the
form |E〉 = λ1|u1〉|f1〉 + λ2|u2〉|f2〉 + λ3|u3〉|f3〉, with angle
brackets being used only for notational convenience. Complete
polarization is tantamount to complete separability, which
occurs when two of the λi vanish and E is of the form E = uf .
The other extreme case is that of a fully unpolarized state. It
corresponds to a maximally entangled state, for which λ1 =
λ2 = λ3. Intermediate cases have a degree of polarization that
can be quantified in terms of a parameter K , which is defined by
I 2K = 1/[λ4

1 + λ4
2 + λ4

3], where I denotes field intensity [17].
For the beam case, i.e., |E〉 = |x〉|Ex〉 + |y〉|Ey〉, Qian and
Eberly use the parametrization

|E〉 =
√

I (cos ϑ |x〉|ex〉 + sin ϑ |y〉|ey〉). (1)

Here, I = 〈Ex |Ex〉 + 〈Ey |Ey〉 and vectors |ei〉 span the
subspace of statistical functions. Such a parametrization
allows us to take |ei〉 unit normalized, 〈ei |ei〉 = 1, while
magnitude and phase of cross correlations can be given by
α = |α|eiδ := 〈ex |ey〉. By defining W = |E〉〈E|/I and tracing
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over the subspace of statistical functions one obtains IWlab =
I Trf cn W = ∑

m〈φm|E〉〈E|φm〉, with {|φm〉} an orthonormal
basis for the subspace of statistical functions. One gets
IWlab = ∑

p,q |p〉〈q|〈Ep|Eq〉, with p,q = x or y. Thus, Wlab

is a 2 × 2 tensor in the laboratory subspace Span{|x〉,|y〉}. Its
matrix representation in the basis {|x〉,|y〉} reads

Wlab = I−1

(〈Ex |Ex〉 〈Ex |Ey〉
〈Ey |Ex〉 〈Ey |Ey〉

)

=
(

cos2 ϑ α cos ϑ sin ϑ

α∗ sin ϑ cos ϑ sin2 ϑ

)
. (2)

In Qian-Eberly’s parametrization the degree of polarization,
P , which is given by

P := [1 − 4 Det Wlab]1/2, (3)

reads

P2 = cos2 2ϑ + |α|2 sin2 2ϑ. (4)

We note that P incorporates both the relative magnitude of the
field components—through its dependence on ϑ—and their
statistical correlation—through its dependence on |α|. Now,
Wlab can be seen as the matrix representation of a density
operator ρW in Span{x,y}. Following Mandel [2], we can
decompose ρW in terms of two operators, ρID and ρD , which
are defined in terms of a fiducial state |ψ〉 = cos ϑ |x〉 +
eiδ sin ϑ |y〉, as ρID = |ψ〉〈ψ | and ρD = cos2 ϑ |x〉〈x| +
sin2 ϑ |y〉〈y|. Setting ρW = IpρID + (1 − Ip)ρD , with Ip ∈
[0,1], one finds

Ip = |(Wlab)xy |√
(Wlab)xx(Wlab)yy

= |α|, (5)

from which it follows, on account of Eq. (4), that

P � Ip. (6)

In Mandel’s framework [2], a decomposition in terms of ρID

and ρD had the purpose of connecting coherence with indistin-
guishability, the latter referring to the two beams of a Young
interferometer. In the present context, “indistinguishability”
would refer to the two states (|x〉,|y〉) that coherently contribute
to make up the polarization state |ψ〉, in terms of which ρID

and ρD were constructed. Even though we can talk about
“paths” in our two-dimensional polarization space, this has
no bearing on wave-particle duality. Thus, the only relevant
physical information that Ip entails is that related to statistical
correlations.

It is also useful to see how the above formulation relates
to the standard one. In the latter, the polarization matrix
is obtained from the column vector E = (Ex,Ey)T as the
ensemble-averaged direct product 〈EE†〉. The so obtained
matrix—whose components are 〈EpE∗

q 〉—can be written as

ρp(P) = 1
2 (1 + Pn · σ ). (7)

Here, n is a unit vector proportional to the Stokes vector, 1 is
the identity matrix, and σ stands for the triple of Pauli matrices.
The eigenvectors and eigenvalues of ρp are defined through

ρp|n±〉 = λ±|n±〉. (8)

Because n · σ |n±〉 = ±|n±〉, we have λ± = (1 ± P)/2 [see
Eq. (7)]. Taking n = (sin 2θ cos ϕ, sin 2θ sin ϕ, cos 2θ ),
we have |n+〉 = cos θ |+〉 + eiϕ sin θ |−〉 and |n−〉 =
− sin θ |+〉 + eiϕ cos θ |−〉, with σ3|±〉 = ±|±〉. Thus, be-
sides Eq. (7), we can write ρp in two other ways:

ρp(P) = λ+|n+〉〈n+| + λ−|n−〉〈n−|

= 1

2

(
1 + P cos 2θ Pe−iϕ sin 2θ

Peiϕ sin 2θ 1 − P cos 2θ

)
. (9)

As for the connection between Wlab and ρp, we first note
that we can identify the basis {|x〉,|y〉} in “laboratory space”
Hlab with the standard basis {|+〉,|−〉}. In such a case, scalar
products in the space Hf cn of statistical functions must fulfill
〈Ep|Eq〉 = 〈EpE∗

q 〉. Qian and Eberly chose a parametrization
(|α|,ϑ,δ) that is defined by Eq. (1) and 〈ex |ey〉 = α = |α|eiδ .
A standard parametrization is given in terms of (P,θ,ϕ). In
order to show the connection between them, let us consider
the orthonormal basis vectors |φ±〉 ∈ Hf cn and introduce the
operator T : Hlab �→ Hf cn, given by

T =
√

λ+|φ+〉〈n+| +
√

λ−|φ−〉〈n−|. (10)

It satisfies T †T = ρp(P). Hence, by defining

|Ex〉 = T |+〉 =
√

λ+〈n+|+〉|φ+〉 +
√

λ−〈n−|+〉|φ−〉,
(11)

|Ey〉 = T |−〉 =
√

λ+〈n+|−〉|φ+〉 +
√

λ−〈n−|−〉|φ−〉,
we see that 〈Ep|Eq〉 = 〈p|T †T |q〉 = 〈p|ρp|q〉, with p,q ∈
{+,−} ≡ {x,y}, so that Eq. (11) gives Eq. (9). Whence, the
two parametrizations involved in the definitions of Wlab and
ρp(P), respectively, can be traced back to two different ways of
defining statistical correlations. The standard way corresponds
to Eq. (11), and that of Qian and Eberly to Eq. (1), i.e., |Ex〉 =√

I cos ϑ |ex〉, and |Ey〉 = √
I sin ϑ |ey〉.

III. INDISTINGUISHABILITY AND POLARIZATION:
THE MANDEL-LAHIRI APPROACH

Let us now discuss in some more detail Mandel’s deriva-
tion [2] of the constraint I � V . We will show how it formally
relates to Lahiri’s inequality P � I. As we saw above, given a
density operator ρ = ∑

i,j=1,2 ρij |ψi〉〈ψj |, we can decompose
it so as to exhibit its distinguishable and indistinguishable
components. Of course, the physical meaning of ρ will
depend on the two-state system being considered. Mandel
addressed a Young interferometer, for which |ψi〉 refer to the
two possible paths that a photon can take: |ψ1〉 = |1〉1|0〉2

and |ψ2〉 = |0〉1|1〉2. With respect to a fiducial state |ψ〉 =
α1|ψ1〉 + α2|ψ2〉, we may define the pure, indistinguishable
state ρID := |ψ〉〈ψ | and the mixed, distinguishable state
ρD := |α1|2|ψ1〉〈ψ1| + |α2|2|ψ2〉〈ψ2|. According to the usual
interpretation of a coherent superposition of states, a photon
prepared in state ρID goes along both paths at the same time,
with a priori probabilities being determined by the amplitudes
αi . If the photon is instead prepared in state ρD , then it goes
along one or the other path, with probabilities |αi |2. Thus, while
a system prepared in ρID is capable of showing interference,
a system prepared in ρD is not. By writing ρ = IρID + (1 −
I)ρD , we define I ∈ [0,1] in connection with ρID and ρD .
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From ρ = ∑
i,j=1,2 ρij |ψi〉〈ψj | = IρID + (1 − I)ρD we get,

as in Eq. (5),

I = |ρ12|√
ρ11ρ22

. (12)

It turns out that I can be related to the mutual coherence
function of a quantized field, γ12 := 
12/[
11
22]1/2, with

ij ∼ Tr{ρÊ(−)(ri)Ê(+)(rj )}, i,j ∈ {1,2}. One readily obtains
γ12 = ρ12/(ρ11ρ22)1/2, hence |γ12| = I, and this leads to
Mandel’s conclusion that the degree of coherence is the same as
the degree of indistinguishability. Consider next the field on the
screen in Young’s array. Phase differences due to propagation
cause the appearance of fringes. The visibility of these fringes
can be shown [2] to be given by V = 2|γ12|(ρ11ρ22)1/2 � I,
which is Mandel’s constraint.

As Mandel remarked [2], the above procedure is reminis-
cent of a similar one that Wolf used to define the degree of
polarization [20]. It is thus tempting to address polarization in
a similar fashion as Mandel did with spatial coherence. This
is what Lahiri seems to have attempted in [1]. Now, if we deal
with polarization alone and just mirror Mandel’s procedure,
then we should refer to “paths” only figuratively, i.e., as paths in
polarization space. This is so because our setting occurs within
a single Hilbert space. If we insist on connecting polarization
with spatial degrees of freedom, then we must extend our
treatment so as to deal with at least two Hilbert spaces. This
is what Qian and Eberly did [17], as explained in the previous
section. Here we address the case of a single Hilbert space, as
Lahiri did. This corresponds to having traced over the space of
statistical functions in Qian-Eberly’s approach. We will thus
recover some of the results obtained in the previous section.

Lahiri considered the states |x〉 := |1〉x |0〉y and |y〉 :=
|0〉x |1〉y , referring to an x-polarized and to a y-polarized
photon, respectively. They played the role of Mandel’s
|1〉 := |1〉1|0〉2, |2〉 := |0〉1|1〉2. The two Hilbert spaces HP =
Span{|x〉,|y〉} and HS = Span{|1〉,|2〉} are mathematically the
same, i.e., just two-dimensional Hilbert spaces. However,
they markedly differ from one another with respect to their
physical content. The constraint P � I was derived in [1]
by applying Mandel’s procedure. That is, given a general
polarization state ρp, one introduces a normalized fiducial state
|ψ〉 = α1|x〉 + α2|y〉, in terms of which ρp can be decomposed
as

ρp = IρID + (1 − I)ρD. (13)

In [1], inequality P � I was derived as a direct consequence
of the following relationship:

P = [(|α1|2 − |α2|2)2 + 4|α1|2|α2|2I2]1/2, (14)

which was in turn related to the quantum polarization matrix
Tr{ρÊ(−)(ri)Ê(+)(rj )}. However, we can derive Eq. (14)
without regard to the quantum or classical nature of the field.
Indeed, the relationship between I and P comes just from
expressing ρp in two alternative ways: Eq. (13) and Eq. (7).
We can thus repeat what we did before within Qian-Eberly’s
framework. To this end, let us first write Eq. (13) in matrix
form with respect to the basis {|x〉,|y〉}:

ρp =
( |α1|2 Iα∗

1α2

Iα∗
2α1 |α2|2

)
. (15)

Equation (14) follows from equating the above matrix to
Eq. (7). Equivalently, we can use the above matrix for
calculating

P =
[

1 − 4 Det ρp

(Tr ρp)2

]1/2

, (16)

which follows by solving for P in Eq. (7). Note that choosing
the parametrization α1 = cos ϑ , α2 = eiδ sin ϑ for |ψ〉 =
α1|x〉 + α2|y〉, Eq. (15) reproduces Eq. (2), whenever I = |α|.
On the other hand, using this parametrization, Eq. (14) reads

P2 = cos2 2ϑ + I2 sin2 2ϑ, (17)

which was previously derived within Qian-Eberly’s framework
[cf. Eq. (4)].

We see thus that P � I holds true as a consequence of
Eq. (17), regardless of the quantum or classical nature of
the field. In Eq. (17) I is defined in relation to a fiducial
polarization state |ψ〉 = cos ϑ |x〉 + eiδ sin ϑ |y〉. This state
bears no connection with WPI, nor with wave-particle duality.
Even though Mandel’s approach was tailored to deal with
wave-particle duality, it may be applied to any two-state sys-
tem. By applying such an approach to polarization we obtain
P � I, similarly to the derivation of I � V in Mandel’s case.
However, these two inequalities convey two very different
messages. Indeed, both quantities entering I � V are basis de-
pendent and related to interference, a phenomenon that shows
up only under coherent propagation of the involved states [21].
In contrast to polarization, interference is “a property of a
propagator of states, not of a state itself” [21]. As for P � I,
it involves a basis-independent property (P) of a state, and a
basis-dependent quantity (I) that conveys information about
statistical correlations [cf. Eq. (5)]. These correlations can be
either classical, such as 〈EpE∗

q 〉, or else quantum correlations,

such as Tr{ρÊ(−)
p Ê(+)

q }, involving quantized fields Ê(+)
p ∼ â

and Ê(−)
p ∼ â†. By turning the classical quantity Ep(x,t) into

an operator Ê(−)
p (x,t), we quantize the field, not the parameters

on which it depends: x, t , frequency, wavelength, polarization,
etc. These parameters keep their classical meaning after field
quantization and so does inequality P � I.

In order to connect P � I with wave-particle duality,
we should derive this inequality within the framework of
the product space HS ⊗ HP , where we can address both
polarization and WPI. Note that this product space is not
the same as that used by Qian and Eberly. Indeed, these
authors addressed states |E〉 = |x〉|Ex〉 + |y〉|Ey〉 that belong
to Hlab ⊗ Hf cn. Even though the same mathematical tools can
be used to work with both HS ⊗ HP and Hlab ⊗ Hf cn, the
respective physical content of most results should markedly
differ from one another. For example, as Qian and Eberly
noted [17], it is possible to define a polarization matrix
analogous to Wlab [cf. Eq. (2)], but taking the trace over Hlab

instead of Hf cn. Now, it is not obvious how to operationally
interpret such a polarization in Hf cn, i.e., how to prescribe a
measuring procedure analogous to the one used to fix Stokes
parameters in the case of standard polarization. The difficulty
stems from the intrinsic nature of the entanglement being
present in |E〉. Things are different when we actively generate
entanglement. This can be achieved by using an entangling
device like the one employed by Kagalwala et al. [13], or by
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other means. Kagalwala et al. used spatial light modulators
to produce states such as E(x) = Eeψe(x) + Eoψo(x), in
which polarization and parity become entangled. In cases
like this, we can operationally define quantities such as
polarization, which appear as a consequence of ignoring one
of the involved degrees of freedom. In what follows, we
will deal with an entangling tool that allows us to create
manifold objects in product space HS ⊗ HP . All quantities
will have an operationally well-fixed procedure upon which
their definitions may rest.

IV. A SOURCE OF PARTIALLY POLARIZED STATES

A device that performs operations on the product space
HS ⊗ HP and that is suitable for our present purposes, is
a Mach-Zehnder array with a configuration like that shown
in Fig. 1. In order to illustrate the techniques employed when
using this device, let us show how we can generate, out of a pure
state in HS ⊗ HP , a partially polarized state ρp. We denote by
|h〉,|v〉 horizontally and vertically polarized light, respectively.
This light can be classical or quantal. As for the spatial DOF,
we also have a binary alternative |R〉,|L〉, which correspond to
moving to the right or to the left, respectively. Following [18],
we determine the unitary operators V1,V2,VR,VL, which act
on HS ⊗ HP and produce the desired state ρp of Eq. (7) from,
say, the input state |Rv〉. To this end, we “purify” ρp by seeking
a pure state |ψ〉 ∈ HS ⊗ HP , such that TrS |ψ〉〈ψ | = ρp. This
is always possible by Schmidt decomposition, which requires
that we find the eigenvectors |n±〉 and eigenvalues λ± of ρp. As
we saw before, λ± = (1 ± P)/2. We can purify ρp by defining
|�+〉 ∈ HS ⊗ HP as

|�+〉 =
√

λ+|Rn+〉 +
√

λ−|Ln−〉. (18)

V2

BS

M

VLVR

V1

M

|Rv ,|Rh� � |Lv ,|Lh� �

FIG. 1. Mach-Zehnder-like array. The devices labeled Vi (i =
1,2,R,L) contain wave plates and phase shifters. BS: 50 : 50 beam
splitter; M: mirror. |Rv〉 denotes a vertically polarized photon or light
beam propagating to the right, and similarly for the other cases.

Hence, TrS |�+〉〈�+| = λ+|n+〉〈n+| + λ−|n−〉〈n−|. Now,
from |n+〉〈n+| + |n−〉〈n−| = 1 and |n+〉〈n+| − |n−〉〈n−| =
n · σ it follows that |n±〉〈n±| = (1 ± n · σ )/2, so that

TrS |�+〉〈�+| =
(

λ+ + λ−
2

)
1 +

(
λ+ − λ−

2

)
n · σ

= 1

2
(1 + Pn · σ ), (19)

as desired. Together with |�+〉, the following states define a
Bell-like basis in HS ⊗ HP :

|�−〉 =
√

λ−|Rn+〉 −
√

λ+|Ln−〉, (20)

|�+〉 =
√

λ+|Ln+〉 +
√

λ−|Rn−〉, (21)

|�−〉 =
√

λ−|Ln+〉 −
√

λ+|Rn−〉, (22)

for which it holds that

TrS |�±〉〈�±| = TrS |�±〉〈�±| = 1
2 (1 ± Pn · σ ).

Our next task is to implement the basis transformation
{|Rv〉,|Rh〉,|Lv〉,|Lh〉} → {|�+〉,|�−〉,|�+〉,|�−〉} with the
help of our Mach-Zehnder array. The corresponding unitary
transformation reads

UMZ = |�+〉〈Rv| + |�−〉〈Rh| + |�+〉〈Lv| + |�−〉〈Lh|.
(23)

By rearranging terms we can write UMZ in the suitable form

UMZ = URR|R〉〈R| + URL|R〉〈L| + ULR|L〉〈R|
+ULL|L〉〈L|, (24)

where the operators Uij ∈ U (2) act on polarization subspace
Hp. They can be implemented with phase shifters and wave
plates. In the present case, we seek to determine UMZ so that
the output state |�f 〉 = UMZ|Rv〉 = URR|Rv〉 + ULR|Lv〉 sat-
isfies TrS |�f 〉〈�f | = ρp. It can be shown [22] that this task
can be achieved by choosing V1 = V2 = 1 and

VR = eiφR (|tR〉〈h| + |sR〉〈v|),
(25)

VL = eiφL (|tL〉〈h| + |sL〉〈v|).
Here, the phases φR and φL are arbitrary and {|ti〉,|si〉}i=R,L

are two orthonormal bases in Hp. One can readily prove that
a possible choice for these bases is

|tR〉 = −
√

λ+|n−〉 + i
√

λ−|n+〉,
|sR〉 =

√
λ−|n−〉 + i

√
λ+|n+〉,

(26)|tL〉 = −
√

λ+|n−〉 − i
√

λ−|n+〉,
|sL〉 =

√
λ−|n−〉 − i

√
λ+|n+〉.

Once we have fixed the bases, the operators VR,L given by (25)
are fixed as well. It turns out that each of them can be
implemented with two quarter-wave plates. Such an array can
be used as a secondary source of partially polarized states with
a prescribed Stokes vector. The primary source—e.g., a gas
laser—is assumed to produce (almost) completely coherent
and polarized light.

Up to this point, no reference has been made to the degree of
indistinguishability I. The production of ρp with a prescribed
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degree of polarization P has been achieved with a couple
of quarter-wave plates on each arm of the Mach-Zehnder
interferometer. It is not yet clear whether some WPI has
thereby become available. As we shall see, P can indeed be
related to WPI.

V. INDISTINGUISHABILITY AND POLARIZATION

A. Relationship between P and I for entangled states

Our Mach-Zehnder device can be used to address path
space and polarization space either separately or by entangling
them. We can exploit this capability in order to properly refer
indistinguishability I to paths in laboratory space. The degree
of polarizationP keeps thereby its meaning while being related
to I via entanglement. Our treatment builds upon the following
features. First, given a state ρP , the degree of polarization is
a property of the state itself that can be calculated as the
normalized difference between the largest and the smallest
eigenvalue of ρP , i.e., P = (λ+ − λ−)/(λ+ + λ−). Second, if
we take an entangled state such as

|�+〉 =
√

λ+|m+,n+〉 +
√

λ−|m−,n−〉, (27)

with {|m+〉,|m−〉} and {|n+〉,|n−〉} being orthonormal bases in
HS and in HP , respectively, and then construct the operators
ρS := TrP |�+〉〈�+| and ρP := TrS |�+〉〈�+|, then these
operators have common eigenvalues. Indeed,

ρS = TrP |�+〉〈�+|
= λ+|m+〉〈m+| + λ−|m−〉〈m−|, (28)

ρP = TrS |�+〉〈�+| = λ+|n+〉〈n+| + λ−|n−〉〈n−|. (29)

As a consequence, ρS inherits from ρP its degree of polariza-
tion, so that

ρS = TrP |�+〉〈�+| = 1
2 (1 + Pm · σ ). (30)

Third, we can relate the aboveP with I by following Mandel’s
procedure, as we did before to get Eq. (17). However, as we are
presently working not in subspaceHP but inHS , the parameter
I acquires its original, sensible physical meaning as a measure
of indistinguishability in path space.

The last step requires choosing a fiducial state, in terms of
which I is defined. While P is a state’s property shared by
ρP and ρS , the degree of indistinguishability is a property that
depends on the fiducial state. For this reason, I turns to be basis
dependent like interference itself [21]. In order to gain some
more insight into this point let us return for a moment to the
case {|m+〉,|m−〉} = {|R〉,|L〉} and consider first the fiducial
state |ψ〉 = αR|R〉 + αL|L〉. Equation (27) then reads

|�+〉 =
√

λ+|Rn+〉 +
√

λ−|Ln−〉 (31)

and

ρS = TrP |�+〉〈�+| = λ+|R〉〈R| + λ−|L〉〈L|. (32)

If we now apply to this ρS Mandel’s decomposition in terms
of the fiducial state |ψ〉 = αR|R〉 + αL|L〉, we get I = 0.
Indeed, writing ρS = IρID + (1 − IρI ) with ρID = |ψ〉〈ψ |
and ρD = |αR|2|R〉〈R| + |αL|2|L〉〈L|, we get |αR|2 = λ+,
|αL|2 = λ−, and I = 0. Of course, this is so because ρS in
Eq. (32) is already in diagonal form, like ρD . Correspondingly,

if we revert to |�+〉 as given in Eq. (27), so that ρS reads as
in Eq. (28), then we get I = 0 with respect to a fiducial state
|ψ〉 = α+|m+〉 + α−|m−〉. But if we take instead the fiducial
state |ψ〉 = αR|R〉 + αL|L〉, we obtain I �= 0. All this is just
an expression of the basis-dependent nature of I. Given a
matrix ρ, and recalling that I = |ρ12|/(ρ11ρ22)1/2, we see that
I �= 0 whenever ρ has nonvanishing coherences.

The relationship between P and I, as given by Eq. (14)
with α1 = αR , α2 = αL, acquires a new physical sense
within the present framework. Such a relationship follows
from submitting ρS to Mandel’s procedure with a fiducial
state |ψ〉 = αR|R〉 + αL|L〉. Indeed, as in the general case,
Eqs. (28) and (30) imply that Det ρS = λ+λ− = (1 − P2)/4
and Tr ρS = λ+ + λ−. Hence,

P2 = 1 − 4 Det ρS

(Tr ρS)2
, (33)

which is a manifestly basis-independent relationship. Inserting
now ρS = IρID + (1 − I)ρD in the above equation we get

P2 = cos2 ξ + I2 sin2 ξ, (34)

where we have used the parametrization |ψ〉 = cos(ξ/2)|R〉 +
eiφ sin(ξ/2)|L〉 for the fiducial state.

As already said, Mandel’s decomposition is made within
a single Hilbert space, e.g., HS or HP . If the whole setting
occurs within a single Hilbert space, then we obtain a
relationship like Eq. (17), which formally coincides with
Eq. (34). However, the meaning of I is not the same in the two
equations. This is so, because we have invoked entanglement
in order to derive Eq. (34). In Eq. (17), I relates to statistical
correlations between field components [cf. Eq. (5)]. In
Eq. (34), I refers to the indistinguishability of spatial paths.
In the case of photons, for instance, the I entering Eq. (34)
has its original meaning [2]: It is the probability to find a
photon in state ρID , when the photon has been prepared in
state ρS . Note that ρS and ρID are independent from one
another. We can prepare the system to be in a state ρS and
then interrogate it about its being in a state ρID . Equation (34)
relates preparation and subsequent interrogation through the
corresponding parameters P and I, which depend on what we
decide to do with the path degree of freedom via our choice of
λ± and |m±〉. Our Mach-Zehnder array can be used for fixing
P , as well as for asking the system about its being in ρID .

For a photon,I = 1 means that we do not know along which
arm of the interferometer the photon moves. From Eq. (34)
we see that I = 1 implies P = 1, so that complete lack of
WPI is tantamount to full polarization. This is so because
for I = 1 Mandel’s decomposition ρ = IρID + (1 − I)ρD

reduces to ρ = ρID = |ψ〉〈ψ |, which means that the system
has been prepared in a pure (path) state, and hence also in
a pure polarization state. Reciprocally, provided ξ �= 0,π ,
we see that P = 1 implies I = 1 for similar reasons. On
the other hand, both ξ = 0 and ξ = π give P = 1. This is
consistent with the fact that the fiducial state is |ψ〉 = |R〉 and
|ψ〉 = eiφ|L〉, respectively, so that ρID = ρD = |i〉〈i|, with
i = R or L. Thus, we could have ρS = ρID only if ρS was in
a pure state, and so also ρP . On the other hand, from P < 1 it
follows that I < 1. In this case some WPI becomes available.
P < 1 can be achieved by changing the orientation of the
plates in our Mach-Zehnder array. Because by these means
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we acquire some WPI, the array is working as a which-way
marker. Note that for ξ = π/2 and φ arbitrary we have P = I,
so that the degrees of polarization and indistinguishability
are numerically the same in this case. This makes ξ = π/2
the best choice for interrogating the system about its degree
of polarization. As we will show below, our Mach-Zehnder
device gives us full control over the values λ± and |m±〉
entering Eq. (28). That is, we can produce any desired ρS =∑

i,j=R,L ρi,j |i〉〈j |. In such a case, we have full control over
the values αR = cos(ξ/2), αL = eiφ sin(ξ/2), and I, because
they are fixed by the ρi,j through I = |ρ12|/(ρ11ρ22)1/2,
sin ξ = 2

√
ρ11ρ22, and φ = arg ρ12. Analogous statements

hold for ρp = λ+|n+〉〈n+| + λ−|n−〉〈n−|. In particular, our
Mach-Zehnder array can produce any state like |�+〉 in
Eq. (27). It represents an alternative, more versatile entangling
array than the one employed in [13]. Both devices allow us
to manipulate P by ignoring a degree of freedom to which
polarization has been entangled. This is just an instance of
the interplay between a system and its environment, when the
latter appears in its most simple form, namely, as a second
system to which the first becomes entangled. Dealing with the
system of interest alone generally requires changing from pure
to mixed states, and from unitary to nonunitary evolutions.

B. Determination of the required unitary transformations

Now we show how our Mach-Zehnder array can produce
states like that of Eq. (27). Such a task can be performed
by implementing a unitary transformation UMZ that produces
|�+〉 out of, say, |Lv〉. We can implement, for example, the
following unitary transformation:

|Rv〉 → |�+〉 =
√

λ+|m+,n−〉 +
√

λ−|m−,n+〉, (35)

|Rh〉 → |�−〉 =
√

λ−|m+,n−〉 −
√

λ+|m−,n+〉, (36)

|Lv〉 → |�+〉 =
√

λ+|m+,n+〉 +
√

λ−|m−,n−〉, (37)

|Lh〉 → |�−〉 =
√

λ−|m+,n+〉 −
√

λ+|m−,n−〉, (38)

with |m±〉 ∈ HS given by

|m+〉 = cos θm|R〉 + eiϕm sin θm|L〉, (39)

|m−〉 = − sin θm|R〉 + eiϕm cos θm|L〉, (40)

and similar expressions for |n±〉 ∈ HP , with |R〉 → |h〉 and
|L〉 → |v〉.

We begin by writing UMZ in the form given by Eq. (24). In
order to fix the operators Vi (see Fig. 1), we must diagonalize
U

†
RRURR , URRU

†
RR , U †

LLULL, and ULLU
†
LL (cf. [18]). It can be

shown that U
†
RRURR and ULLU

†
LL are unitarily equivalent and

their common eigenvalues can be parametrized as cos2 ϑ and
cos2 θ , respectively. As for the eigenvectors, the notation is
as follows: U

†
RRURR → |ψi〉, URRU

†
RR → |ψi〉, U

†
LLULL →

|χi〉, and ULLU
†
LL → |χi〉 (i = 1,2). It can be proved [18] that

the Uij are given by

URR = |ψ1〉 cos ϑ〈ψ1| + |ψ2〉 cos θ〈ψ2|, (41)

ULL = |χ1〉 cos ϑ〈χ1| + |χ2〉 cos θ〈χ2|, (42)

iURL = |ψ1〉 sin ϑ〈χ1| + |ψ2〉 sin θ〈χ2|, (43)

iULR = |χ1〉 sin ϑ〈ψ1| + |χ2〉 sin θ〈ψ2|. (44)

The operators Vi , in turn, are given by the following expres-
sions, which entail some arbitrariness in the choice of the phase
factors [18]:

V1 = i|χ1〉〈ψ1| + i|χ2〉〈ψ2|, (45)

V2 = −i|ψ1〉〈χ1| − i|ψ2〉〈χ2|, (46)

VR = |χ1〉eiϑ 〈χ1| + |χ2〉eiθ 〈χ2|, (47)

VL = |χ1〉e−iϑ 〈χ1| + |χ2〉e−iθ 〈χ2|. (48)

By applying the above procedure to the present case we readily
obtain

V1 = −Pσ3 +
√

1 − P2σ1, (49)

V2 = −e−iϕm1, (50)

VR = ei(ϕm+θm)[|n−〉(−
√

λ+〈h| +
√

λ−〈v|)
− i|n+〉(

√
λ−〈h| +

√
λ+〈v|)], (51)

VL = ei(ϕm−θm)[|n−〉(−
√

λ+〈h| +
√

λ−〈v|)
+ i|n+〉(

√
λ−〈h| +

√
λ+〈v|)]. (52)

These operators can be implemented by setting phase shifters
and waves plates on the Mach-Zehnder array. We defer to
the next section, where we address a more general case, the
detailed description of the necessary optical elements.

VI. SCHMIDT SPHERE AND GEOMETRIC PHASE FOR
ENTANGLED STATES

A state like |�+〉 in Eq. (27) is a coherent superposition
of two states whose relative weight is given by λ± and whose
relative phase is zero. A more general case occurs when we
consider a nonvanishing relative phase. To deal with such a
case, we address the transformation

|Rv〉 → |�+〉 = e−iβ/2 cos ξ |m+,n−〉 + eiβ/2 sin ξ |m−,n+〉,
(53)

|Rh〉 → |�−〉 = e−iβ/2 cos ξ |m+,n−〉 − eiβ/2 sin ξ |m−,n+〉,
(54)

|Lv〉 → |�+〉 = e−iβ/2 cos ξ |m+,n+〉 + eiβ/2 sin ξ |m−,n−〉,
(55)

|Lh〉 → |�−〉 = e−iβ/2 cos ξ |m+,n+〉 − eiβ/2 sin ξ |m−,n−〉,
(56)

where we have set cos ξ = √
λ+ and sin ξ = √

λ−. Note that
ξ measures both the degree of entanglement and the degree of
polarization: P = λ+ − λ− = cos(2ξ ). Up to a global phase,
the above states are of the form

|�〉 = cos(α/2)|m±,n±〉 ± eiβ sin(α/2)|m±,n±〉. (57)

The angles α and β parametrize the so-called
Schmidt sphere, where points have coordinates
(sin α cos β, sin α sin β, cos α). The Schmidt sphere is
analogous to the Poincaré and the Bloch spheres. Our Mach-
Zehnder array provides us with full control over states like the

013845-7



F. DE ZELA PHYSICAL REVIEW A 89, 013845 (2014)

above |�〉 ∈ HP ⊗ HS . By keeping fixed |m±〉 and |n±〉 while
varying α and β, we can make |�〉 trace out some prescribed
curve on the Schmidt sphere. This curve may give rise to a
geometric phase [19] that can be tested using the present array.
So, in order to implement the desired basis transformation we
proceed as we did before and obtain the following Vi operators:

V1 = −Pσ3 +
√

1 − P2σ1, (58)

V2 = −e−iϕm1, (59)

VR = ei(ϕm+θm)[eiβ/2|n−〉(− cos ξ 〈h| + sin ξ 〈v|)
− ie−iβ/2|n+〉(sin ξ 〈h| + cos ξ 〈v|)], (60)

VL = ei(ϕm−θm)[eiβ/2|n−〉(− cos ξ 〈h| + sin ξ 〈v|)
+ ie−iβ/2|n+〉(sin ξ 〈h| + cos ξ 〈v|)]. (61)

Our next task is to implement the above operators with
the help of phase shifters and wave plates. As we can see,
V2 requires just a phase shifter. A commonly used one is a
tilted glass plate. Alternatively, one can displace a mirror in
the array with a piezoelectric transducer. Depending on the

required accuracy, more sophisticated phase shifters could be
used [23]. As for V1, remembering that the action of a half-
wave plate is given by H (γ ) = −i[σ1 sin(2γ ) + σ3 cos(2γ )],
it is clear that V1 = eiπ/2H (γ1), with 2γ1 = cos−1(−P); that
is, γ1 = ξ + π/2. In order to implement VR,L we first note
that, as long as we are concerned with their first factors, it
is only the relative phase (2θm) that matters, because VR,L

act on different arms of the interferometer. Hence, a single
phase shifter is needed for realizing these two factors. Writing
VR = ei(ϕm+θm)OR , VL = ei(ϕm−θm)OL, we focus now on the
implementation of OR,L. We observe that OR acts as follows:

OR(− cos ξ |h〉 + sin ξ |v〉) = eiβ/2|n−〉,
(62)

OR(sin ξ |h〉 + cos ξ |v〉) = −ie−iβ/2|n+〉,
and similarly OL [see Eq. (61)]. Setting

|n+〉 = cos θp|h〉 + eiϕp sin θp|v〉,
|n−〉 = − sin θp|h〉 + eiϕp cos θp|v〉,

we can readily show that OR,L can be realized with the
following setups:

OR = ei[(2ϕp+3π)/4]Q

(
π

4

)
Q

(
π + 2ϕp

4

)
Q

(
ϕp − π − 2θp

2

)
H

(
2π − 2ξ − β − 2θp + ϕp

4

)

×Q

(−π − 4ξ − 2β

4

)
Q

(
π − 4ξ

4

)
,

(63)

OL = ei[(2ϕp+π)/4]Q

(
π

4

)
Q

(
π + 2ϕp

4

)
Q

(
ϕp − π − 2θp

2

)
H

(
π − 2ξ − β − 2θp + ϕp

4

)

×Q

(
π − 4ξ − 2β

4

)
Q

(
π − 4ξ

4

)
.

Hence, in order to implement the desired transformations we need to supply our Mach-Zehnder interferometer with the following
elements: six wave plates on each arm of the interferometer, a phase shifter on one of these arms, a half-wave plate plus one phase
shifter on the R-input arm, and an additional phase shifter on the R-output arm. With such an array we can test, for instance, the
geometric phase �g for entangled states. This phase has been predicted to generally differ from the sum of the phases acquired
by each of the two entangled states [19]. In particular, �g depends nontrivially on the relative phase β [see Eq. (57)], so that two
states, while sharing the same degree of entanglement, might acquire two different geometric phases [19]. If we are interested
in exploring cases for which β = 0, then the required number of retarders reduces to four on each arm. Indeed, for β = 0
we get

OR = ei[(2ϕp+3π)/4]Q

(
π

4

)
Q

(
2ϕp + π

4

)
Q

(
ϕp − 2θp

2
+ π

2

)
H

(
ϕp − 2ξ − 2θp

4
+ π

2

)
,

(64)

OL = ei[(2ϕp+π)/4]Q

(
π

4

)
Q

(
2ϕp + π

4

)
Q

(
ϕp − 2θp

2

)
H

(
ϕp − 2ξ − 2θp

4

)
.

Our Mach-Zehnder array can be used to test more general
predictions than those in [19]. The latter—when formulated in
terms of entangled spins—are restricted to time-independent
Hamiltonians. However, the time-dependent case [24] could
be equally well tested with the present array. Furthermore,
our arrangement provides us with great versatility when
testing, e.g., how the strength of the coupling between

the entangled subsystems affects Berry’s phase [25], or
the high sensitivity of this phase against minute variations
of the input state [26], which follows from the nonlinear
behavior of �g . Finally, it is worth noting that when we
focus on some particular test, the number of wave plates in
the array can be drastically reduced, as has been reported
elsewhere [22].
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VII. COMPLEMENTARITY RELATIONS AND
BELL’S MEASURE

A. Distinguishability and visibility

Let us now address the mutual constraint between com-
plementary quantities such as fringe visibility and which-way
information. As already said, there is a fundamental difference
between the two following constraints: W2 + V2 � 1 and
D2 + V2 � 1. While the predictability W refers to our a
priori which-way knowledge, D refers to the which-way
information being stored in a which-way marker [4]. In our
case, D measures the which-way information being stored in
the polarization degree of freedom. Polarization is thus our
auxiliary physical system. Once we have coupled it to the path
degree of freedom, we can use it as a which-way marker. Our
array can be used to test the constraint between V and D. The
simplest case is that of a pure state, for which

D2 + V2 = 1, (65)

as shown in [4]. In order to test this prediction, we first note
that D is given by D = TrP |ρ(R)

p − ρ(L)
p |/2. To derive this

expression, one considers the output polarization state ρ(out)
p =

TrS ρ(out) = TrS(UMZρ(in)U
†
MZ). Following [4], it can be shown

that ρ(out)
p may be written as

ρ(out)
p = 1

2

(
ρ(R)

p + ρ(L)
p

)
, (66)

with ρ(i)
p = Viρ

(in)V
†
i , i = R,L. Given an initial state ρ(in),

one can straightforwardly evaluate the eigenvalues λi=1,2 of
the matrix |ρ(R)

p − ρ(L)
p |, from which it follows that D = (λ1 +

λ2)/2. The visibility V , on the other hand, can be shown [4] to
be given by

V = ∣∣ TrP
(
ρ(in)

p V
†
LVR

)∣∣. (67)

We have numerically verified that D2 + V2 = 1 holds true for
different initial pure states such as, e.g., ρ(in) = |Rv〉〈Rv|, and
for different values of the parameters fixing UMZ. Experiments
could then be performed that complement recently reported
tests of the above constraint [7,27].

B. Bell’s measure

There is yet another way to assess the extent to which
a system is capable of interfering. Traditionally, it is the
degree of coherence that has been associated with the ability
to interfere. Now, a diminished coherence is not exclusively
caused by underlying fluctuations that originate at the source
or during propagation. As already stressed, the degree of
coherence can also be diminished because the observed degree
of freedom is entangled with another, unobserved one. In
such a case, it might happen that the degree of coherence,
e.g., P in the case of polarization, does not convey all the
information about the “accessible coherence” which is, so to
say, being stored in other, unobserved degrees of freedom.
Kagalwala et al. [13] used Bell’s measure Bmax to diagnose
how much accessible coherence might be carried along by a
degree of freedom. It might occur that, e.g., P = 0 for some
light beam, even though there is no randomness affecting
the beam. Bmax should be better suited than the degree of
coherence to assess the capability to produce interference.

Bell’s measure Bmax is defined in terms of the well-known
Clauser-Horne-Shimony-Holt (CHSH) expression [28]

B = |C(θ1,θ2) + C(θ1,θ
′
2) + C(θ ′

1,θ2) − C(θ ′
1,θ

′
2)|. (68)

The correlation functions C(θ1,θ2) entering B are defined in
our case, i.e., for polarization-path states, as C(θ1,θ2) = PRh −
PRv − PLh + PLv . Here, PRh(θ1,θ2) means the probability of
measuring a horizontally polarized beam moving along the R

direction. The angles θi=1,2 are the orientation angles of the
corresponding measuring devices. Similar definitions apply
for the other P ’s. These probabilities, and hence B, depend
on the entangled state |�〉 being considered. Generally, |�〉
will depend on one or more parameters, and so will B.
Bell’s measure Bmax is defined by maximizing B over these
parameters. Now, analogously to the degree of polarization,
one can define a degree of coherence S associated with the
path degree of freedom. Let us focus on a coherent beam
|�〉 and consider the global coherency matrix G = |�〉〈�|.
We define GP := TrS |�〉〈�| and GS := TrP |�〉〈�| and
denote their common eigenvalues by μi=1,2. The two degrees
of coherence being considered are P = |μ1 − μ2| = S. In
the present case, it can be proved [13] that 4P2 + B2

max =
4S2 + B2

max = 8. More generally, for partially coherent beams
one gets 4P2 + B2

max � 8 and 4S2 + B2
max � 8. These results

led Kagalwala et al. [13] to introduce “degrees of accessible
coherence” for each degree of freedom, which applied to our
case read

Cp = P2

2
+

(Bmax

2
√

2

)2

, Cs = S2

2
+

(Bmax

2
√

2

)2

. (69)

Kagalwala et al. [13] dealt with states that are entangled in
polarization and spatial parity. The latter is a binary degree
of freedom that refers to the even [ψe(x) = ψe(−x)] and
odd [ψo(x) = −ψo(−x)] components of a scalar function
ψ(x). Experimentally, spatial parity can be manipulated with
a spatial light modulator (SLM). As for its mathematical
description, one can apply the same tools used for polarization,
i.e., Jones vectors, Mueller matrices, etc. Because spatial parity
and the path DOF are formally the same, the results found
in [13] apply in our case as well. It is worth discussing in some
detail the results reported in [13], as they could be tested using
independent experimental techniques, like the ones offered by
our Mach-Zehnder array. Besides, as we will see later, there
are some results in [13] that need modification.

The following case is well suited to be addressed with
our Mach-Zehnder device. Using a polarization-sensitive SLM
(PS-SLM), Kagalwala el al. introduced a phase ϕ/2 into the
h component, leaving the v component unaffected. Thus,
submitting a direct-product state |�〉dp = |ψ〉p ⊗ |φ〉par to
the action of a PS-SLM, one generates an entangled state
|�〉e = UPS-SLM|�〉dp. In [13], the case |ψ〉p = (1,1)Tp/

√
2,

|φ〉par = (1,0)Ts was considered. The state reported in [13] is
|�〉e = ( cos(ϕ/2), − i sin(ϕ/2),1,0)T /

√
2. Accordingly, the

action of the PS-SLM should be given by

Rϕ/2 =
(

cos(ϕ/2) −i sin(ϕ/2)

−i sin(ϕ/2) cos(ϕ/2)

)
(70)
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attached to the h component and 1par to the v component.
Indeed, this gives

UPS-SLM

[
1√
2

(
1

1

)
p

⊗
(

1

0

)
s

]

= 1√
2

[(
1

0

)
p

⊗ Rϕ/2

(
1

0

)
s

+
(

0

1

)
p

⊗
(

1

0

)
s

]
(71)

= 1√
2

⎛
⎜⎜⎜⎝

cos(ϕ/2)

−i sin(ϕ/2)

1

0

⎞
⎟⎟⎟⎠ = |�〉e . (72)

The correlation function for this |�〉e reads

C(θ1,θ2,ϕ) = sin
ϕ

2
sin

(
θ1 − θ2 − ϕ

2

)

−
(

1 − sin
ϕ

2

)
cos

(
θ2 + ϕ

2

)
sin θ1. (73)

Following [13], we focus on the states having ϕ = 0, π/2, and
π . For them, we obtain

C(θ1,θ2,0) = − sin θ1 cos θ2,

C(θ1,θ2,π ) = − cos(θ1 − θ2),
(74)

C(θ1,θ2,π/2) =
√

1

2
sin

(
θ1 − θ2 − π

4

)

−
(

1 −
√

1

2

)
cos

(
θ2 + π

4

)
sin θ1.

Measured values of the above correlation functions have
been reported in [13], together with values of the global
agreement between experimental data and Eqs. (74). These are
0.936, 0.944, and 0.903, respectively, in the root-mean-square
sense [13]. However, we note that C(θ1,θ2,0) has the wrong
sign, and plotting C(θ1,θ2,π/2) we observe some salient
differences between this plot (see Fig. 2), and the data plotted

FIG. 2. (Color online) Correlation functions C(θ1,θ2,ϕ) and
C ′(θ1,θ2,ϕ). The latter appears to outperform the former in fitting
recently reported experimental data (see Ref. [13]).

in [13] [see Fig. 2(b) there]. Considering instead the correlation
function

C ′(θ1,θ2,ϕ) = sin

(
θ2 + ϕ

2

)
sin θ1

− cos

(
θ2 + ϕ

2

)
cos θ1 sin

ϕ

2
, (75)

we get

C ′(θ1,θ2,0) = sin θ1 cos θ2,

C ′(θ1,θ2,π ) = − cos(θ1 − θ2),
(76)

C ′(θ1,θ2,π/2) = sin

(
θ2 + π

4

)
sin θ1

−
√

1

2
cos

(
θ2 + π

4

)
cos θ1.

By plotting C ′(θ1,θ2,π/2) (see Fig. 2), we see that it better fits
the experimental values, as compared to C(θ1,θ2,π/2). Thus,
C ′(θ1,θ2,ϕ) appears to be the correct result. This is further
substantiated by the fact that C(θ1,θ2,ϕ) does not correctly
reduce to the well-known expressions for the singlet state,
used in Bell-CHSH inequalities [29], while C ′(θ1,θ2,ϕ) does
reduce to such expressions. The problem seems to lie on
the assumption that the action of the PS-SLM is given by
the unitary operator UPS-SLM = |h〉〈h| ⊗ Rϕ/2 + |h〉〈h| ⊗ 1par,
with Rϕ/2 given by Eq. (70). If instead of this Rϕ/2 we use

R′
ϕ/2 =

(
cos(ϕ/2) sin(ϕ/2)

− sin(ϕ/2) cos(ϕ/2)

)
, (77)

then we obtain results in accordance with the reported ex-
perimental data. Indeed, the corresponding Jones vector at the
output of the PS-SLM now reads |�〉′e = (1/

√
2)( cos(ϕ/2), −

sin(ϕ/2),1,0)T and the correlation function that belongs to this
vector is C ′(θ1,θ2,ϕ). It is thus not Rϕ/2 but R′

ϕ/2 the operation
we should seek to implement with our Mach-Zehnder array, if
we aim at testing features like those in [13] with an independent
experimental technique.

Now, using either C(θ1,θ2,ϕ) or C ′(θ1,θ2,ϕ) in Eq. (68), we
obtain the same value for Bmax, namely,

Bmax(ϕ) = 2
√

1 + sin2(ϕ/2). (78)

Experimental values of Bmax(ϕ) were also reported in [13] for
the range ϕ ∈ [0,2π ], showing good agreement with Eq. (78).
The simple expression for Bmax(ϕ) above can be derived by
applying the Popescu-Rohrlich theorem [30]. This theorem
generalizes Cirel’son’s bound [31] Bmax = 2

√
2 by addressing

general bipartite states of two-level systems. By Schmidt
decomposition, these states can be written in the form

|�〉 = α|m+,n+〉 + β|m−,n−〉, (79)

where α and β may be chosen real, with α2 + β2 = 1. The
Popescu-Rohrlich theorem then establishes that

Bmax = 2
√

1 + 4α2β2. (80)

Thus, given a state |�〉, in order to get Bmax we need
only to construct the correlation function GP = TrS |�〉〈�|
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or else GS = Trp |�〉〈�|, and then calculate their common
eigenvalues λ1,2. The required Schmidt decomposition is then
given by |�〉 = √

λ1|m+,n+〉 + √
λ2|m−,n−〉. Doing this for

both |�〉e and |�〉′e we obtain the same result, Eq. (78).
In order to experimentally test these and other predictions,

we may use our Mach-Zehnder array. We can produce states
of the form |�〉′e by the procedure we used before. Indeed, this
state reads

|�〉′e = 1√
2
|m1,h〉 + 1√

2
|m2,v〉, (81)

and is thus of the form previously treated [see, e.g., Eq. (35)],
with |m1〉 = cos(ϕ/2)|R〉 − sin(ϕ/2)|L〉 and |m2〉 = |R〉.
Hence, we need only make |�〉′e a member of an orthonormal
basis of HS ⊗ HP and then proceed as we did before. That is,
we fix UMZ as we did when dealing with the basis transforma-
tion {|Rv〉,|Rh〉,|Lv〉,|Lh〉} → {|�+〉,|�−〉,|�+〉,|�−〉}. In
this way we can address issues like those addressed in [13],
but with an increased versatility. For instance, mounting our
array so that it performs the transformation UMZ that we
considered before [Eq. (35)] we can produce the state |�+〉 =√

λ+|m+,n−〉 + √
λ−|m−,n+〉, with λ± = (1 ± P)/2. This

gives

Bmax(P) = 2
√

2 − P2. (82)

Hence, Csirel’son’s bound is reached when the marginal state
is totally unpolarized. This is as expected, because for P =
0 the bipartite state is maximally entangled (λ± = 1/2). On
the other hand, the classical bound B = 2 is attained for a
totally polarized state (P = 1). This is a direct-product state
|�+〉 = |m+〉|n−〉, as expected, because P = 1 implies that
ρp is a projector, i.e., a pure state, and a marginal state cannot
be pure and part of an entangled state at the same time. As for
the degrees of accessible coherence Cp and Cs [see Eq. (69)],
they are unity. Indeed, Cp = P2/2 + 4(2 − P2)/8 = 1, and
similarly for Cs . This is in accordance with the definitions
of Cp,s , which satisfy Cp = Cs = 1 for coherent beams [13].
Here again, our Mach-Zehnder array proves useful to test these
theoretical predictions.

VIII. SUMMARY AND CONCLUSIONS

We have discussed the connection between the degree
of polarization, indistinguishability, and entanglement. Since
relatively recent times, it has been realized that both polar-
ization and indistinguishability are intimately connected to
coherence [2,32]. Mandel addressed this issue by considering
the two photon paths of a Young’s interferometer [2]. He made
precise the connection between the degree of indistinguisha-
bility I and coherence, by showing that I equals the degree of
coherence. Although Mandel considered states such as |ψ〉 =
α|1〉1|0〉2 + β|0〉1|1〉2 and explicitly pointed out that these are
entangled states, we have seen that his findings do not really
invoke entanglement, nor the quantized nature of the field.
The quantities he constructed belong to a two-dimensional
Hilbert space with basis {|1〉 ≡ |1〉1|0〉2,|2〉 ≡ |0〉1|1〉2}, which
is just a subspace of the four-dimensional, direct-product

space Span{|0〉1,|1〉1} ⊗ Span{|0〉2,|1〉2}. Formally, Mandel’s
results hold true for any two-dimensional Hilbert space, in
particular for polarization space, the one addressed by Qian and
Eberly [17]. These authors highlight the intrinsically entangled
nature of a field such as E = xEx + yEy , which belongs to a
direct-product space made of laboratory space and the space
of statistical functions. The degree of polarization P appears
here as a measure of the degree of separability of the state.
The standard polarization (or coherence) matrix is constructed
within a two-dimensional Hilbert space that is obtained by
tracing over the statistical functions. As we have shown in
the present work, applying Mandel’s decomposition brings I
into play, and a formal connection between P and I can be
obtained. However, I has in this context a different meaning
as in Mandel’s framework. In Qian-Eberly’s framework I
measures the magnitude of cross correlations between field
components, instead of being connected to indistinguishability
between paths in space. As a third approach, we have the one
due to Kagalwala et al. [13], who also addressed polarization
and entanglement. However, while Qian and Mandel resort to
the intrinsic entanglement of a field, Kagalwala et al. use an
entangling device to produce fields such as E(x) = Eeψe(x) +
Eoψo(x). With the help of such a device they could explore
several issues that the present work also addresses. In our case,
we propose using an entangling device, a Mach-Zehnder-like
array, that has a greater versatility than the one used in [13].
Among other things, it serves to give a sound physical sense to
Lahiri’s inequality [1]:P � I. As we have seen, this inequality
was originally derived following Mandel’s procedure and
working within a single Hilbert space, namely, polarization
space. A proper interpretation in terms of indistinguishability
or wave-particle duality was thus inappropriate. It is only
by entangling polarization with a second degree of freedom,
namely, path space, that a sound physical interpretation
can be given to the constraint P � I. The present work
allows us to operationally prescribe how to test such an
inequality.

Our Mach-Zehnder-like array serves as a tool for testing
several properties that intertwine the classical and the quantum
domain. Possible experiments could use either a classical or
a quantum source of light. Polarization and path (momentum)
are attributes—i.e., degrees of freedom—that can be equally
well assigned to both a beam of photons and a classical (parax-
ial) beam of light. By entangling these two degrees of freedom
several features show up, e.g., constraints of complementary
quantities, geometric phases, partial coherence without ran-
domness, etc. All these features could be tested with the
proposed array, which provides us with increased capabilities
as compared to recently reported experiments. Besides these
experimental advantages, the setup we have discussed here
serves as a theoretical tool for studying manifold properties of
entangled degrees of freedom, irrespective of their classical or
quantal nature.

ACKNOWLEDGMENTS

The author gratefully acknowledges DGI-PUCP for finan-
cial support under Grant No. 2013-0130.

013845-11



F. DE ZELA PHYSICAL REVIEW A 89, 013845 (2014)

[1] M. Lahiri, Phys. Rev. A 83, 045803 (2011).
[2] L. Mandel, Opt. Lett. 16, 1882 (1991).
[3] D. M. Greenberger and A. Yasin, Phys. Lett. A 128, 391 (1988).
[4] B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).
[5] V. Jaques, E. Wu, T. Toury, F. Treussart, A. Aspect, P. Grangier,

and J.-F. Roch, Eur. Phys. J. D 35, 561 (2005).
[6] X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, J. Phys.

A 36, 2555 (2003).
[7] V. Jaques, E. Wu, F. Grosshans, F. Treussart, P. Grangier,

A. Aspect, and J.-F. Roch, Phys. Rev. Lett. 100, 220402 (2008).
[8] E. Wolf, Phys. Lett. A 312, 263 (2003).
[9] B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi,

N. Mukunda, and R. Simon, Phys. Rev. Lett. 104, 023901
(2010).
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