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Electromagnetic wave fields in the microdiffraction domain
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Paraxial propagation theories are not suitable for describing the behavior of electromagnetic wave fields
in any states of spatial coherence and polarization in the microdiffraction domain. The proposed nonparaxial
theory overcomes such limitations by modeling (i) any planar source in terms of sets of point sources with
tensor statistical behavior, and (ii) the transport of the wave field on scalar, deterministic, time-independent, and
nonparaxial propagation modes, defined only by the geometry of the boundary conditions of the experimental
setups. So the field emission by the source and the space structure due to the modes are independent from each
other. The theory provides a unified framework for the power and the states of spatial coherence and polarization
of the field, as well as for interference and diffraction, and describes the significant changes suffered by the wave
fields in the microdiffraction domain.
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I. INTRODUCTION

The term microdiffraction refers to the propagation of
wave fields in the visible range, emitted by planar sources
with sizes comparable to the wavelength along distances
also comparable to the wavelength. A transport theory of
electromagnetic wave fields in the microdiffraction domain
is useful for the development of very compact optical devices
at the micro- and nanoscales. Its mathematical formulation is
also applicable to spectral ranges different from the visible,
for which the term microdiffraction should be appropriately
adapted. However, this work concerns the visible range, where
the term is meaningful.

Nonparaxial diffraction theories of electromagnetic waves
in the microdiffraction domain have established the vector
formulation as an unavoidable requirement. It is fairly re-
viewed in [1] and references therein. Such theories concern
the rigorous solution of Maxwell’s equations for diffracting
apertures of specific shapes (usually circular) and sizes, and
discuss the validity of the Kirchhoff’s boundary conditions
in such contexts. However, they are usually mathematically
intricate and computationally time consuming, so that their
practical applicability is limited. Furthermore, they concern
the propagation of the electric and magnetic field vectors but
not their correlations, and therefore, they are not suitable for
describing the microdiffraction of electromagnetic wave fields
in any state of spatial coherence.

A tensor theory, named the second-order theory of elec-
tromagnetic spatial coherence, was developed to this aim [2].
It describes both the spatial coherence and the polarizations
states of the electromagnetic wave field, on any specific plane,
in terms of 2 × 2 tensors, named the (electric and magnetic)
cross-spectral density tensors. Their elements are integral
expressions obtained by solving the coupled Helmholtz equa-
tions for correlated electromagnetic wave fronts by the Green’s
function method under the boundary conditions specified
by the experimental setup. By assuming random stationary
electromagnetic wave fields in arbitrary states of spatial
coherence and polarization, emitted by planar sources at the
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aperture plane (AP), the resulting integrals are the Wolf’s
type [2] and represent the nonparaxial propagation of the
correlations between specific Cartesian components of the
field vectors to the observation plane (OP).

This theory significantly gains in mathematical versatility
without loss of accuracy by modeling the planar source in terms
of a distribution of separate but inserted sets of radiant and
virtual point sources [3], whose contributions are transported
from the AP to the OP by means of a characteristic non-
paraxial modal expansion [4]. It allows separating the physical
attributes of the planar source from the spatial attributes of
the propagation modes. Indeed, the emissions of the point
sources are of a statistical nature and determine the power
distribution and the states of spatial coherence and polarization
of the wave field at the AP, while the nonparaxial modes are
scalar, deterministic, and time-independent functions, defined
by the boundary conditions of the setup for the whole region
delimited by the AP and the OP. And the same set of modes
is involved in the transport of all the physical attributes of
the wave field. Thus the required tensor formulation can be
treated in terms of a suitable set of scalar integral equations of
the Wolf’s type.

Nevertheless, this methodology implies more than the
mathematical versatility. Novel attributes should be conferred
to both the electromagnetic wave field and the space delimited
by the setup in order to realize the physical meaning of its
accurate predictions, as discussed below. The basic concepts
and terminology are established in the references and are used
directly.

II. THE NONPARAXIAL PROPAGATION

Because of the Maxwellian coupling between the electric
and the magnetic field vectors [5], it is enough to develop the
theory with basis on the electric cross-spectral density tensor
[2]. The conceptual sketch in Fig. 1 shows the geometry used in
this theory. The center-and-difference coordinates (ξA,ξD) and
(rA,rD) univocally determine pairs of points ξ± = ξA ± ξD/2
on the AP and r± = rA ± rD/2 on the OP, and the axes x and
y allow decomposing the electric field vectors in Cartesian
components at both planes. The z axis is orthogonal to both
the AP and the OP and determines the direction of propagation.
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ROMÁN CASTAÑEDA PHYSICAL REVIEW A 89, 013843 (2014)

As deduced in the Appendix, the electric cross-spectral density tensor at the frequency ν, referred to these coordinates,
becomes at the OP,

W (r+,r−) =
∫

AP

∫
AP

d2ξA d2ξD �(ξ+) η(ξ+,ξ−) �(ξ−)〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2 �(ξ+,ξ−; r+,r−; λ,z), (1)

with the scalar kernel

�(ξ+,ξ−; r+,r−; λ,z) =
(

k

4π

)2

t(ξ+) t∗(ξ−)

(
z + |z + rA − ξA + (rD − ξD)/2|
|z + rA − ξA + (rD − ξD)/2|2

) (
z + |z + rA − ξA − (rD − ξD)/2|
|z + rA − ξA − (rD − ξD)/2|2

)
× exp(i k |z + rA − ξA + (rD − ξD)/2| − i k |z + rA − ξA − (rD − ξD)/2|), (2)

where k = 2π/λ, |z| = z, and t(ξ±) = | t(ξ±)| exp[ i ϕ(ξ±)]
is the complex value of the transmission at each point on
the AP. The integrals in Eq. (1) are performed on each
tensor element individually. The elements of the 2 × 2 tensors
�(ξ±) and η(ξ+,ξ−) are defined by Eqs. (A4) and (A5)
in the Appendix. Their product in the integrand of Eq. (1)
determines the states of spatial coherence and polarization of
the electromagnetic wave field emitted by the planar source
at the AP, which are of statistical nature. In contrast, the
scalar kernel is time-independent, deterministic, and defined
by the boundary conditions established by the experimental
setup, for the complete volume between the AP and the
OP, i.e., it is independent from the physical field features.
Furthermore, it has no restrictions in numerical aperture, prop-
agation distance, and sizes of both the planar source and the
detector.

This kernel determines the nonparaxial modes [4] for the
transport of the electromagnetic wave field, whose mathemat-
ical forms associated to specific field attributes (i.e., power,
spatial coherence state, polarization state) are determined by
evaluating their arguments. The parameter λ in k should be
understood as a scale metric, i.e., the length established by the
boundary conditions along which the argument of the kernel
propagator in Eq. (2) evolves in 2π . The spatial scale metric is
related to the wavelength of the electromagnetic field in such
a way that the nonparaxial modes with specific λ transport
the field of wavelength equal to λ. Likewise, the boundary
conditions specify the values of t(ξ±), which in turn determine
the amplitude of the wave field emerging from each point ξ±.

Therefore the nonparaxial modes, defined by the kernel
in Eq. (2), establish a spatial structure in the whole region

FIG. 1. (Color online) Geometry of the nonparaxial setups for the
microdiffraction domain.

of the setup delimited by the AP and the OP. It is in the
microdiffraction domain if both the propagation distance z

and the size of the integration area of Eq. (1) are comparable
to λ.

Now, conventional squared modulus detection is based on
recording the local values of the electric power spectrum at
the OP. Such values are theoretically predicted by evaluating
Eq. (1) for rD = 0 [2], i.e.,

W(rA,rA) =
∫

AP

d2ξA W(ξA; rA; λ,z), (3)

with

W(ξA; rA; λ,z) =
∫

AP

d2ξD �(ξ+) η(ξ+,ξ−) �(ξ−)

×〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2

×�(ξ+,ξ−; rA; λ,z), (4a)

and

�(ξ+,ξ−; rA; λ,z)

=
(

k

4π

)2

t(ξ+) t∗(ξ−)

(
z + |z + rA − ξA − ξD/2|
|z + rA − ξA − ξD/2|2

)

×
(

z + |z + rA − ξA + ξD/2 |
|z + rA − ξA + ξD/2|2

)
exp(i k |z + rA − ξA

− ξD/2| − i k |z + rA − ξA + ξD/2|). (4b)

The modal expansion in Eq. (4a) gives the power con-
tributed by all the correlated pairs of radiant point sources
within the structured support of spatial coherence [6] centered
at any ξA. It includes the individual radiant point source at this
point (ξD = 0), if any. Such power is addressed at the support
center ξA and distributed over the points rA by the nonparaxial
modes in Eq. (4b). Thus the electric power spectrum at the OP
is obtained by simply adding the values of W(ξA; rA; λ,z), as
shown in Eq. (3).

Equation (4a) can be accurately calculated by modeling
the planar source at the AP in terms of separated but inserted
sets of radiant and virtual point sources [3], as conceptually
sketched in Fig. 2.

The contributions of the sets of point sources can be
separated by inserting the dimensionless function 1 ≡ δ(ξD) +
[1 − δ(ξD)] in the integral of Eq. (4a), with δ(ξD) the Dirac δ

(a unity constant with inverse units to the Dirac δ is implicitly
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FIG. 2. (Color online) Conceptual sketches of the planar source
modeling in terms of pure radiant (r), pure virtual (v), and dual
(d) point sources. (a) Circular-shaped and (b) square-shaped planar
sources. The Cartesian axes in (b) determine the ξA positions of the
point sources.

assumed as the δ coefficient). It yields

W(ξA; rA; λ,z) = Wrad(ξA; rA; λ,z) + Wvir(ξA; rA; λ,z),

(5a)

with

Wrad(ξA; rA; λ,z) = �(ξA) η(ξA,ξA) �(ξA)

×〈|E0(ξA)|2〉�(ξA; rA; λ,z), (5b)

obtained by evaluating Eq. (4a) for ξD = 0, and
Wvir(ξA; rA; λ,z) with the same form as Eq. (4a), under
the condition ξD �= 0. Equation (5a) refers to the point
source placed at a specific ξA, which is pure radiant if
Wvir(ξA; rA; λ,z) = 0, pure virtual if Wrad(ξA; rA; λ,z) = 0,
and dual if both terms of Eq. (5a) take on non-null values.
Equation (5b) points out that the emissions of all the radiant
point sources are only transported by real valued and positive
definite nonparaxial modes, with identical mathematical form
given by

�(ξA; rA; λ,z) =
(

k

4π

)2

|t(ξA)|2
(

z + |z + rA − ξA |
|z + rA − ξA|2

)2

.

(6)

In contrast, the emissions of the virtual point sources are
transported by the modal expansion in Eq. (4a), which excludes
the radiant modes in Eq. (6).

The requirement of pure virtual point sources implies the
discreteness of the set of radiant point sources, although the
complete arrangement of the radiant and the virtual sets can
be a continuous distribution [7,8]. Even if the planar source
is fully incoherent, empty places between consecutive radiant
point sources must be taken into account in order to allocate the
pure virtual point sources, turned on as the wave field gains in
spatial coherence along its propagation [9]. Therefore, most of
the integrals in the mathematical formulation of this theory are
realized as summations. This feature provides a novel physical
explanation of the mathematical properties of the generalized
radiant emittance [10], for instance.

The modal expansion in Eq. (4a) is the key expression of the
theory. It accounts for the transport of the emissions provided
by the individual radiant, virtual, and dual point sources of the

planar source, as defined by Eq. (5a). This treatment clearly
differs from the conventional development of the second-order
theory of spatial coherence [2,11]. An additional step is to
expand the tensor integrand of Eq. (4a) in terms of the Pauli
spin matrices [2]:

σ 0 =
[

1 0
0 1

]
, σ 1 =

[
1 0
0 −1

]
,

σ 2 =
[

0 1
1 0

]
, and σ 3 =

[
0 i

−i 0

]
,

with i = √−1, that is,

�(ξ+) η(ξ+,ξ−) �(ξ−) = 1

2
η0(ξ+,ξ−)

3∑
j=0

sj (ξ+,ξ−) σ j ,

(7)

with the coefficients

s0(ξ+,ξ−) = 〈cosϑ(ξ+) cosϑ(ξ−)〉 〈exp[i β0(ξ+,ξ−)]〉
+ 〈sinϑ(ξ+) sinϑ(ξ−)〉 〈exp[i β0(ξ+,ξ−)]〉,

(8a)

s1(ξ+,ξ−) = 〈cosϑ(ξ+) cosϑ(ξ−)〉 〈exp[i β0(ξ+,ξ−)]〉
− 〈sinϑ(ξ+) sinϑ(ξ−)〉 〈exp[i β0(ξ+,ξ−)]〉,

(8b)

s2(ξ+,ξ−) = 〈cosϑ(ξ+) sinϑ(ξ−)〉 〈exp[i βxy(ξ+,ξ−) ] 〉
+ 〈sinϑ(ξ+) cosϑ(ξ−)〉 〈exp[i βyx(ξ+,ξ−)]〉,

(8c)

s3(ξ+,ξ−) = −i 〈cosϑ(ξ+) sinϑ(ξ−)〉 〈exp[i βxy(ξ+,ξ−)]〉
+ i 〈sinϑ(ξ+) cosϑ(ξ−)〉 〈exp[i βyx(ξ+,ξ−)]〉,

(8d)

where β0(ξ+,ξ−) = βxx(ξ+,ξ−) = βyy(ξ+,ξ−) holds [3]. The
expansion coefficients are generalized parameters that charac-
terize the polarization state of electromagnetic wave fields in
any state of spatial coherence [3]. They yield the (normalized)
parameters introduced by Sir George Gabriel Stokes in
1852 [5,12] under the conditions ξD = 0 and βxy(ξA,ξA) =
−βyx(ξA,ξA). In this sense, the Stokes parameters only
determine the (local) polarization of the electric field vectors
emitted by the radiant point sources. In contrast, the gen-
eralized parameters take into account an extended property
in order to determine the polarization state of the field, i.e.,
the spatial correlation of the polarization functions defined
in the Appendix, over the structured support centered at
each ξA. Consequently, the generalized parameters account
for both the polarization of the radiant emissions and the
polarization of the emissions of the virtual point sources. They
are novel attributes conferred to the electromagnetic wave
fields within the framework of the current unified theory of
spatial coherence and polarization.

The physical meanings of the generalized parameters are
the same as those of the corresponding Stokes parameters, i.e.,
they concern, respectively, the electric field power [Eq. (8a)],
the linear polarizations along the x or y axes [Eq. (8b)], the
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linear polarizations at ±π/4 [Eq. (8c)], and the right and the
left circular polarizations [Eq. (8d)].

Equations (4a) and (7) yield

W(ξA; rA; λ,z)

=
[
κ0(ξA,rA) + κ1(ξA,rA) κ2(ξA,rA) + i κ3(ξA,rA)

κ2(ξA,rA) − i κ3(ξA,rA) κ0(ξA,rA) − κ1(ξA,rA)

]

(9a)

with

κj (ξA,rA) = 1

2

∫
AP

d2ξD η0(ξ+,ξ−) sj (ξ+,ξ−)

×〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2

×�(ξ+,ξ−; rA; λ,z). (9b)

Equations (9a) and (9b) allow factoring the integrand of
Eq. (4a) in terms of the physical attributes of the electromag-
netic wave field at the AP in such a way that:

κ0(ξA,rA) refers to the transport of the electric power
depending on the spatial coherence at the AP given by

η0(ξ+,ξ−), but with independence from the polarization
state.

κj>0(ξA,rA) refers to the transport of the power amount
at the AP, associated to the states of polarization and spatial
coherence determined by sj>0(ξ+,ξ−) and η0(ξ+,ξ−) respec-
tively.

After inserting the function 1 ≡ δ(ξD) + [1 − δ(ξD)] in the
integrand of S(ξA,rA) = Tr[W(ξA,rA)], follows

S(ξA,rA) = Srad(ξA,rA) + Svir(ξA,rA) (10a)

with

Srad(ξA,rA) = 〈 |E0(ξA) |2〉 �(ξA; rA; λ,z) (10b)

and

Svir(ξA,rA) = 2
∫

AP
ξD �=0

d2ξD η0(ξ+,ξ−) s0(ξ+,ξ−)

×〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2

× Re[�(ξ+,ξ−; rA; λ,z)], (10c)

where the scalar kernel

2 Re[�(ξ+,ξ−; rA; λ,z)] = 2

(
k

4π

)2

|t(ξ+)||t(ξ−)|
(

z + |z + rA − ξA − ξD/2|
|z + rA − ξA − ξD/2|2

) (
z + |z + rA − ξA + ξD/2|
|z + rA − ξA + ξD/2|2

)

× cos[k|z + rA − ξA − ξD/2| − k|z + rA − ξA + ξD/2| + �ϕ(ξ+,ξ−)], (10d)

with �ϕ(ξ+,ξ−) = ϕ(ξ+) − ϕ(ξ−), results by associating the
modes

�(ξ+,ξ−; rA; λ,z) + �(ξ−,ξ+; rA; λ,z)

= 2 Re[�(ξ+,ξ−; rA; λ,z)],

because they are Hermitian, i.e.,

�(ξ+,ξ−; rA; λ,z) = �∗(ξ−,ξ+; rA; λ,z).

Equation (10b) is real valued, positive definite, and inde-
pendent from the states of spatial coherence and polarization.
It determines the transport of the electric power emitted by
each radiant point source at the AP to any point on the OP,
by means of nonparaxial modes with the same shape given by
Eq. (6).

The modal expansion in Eq. (10c) describes the transport
of the modulating power, emitted by the virtual point source
at ξA, to any point rA, through the time-independent and
deterministic space structure that oscillates between positive
and negative values in accordance to the kernel [Eq. (10d)]. The
expansion is real valued, too, and its coefficients are closely
related to the states of spatial coherence and polarization,
specified by the factors η0(ξ+,ξ−)s0(ξ+,ξ−).

The expansion modes can be ordered according to |ξD|, so
that the longer | ξD| the higher the mode order. Accordingly,
Eq. (6) defines the 0-order modes, while high-order modes
defined in Eq. (4b) determine the kernel in Eq. (10d) [4].

The physical features attributed to κj (ξA,rA) lead to
det[W(ξA,rA)] � 0, and therefore

0 �
√

κ2
1(ξA,rA) + κ2

2(ξA,rA) + κ2
3(ξA,rA) � κ0(ξA,rA),

with
√

κ2
1(ξA,rA) + κ2

2(ξA,rA) + κ2
3(ξA,rA)

the transport descriptor for the polarized component of the
field. Thus the dimensionless quantity,

P(ξA,rA) =
√

κ2
1(ξA,rA) + κ2

2(ξA,rA) + κ2
3(ξA,rA)

κ2
0(ξA,rA)

=
√

1 − 4 det[W (ξA,rA)]

Tr2[W (ξA,rA)]
(10e)

takes on positive definite values in the interval [0, 1] that
involves contributions of both the radiant and the virtual
point sources and denotes the degree of polarization of the
electromagnetic wave field transported from ξA to rA. So, it is
reasonable to call it the nonparaxial polarization parameter.

It is apparent that P(ξA,rA) = 0 holds if
κj>0(ξA,rA) = 0 holds too, while P(ξA,rA) = 1 holds
if κ2

1(ξA,rA) + κ2
2(ξA,rA) + κ2

3(ξA,rA) = κ2
0(ξA,rA) stands.

Thus, κ2
j0

(ξA,rA) = κ2
0(ξA,rA) and κj �=j0 (ξA,rA) = 0 stand

for j, j0 > 0, if κj0>0(ξA,rA) determines the polarization state
of the field emitted by the point source at ξA and transported
to rA.

According to the analysis above, the diagonal elements of
the tensor in Eq. (9a) concern the transport of the radiant
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and the modulating powers, as well as the linear polarization
state along any of the Cartesian x or y axes, while its off-
diagonal elements concern the ±π/4 linear and the (right,
left) circular polarization states. Furthermore, the insertion of
1 ≡ δ(ξD) + [1 − δ(ξD) ] in the integral of Eq. (9b) yields
κj (ξA,rA) = κ

(rad)
j (ξA,rA) + κ

(vir)
j (ξA,rA), with

κ
(rad)
j (ξA,rA) = 1

2 〈|E0(ξA)|2〉 sj (ξA,ξA)�(ξA; rA; λ,z)

(11a)

the radiant point source contribution, and

κ
(vir)
j (ξA,rA) =

∫
AP

ξD �=0

d2ξD η0(ξ+,ξ−) 〈 |E0(ξ+) |2〉 1
2

×〈 |E0(ξ−) |2〉 1
2 sj (ξ+,ξ−)

× Re [ �(ξ+,ξ−; rA; λ,z) ] (11b)

the virtual point source contribution. As before,
κ

(vir)
j (ξA,rA) = 0 holds for pure radiant point sources,

κ
(rad)
j (ξA,rA) = 0 holds for pure virtual point sources,

and both terms must be considered for dual point
sources. In addition, Srad(ξA,rA) = 2 κ

(rad)
0 (ξA,rA) and

Svir(ξA,rA) = 2 κ
(vir)
0 (ξA,rA) denote, respectively, the radiant

and the modulating powers, emitted at ξA and transported
to rA. It is remarkable that the nonparaxial 0-order modes
defined in Eq. (6) are also associated to κ

(rad)
j (ξA,rA), while

the nonparaxial high-order modes defined in Eq. (10d) are
associated to κ

(vir)
j (ξA,rA).

Summarizing, the space structure determined by the scalar
nonparaxial modes is independent from the emission events of
both the radiant and the modulating powers, as well as from
the choice of the Cartesian axes defined for the polarization
state. Nevertheless, the 0-order modes only transport the
physical attributes of the electromagnetic wave field due to
the set of radiant point sources (i.e., the radiant power and the
Stokes polarization states); while the expansion of high-order
modes transports the physical attributes due to the set of
virtual point sources (i.e., the modulating power and the states
of spatial coherence and polarization characterized by the
generalized parameters). Furthermore, the 0-order modes are
quite different from the high-order modes. i.e., the former
ones are positive definite with shape-invariant Lorentzian cross
sections along the z axis, while the last ones have cosinelike
oscillations with Lorentzian modulation in amplitude and
spatial frequency chirping (due to the nonlinearity of the
propagator argument), and their cross sections are not invariant
along the z axis mainly in the microdiffraction domain [4].

The expression∫
AP

∫
OP

S(ξA,rA) d2ξA d2rA

=
∫

AP

∫
OP

Srad(ξA,rA) d2ξA d2rA

+
∫

AP

∫
OP

Svir(ξA,rA) d2ξA d2rA (12a)

epitomizes the conservation law of the total electric energy of
the field over the planes of the setup transversal to the direction

of propagation, with∫
AP

∫
OP

Srad(ξA,rA) d2ξA d2rA

=
∫

AP

〈 |E0(ξA) |2〉 s0(ξA,ξA)

×
∫

OP

�(ξA; rA; λ,z) d2rA d2ξA (12b)

the total radiant energy, and∫
AP

∫
OP

Svir(ξA,rA) d2ξA d2rA

= 2
∫

AP

d2ξA

∫
AP
ξD �=0

η0(ξ+,ξ−) 〈 |E0(ξ+) |2〉 1
2

×〈 |E0(ξ−) |2〉 1
2 s0(ξ+,ξ−)

×
∫

OP

Re [ �(ξ+,ξ−; rA; λ,z) ] d2rA d2ξD (12c)

the total modulating energy. Furthermore,∫
AP

T r[�(ξA) η(ξA,ξA) �(ξA) ] d2ξA

=
∫

AP

[〈 |Ex(ξA) |2〉 + 〈 |Ey(ξA) |2〉] d2ξA (13)

represents the total electric energy emitted by the planar source
at the AP. Therefore Eqs. (12a)–(12c) and (13) lead to the
following conclusions:

(i) The nonparaxial 0-order modes must be normalized, i.e.,∫
OP

�(ξA; rA; λ,z) d2rA = 1. (14a)

So, they must spread without changing their shapes because
their maxima decay following the 1/z2 law [5].

(ii) The total modulating energy must nullify, i.e.,∫
AP

∫
OP

Svir(ξA,rA) d2ξA d2rA = 0, (14b)

and therefore∫
OP

Re[�(ξ+,ξ−; rA; λ,z) ] d2rA = 0.

This result confirms that the high-order nonparaxial modes
must oscillate between positive and negative values.

Now, the electric power spectrum of the electromagnetic
wave field at any point on the OP takes the form

S (rA) =
∫

AP

S(ξA,rA) d2ξA = Srad (rA) + Svir (rA) . (15a)

It is real valued and positive definite, with

Srad(rA) =
∫

AP

Srad(ξA,rA) d2ξA

=
∫

AP

〈|E0(ξA)|2〉s0(ξA,ξA)�(ξA; rA; λ,z) d2ξA

(15b)
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the positive definite total radiant power, and

Svir(rA) =
∫

AP

Svir(ξA,rA) d2ξA

= 2
∫

AP

d2ξA

∫
AP

ξD �=0

d2ξD η0(ξ+,ξ−)

×〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2 s0(ξ+,ξ−)

× Re[�(ξ+,ξ−; rA; λ,z)] (15c)

the total modulating power, which oscillates between positive
and negative values in spite of its energy units. Thus it follows
Srad (rA) � | Svir (rA) | for Svir (rA) � 0. Therefore the addition
of the total modulating power to the total radiant power is
a redistribution mechanism of the last one, according to the
shape of the space structure in the setup, and without disturbing
the conservation law of the total energy.

III. ILLUSTRATIVE EXAMPLES

A. Natural light

This type of electromagnetic wave fields is nonpolarized,
because their polarization angles randomly fluctuate in the
interval [−π , π ], so that

〈cosϑ(ξ±)〉 = 〈sinϑ(ξ±)〉 = 0 and 〈cosϑ(ξ±) sinϑ(ξ∓)〉 = 0

and/or

〈exp[i βxy(ξ+,ξ−) ] 〉 = 〈exp[i βyx(ξ+,ξ−) ] 〉 = 0

stand. Consequently, sj>1(ξ+,ξ−) = 0 and κj>1(ξA,rA) =
0 stand, too. Nevertheless, the random fluctuations of the
polarization angles include coincidences in orientation of the
electric field vectors at ξ±, for which 〈cosϑ(ξ+) cosϑ(ξ−)〉 =
〈sinϑ(ξ+) sinϑ(ξ−)〉 = 1/2 holds. Accordingly, s0(ξ+,ξ−) =
〈exp[i β0(ξ+,ξ−) ] 〉 and s1(ξ+,ξ−) = 0 stand, and then
P(ξA,rA) = 0. In addition,

Wxx(ξA; rA; λ,z) = Wyy(ξA; rA; λ,z) = κ0(ξA,rA) (16a)

defines the average (radiant and/or modulating) electric powers
per Cartesian component of the electric field vectors emitted by
the (radiant and/or virtual) point source at ξA and transported
to rA, with

κ0(ξA,rA) = 1

2
〈|E0(ξA)|2〉 �(ξA; rA; λ,z)

+ 1

2

∫
AP
ξD �=0

d2ξD η0(ξ+,ξ−)〈exp[i β0(ξ+,ξ−)]〉

× 〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2 �(ξ+,ξ−; rA; λ,z).

(16b)

Because of the attributes above, natural light is a scalar wave
field, whose power spectrum at the OP in the microdiffraction
domain becomes

S (rA)

=
∫

AP

〈|E0(ξA)|2〉 �(ξA; rA; λ,z) d2ξA

+ 2
∫

AP

d2ξA

∫
AP

ξD �=0

d2ξD 〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2

× η0(ξ+,ξ−) Re{�(ξ+,ξ−; rA; λ,z)〈exp[i β0(ξ+,ξ−)]〉} .

(17)

The quantity μ(ξ+,ξ−) = η0(ξ+,ξ−) 〈exp[i β0(ξ+,ξ−) ] 〉
involved in the integrand of the total modulating power in
Eq. (17) is the complex degree of spatial coherence for scalar
wave fields at the AP [2,5]. Amplitude uncorrelated electric
field vectors and/or random phase differences in the interval
[−π , π ] nullify μ(ξ+,ξ−) and make natural light spatially
incoherent. However, natural light can contain relative small
structured supports of spatial coherence, within which the
correlation of the electric field vectors is significant and
the phase difference β0(ξ+,ξ−) is quasideterministic. For
this reason, Thomas Young could perform its celebrated
interference experiment in 1801 [5].

Figures 3 and 4 illustrate the transport of the total radiant
power and the total modulating power in the microdiffraction
domain, respectively. A planar source of natural light is
considered, composed by a line of three identical radiant point
sources with spacing 5λ (λ= 0.632 μm). The graphs (a) and (b)
of both figures reveal the time-independent and deterministic
space structure imposed by the 0-order nonparaxial modes
(Fig. 3) and by the expansion of three high-order modes under
the conditions �ϕ(ξ+,ξ−) = 0 and β0(ξ+,ξ−) = 0 (Fig. 4),
respectively. The expansion contains two first-order modes
for the powers Svir (±2.5λ,rA), emitted by the virtual point
sources corresponding to ξD = 5λ, and one second-order

FIG. 3. (Color online) Transport of the power emitted by three
radiant point sources at the scale metric λ = 0.632 μm in the
microdiffraction domain. Zero-order nonparaxial modes for (a) 0 �
z � 8λ and (b) 0 � z � 103λ. (c, d) Cross-section profiles at specific
propagation distances in (a) and (b), respectively. The contributions
of the individual radiant point sources are resolved in (a) and (c), but
not in (b) and (d). The modes are enhanced and the profiles are scaled
for presentation purposes.
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FIG. 4. (Color online) Modal expansion for the transport of
the modulating power emitted by the three virtual point sources
associated to the radiant point sources in Fig. 3, at the scale metric
λ = 0.632 μm, for (a) 0 � z � 8λ and (b) 102λ � z � 103λ. (c, d)
Cross-section profiles at specific propagation distances in (a) and (b),
respectively. The positions of the virtual point sources are represented
by the small circles in (a), and the corresponding pairs of radiant point
sources is indicated. The modal expansion is enhanced and the main
maxima in (c) are truncated for presentation purposes.

mode for the power Svir (0,rA), emitted by the virtual point
source corresponding to ξD = 10λ.

It is apparent that the radiant power flows through cones
with vertex on the corresponding radiant point sources,
which encloses more than the 90% of the electric power
within an aperture of about 70°. Their superposition gives
a resulting cone with similar characteristics as the individual
ones. It is worth noting that these cones determine the only
structure involved in the transport of spatially incoherent
electromagnetic wave fields.

The transport of the modulating power of spatially partially
coherent fields is performed through the fringe structure in
Fig. 4, in accordance to the values of η0(ξ+,ξ−). It means that
the higher η0(ξ+,ξ−) the greater the amount of transported
modulating power, in such a way that the maximum amount is
transported by fully spatial coherence, i.e., by η0(ξ+,ξ−) = 1.
The profiles for z = 0 in Figs. 3(c) and 4(c), respectively,
reproduce the distribution of the radiant point sources at the
AP and the spatial links between them, due to the correlations
of their emissions. This physical meaning is not reported in the
conventional second-order theory of electromagnetic spatial
coherence [2].

Figure 5 illustrates the transport of the power spectrum in
the microdiffraction domain, by assuming the planar source
of natural light in Fig. 3 as fully spatially coherent, i.e., as
composed by two pure radiant point sources (r) at ξA = ±5λ,
two pure virtual point sources (v) at ξA = ±2.5λ, and one dual
point source (d) at ξA = 0. The main peaks of the profile (c)
reproduce the radiant point source distribution at the AP, and
their small spreading (note that they are truncated) is due to

FIG. 5. (Color online) Transport of the power spectrum provided
by the strong correlated radiant point sources in Fig. 3 along
(a) 0 � z � 8λ and (b) 102λ � z � 103λ. (c, d) Power spectra
profiles, corresponding to the cross sections of (a) and (b) at specific
propagation distances. The positions of the radiant r and the virtual v
point sources are represented by the small circles in (a). The graphs
in (a) and (b) are enhanced and the main maxima in (c) are truncated
for presentation purposes.

the Lorentzian cross section of the nonparaxial modes even by
z = 0. In addition, the correlations between the radiant point
sources cause very weak oscillations between the main peaks.

The interference pattern in (d) exhibits highly contrasted
main maxima with secondary weak maxima in between, as
expected for three spatially coherent radiant point sources.
The Lorentzian envelope modulates the power distribution,
and the spatial frequency chirping determines the fringe
distribution. Graphs and profiles in Fig. 5 show the significant
changes of the power spectrum distribution over the planes
of the setup transversal to the direction of propagation in the
microdiffraction domain. Such behavior is not predicted by the
conventional formulation of the second-order theory of spatial
coherence [2].

If the correlations between the radiant point sources
diminish, the contrast of the fringe pattern diminishes too. In
addition, the transversal shifts of the mode oscillations given by
non-null phase differences �ϕ(ξ+,ξ−) and β0(ξ+,ξ−) change
the fringe structure of the space. These features change the
redistribution scheme for the radiant power, as shown in Fig. 6
for the same planar source in Fig. 3 with η0 (5λ) = 0.778 801
and β0 (5λ) = π/2, η0 (10λ) = 0.367 879, and β0 (10λ) = π .

The analysis above can also be applied to sources of
nonpolarized wave fields different from natural light, such
as nonpolarized lasers and LEDs.

B. Linearly polarized light parallel to the x axis

Electromagnetic wave fields whose polarization
angles have narrow fluctuations around ϑ(ξ±) = 0 are
linear polarized along the Cartesian x axis. In this case
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FIG. 6. (Color online) Transport of the power spectrum emitted
by the partially correlated radiant point sources in Fig. 3 for (a)
0 � z � 8λ and (b) 102λ � z � 103λ. (c, d) Power spectra profiles
corresponding to the cross sections of (a) and (b) at specific
propagation distances. The positions of the radiant r and the virtual v
point sources are represented by the small circles in (a). The graphs
in (a) and (b) are enhanced and the main maxima in (c) are truncated
for presentation purposes.

〈cosϑ(ξ±)〉= 1, 〈sinϑ(ξ±)〉= 0, 〈cosϑ(ξ+)cosϑ(ξ−)〉=1,
〈sinϑ(ξ+)sinϑ(ξ−)〉= 0 hold. Thus, s0(ξ+,ξ−) =
s1(ξ+,ξ−) = 〈exp[i β0(ξ+,ξ−)]〉 and 〈cosϑ(ξ±) sinϑ(ξ∓)〉 =
0 stand, so that s2(ξ+,ξ−) = s3(ξ+,ξ−) = 0. Therefore
Eq. (9b) yields κ2(ξA,rA) = κ3(ξA,rA) = 0, and

κ0(ξA,rA) = κ1(ξA,rA)

= 1

2
〈|E0(ξA)|2〉 �(ξA; rA; λ,z)

+ 1

2

∫
AP
ξD �=0

d2ξD η0(ξ+,ξ−)〈exp[i β0(ξ+,ξ−) ] 〉

× 〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2 �(ξ+,ξ−; rA; λ,z).

(18)

The mathematical form and the physical meaning of
Eq. (18) are equal to those of Eq. (16), but the condition
κ0(ξA,rA) = κ1(ξA,rA) states that the average electric (radiant
and/or modulating) power, transported from ξA to rA, is
linearly polarized parallel to the x axis, so that P(ξA,rA) = 1.
It thus follows that

Wxx(ξA; rA; λ,z) = κ0(ξA,rA) + κ1(ξA,rA) (19a)

and

Wxy(ξA; rA; λ,z)

= Wyx(ξA; rA; λ,z) = Wyy(ξA; rA; λ,z) = 0. (19b)

Consequently, the power spectrum at the OP in the
microdiffraction domain becomes the same mathematical form

as Eq. (17), i.e.,

S(rA)

=
∫

AP

〈|E0(ξA)|2〉 �(ξA; rA; λ,z) d2ξA

+ 2
∫

AP

d2ξA

∫
AP

ξD �=0

d2ξD〈|E0(ξ+)|2〉 1
2 〈|E0(ξ−)|2〉 1

2

× η0(ξ+,ξ−) Re[�(ξ+,ξ−; rA; λ,z)〈exp[i β0(ξ+,ξ−)]〉],
(20)

with μ(ξ+,ξ−) = η0(ξ+,ξ−) 〈exp[i β0(ξ+,ξ−) ] 〉 the complex
degree of spatial coherence. Thus electric field vectors with
uncorrelated amplitudes and/or random phase differences in
the interval [−π , π ] make the wave field spatially incoherent
without changing its linear polarization state. It occurs by
the natural light emerging from a linear polarizer, like that
used by Etienne Malus in his famous experiment performed in
1809 [5].

Equations (18) and (20) point out that natural light and
linearly polarized light (parallel to the x axis), both spatially
coherent to some extent, produce the same power spectrum at
the OP. However, if the linear polarization states at ξ± are mu-
tually orthogonal, then ϑ(ξ−) = ϑ(ξ+) ± π/2, s0(ξ+,ξ−) =
s1(ξ+,ξ−) = δ(ξD), and s2(ξ+,ξ−) = s3(ξ+,ξ−) = 0 stand,
taking into account the randomness of the phase differences
βxy(ξ+,ξ−) and βyx(ξ+,ξ−). As a consequence, Eq. (18)
reduces to its first term and

S (rA) =
∫

AP

〈 |E0(ξA) |2〉 �(ξA; rA; λ,z) d2ξA. (21)

This means that mutually orthogonal linearly polarized
states cannot interfere. Equations (20) and (21) are in ac-
cordance to the laws of interference and polarization estab-
lished by Augustin-Jean Fresnel and Dominique-François-
Jean Arago in 1819 [13].

Similar results are also straightforwardly obtained for
linearly polarized light parallel to the y axis, by taking
into account that the polarization angles of this type of
light have narrow fluctuations around ϑ(ξ±) = π/2, so that
〈cosϑ(ξ±)〉 = 0, 〈sinϑ(ξ±)〉 = 1, 〈cosϑ(ξ+) cosϑ(ξ−)〉 = 0,
〈sinϑ(ξ+) sinϑ(ξ−)〉 = 1, and 〈cosϑ(ξ±) sinϑ(ξ∓)〉 = 0 hold.
In addition, Figs. 3–6 and their explanations are also valid for
linearly polarized (parallel to any of the Cartesian axes) radiant
point sources, if their polarization states are mutually parallel.

Let us consider the situation depicted in Fig. 7, in which the
polarization state of the radiant point source at ξA = −2.5λ

is turned orthogonal to the polarization states of the radiant
point sources at ξA = 0, 2.5λ. The mutually parallel polarized
radiant point sources determine the space structure in graph (a),
whose fringe number for z = 8λ is more minor than the fringe
number in Fig. 6, because the separation between the sources is
shorter in this case than in the case of Fig. 6. The spatial link of
such sources can be appreciated in profile (b), and the complete
distribution of radiant point sources at the AP is reproduced by
the main peaks of the profile (e), whose spreading is due to the
Lorentzian envelope of the nonparaxial modes. Nevertheless,
the fringe distribution determined by profile (c) is not centered
at xA = 0, and therefore the space structure for the transport
of the power spectrum becomes asymmetric, as shown in the

013843-8



ELECTROMAGNETIC WAVE FIELDS IN THE . . . PHYSICAL REVIEW A 89, 013843 (2014)

FIG. 7. (Color online) Transport of the electromagnetic wave
field provided by the planar source in the examples before. The three
radiant point sources are linearly polarized with null phase differences
in between. The state of the source at ξA = −2.5λ is orthogonal to
the states of the other two, which are mutually parallel. (a) Graph
of the modulating power for 0 � z � 8λ (λ = 0.632 μm). (b, c)
Profiles of the modulating power at specific propagation distances.
(d) Graph of the power spectrum for 0 � z � 8λ. (e, f) Profiles of the
power spectrum at the same propagation distances as in (b) and (c),
respectively.

graph (d). In addition, the fringe contrast diminishes because
of the radiant power emitted by the source at ξA = −2.5λ, as
shown for z = 8λ by profile (f).

It is worth noting that the differences between the behaviors
illustrated by Figs. 5 and 7 are due to the polarization state
exclusively, i.e., the complex degree of spatial coherence is
equal to 1 in both of them. Thus, although this unified theory
shows how the states of spatial coherence and polarization
together determine the redistribution scheme of the total
radiant power spectrum, their effects are clearly separated,
i.e., the redistribution due to the spatial coherence state can be
regarded as a scalar behavior in the sense that it is independent
from the polarization state. The redistribution due to the
polarization state should be regarded as a vector behavior,
determined by the Fresnel-Arago interference and polarization
laws applied to the pairs of radiant point sources within each
structured support of spatial coherence.

This ability of the theoretical framework is very useful
for analysis and modeling purposes, and quite different from

FIG. 8. (Color online) Transport of the electromagnetic wave
field provided by the planar source in the examples before. The three
radiant point sources are mutually parallel linearly polarized, with
null phase differences and spacing 0.8λ. (a) Graph of the modulating
power for 0 � z � 3λ (λ = 0.632 μm). (b, c) Profiles of the
modulating power at specific propagation distances. (d) Graph of the
power spectrum for 0 � z � 3λ. (e, f) Profiles of the power spectrum
at the same propagation distances as in (b) and (c), respectively.

the production of experimental results. Indeed, the physical
attributes of the electromagnetic wave fields are usually
nonseparable in the measurements of interference patterns, so
that their separate identification in the experimental results
is intricate and should require a priori information. The
analysis above is also valid by subwavelength spacing of
the radiant point sources, as illustrated by Figs. 8 and 9.
In these examples, the three linearly polarized radiant point
sources distribute with pitch 0.8λ, and their polarization states
are mutually parallel in Fig. 8, while the polarization of the
mid-source is turned orthogonal to the remaining sources in
Fig. 9. Then, virtual point sources are placed at ξA = 0 in
the both cases but additional virtual point sources are turned
on at ξA = ±0.4λ in Fig. 8. The graphs (a) of the both
figures show the space structure due to the corresponding
expansion of high-order modes, while the graphs (d) include
the 0-order modes. Consequently, the cross sections of the
graphs (d) correspond to the profiles of the power spectrum
at planes transversal to the direction of propagation. Thus,
the profiles (e) reproduce the distribution of the radiant point
sources at the AP, whose spatial linkages are specified by
the profiles (b), i.e. the three radiant point sources in Fig. 8
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FIG. 9. (Color online) Transport of the electromagnetic wave
field provided by the planar source in Fig. 8, but the polarization
state of the mid-source was turned orthogonal to the polarization
states of the other two. (a) Graph of the modulating power for
0 � z � 3λ (λ = 0.632 μm). (b, c) Profiles of the modulating power
at specific propagation distances. (d) Graph of the power spectrum
for 0 � z � 3λ. (e, f) Profiles of the power spectrum at the same
propagation distances as in (b) and (c), respectively.

are correlated, while only the two with separation 1.6λ are
correlated in Fig. 9. As before, the spreading of the main
maxima of profiles (e) is due to the Lorentzian envelope of
the nonparaxial modes. The profiles (b) and (e) significantly
evolve in the microdiffraction domain, producing the profiles
(c) and (f) for z = 3λ respectively, i.e. diffraction patterns
are configured in the microdiffraction domain, at the same
propagation distances at which interference fringe patters are
produced, when the pitch of the radiant point sources is 5λ.
The effects of changing the polarization state of individual
radiant point sources can be appreciated by comparing such
profiles.

Therefore, this theoretical framework also unifies the
description of interference and diffraction, characterizing them
by the relationship between the spacing of the discrete set
of radiant point sources and the scale metric λ. Specifically,
a > λ, with a the spacing, is the interference condition,
while a � λ is the diffraction condition, provided L > λ,
with L characterizing the size of the planar source [7,8].
Furthermore, all the examples above point out the three

dimensional structure conferred to the power spectrum by the
space structure of the volume delimited by the AP and the
OP, with independence from the emission events of the planar
source.

IV. THE SPATIAL COHERENCE STATE

It has also a three dimensional structure in the setup
that significantly evolves in the microdiffraction domain. As
discussed before, this state seems to be a scalar attribute of
the electromagnetic wave field, and then it can be analyzed
independently from the polarization state. To this aim, let us
consider Eq. (1) for nonpolarized light in any state of spatial
coherence, so that the electric cross-spectral density tensor
becomes diagonal with elements

Wlm(r+,r−) = δlm

∫
AP

d2ξA Wlm(ξA; r+,r−), (22a)

where the suffices l,m stand for any combination of x, y and
δlm is the Kronecker δ, and

Wxx(ξA; r+,r−)

= Wyy(ξA; r+,r−)

= 1

2

∫
AP

d2ξD η0(ξ+,ξ−) s0(ξ+,ξ−)〈|E0(ξ+)|2〉 1
2

×〈|E0(ξ−)|2〉 1
2 �(ξ+,ξ−; r+,r−; λ,z), (22b)

with s0(ξ+,ξ−) = 〈exp[i β0(ξ+,ξ−)]〉. Because
sj>0(ξ+,ξ−) = 0 stands, then P(ξA,rA) = 0 holds too.
Accordingly, the trace of the electric cross-spectral density
tensor provides the nonparaxial description of the spatial
coherence transport. It is a scalar description given by

Tr[W(r+,r−)]

= Tr[W(r+,r−)]rad + Tr[W(r+,r−)]vir

=
∫

AP

d2ξA〈|E0(ξA)|2〉 �(ξA; r+,r−; λ,z)

+ 2
∫

AP

d2ξA

∫
AP
ξD �=0

d2ξD η0(ξ+,ξ−)〈|E0(ξ+)|2〉 1
2

×〈|E0(ξ−)|2〉 1
2 Re[�(ξ+,ξ−; r+,r−; λ,z)

×〈exp[i β0(ξ+,ξ−)]〉]. (23)

Accordingly, the state of spatial coherence of the
electromagnetic wave field at the OP results from respective
contributions of the radiant and the virtual sets of the
planar source. Both terms should be regarded if the planar
source is spatially coherent in some extent. However, the
electromagnetic wave fields emitted by spatially incoherent
planar sources become spatially partially coherent because
of their transport to the OP [9]. This behavior implies strong
variations of the spatial coherence state in the microdiffraction
domain, formalized by only the radiant term of
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Eq. (23), i.e.,

Tr [W (r+,r−) ] = Tr [W (r+,r−) ]rad =
∫

AP

d2ξA 〈|E0(ξA)|2〉 �(ξA; r+,r−; λ,z) (24a)

with

�(ξA; r+,r−; λ,z) =
(

k

4π

)2

t(ξ+) t∗(ξ−)

(
z + | z + rA − ξA + rD/2 |
| z + rA − ξA + rD/2 |2

) (
z + | z + rA − ξA − rD/2 |
| z + rA − ξA − rD/2 |2

)
× exp(i k | z + rA − ξA + rD/2 | − i k | z + rA − ξA − rD/2 | ). (24b)

Therefore, the modal expansion in Eq. (24a) determines the
transport of the radiant set contribution to the spatial coherence
state over the structured supports centered at each rA on the
OP. It is worth noting that the expansion length (i.e. the size of
the integration region) is determined by the size of the planar
source. In other words, the gain in spatial coherence is mainly
a spatial effect, in which the nonparaxial modes are chosen by
the geometry of the planar source and weighted by the average
electric power distribution across it. Eq. (24a) leads to the Van
Cittert–Zernike theorem [2,5] by assuming propagation in the
paraxial region of the far field.

The graphs of Fig. 10 illustrate the magnitude and the
phase of Eq. (24a) by assuming a uniform and homogeneous
planar source composed by 11 uncorrelated identical radiant
point sources, regularly arranged under diffraction condition
(pitch λ/2). The graphs show the evolution of the structured
support centered at xA = 0. The fringe structure of the phase

FIG. 10. (Color online) Graphs of Eq. (24a) for the structured
support centered at xA = 0. The spatially incoherent planar source
is a line of 11 identical radiant point sources with pitch λ/2, at
the scale metric λ = 0.632 μm. (a) Magnitude and (b) phase for
0 � z � 8λ; the same quantities are shown in (c) and (d), respectively,
for 102λ � z � 103λ. The graphs in (a) and (c) are enhanced for
presentation purposes.

graphs points out phase changes between the values 0 and
±π . It means that Tr[W(xD)] is real valued with sign changes
between consecutive lobes in this case. The contributions of the
individual point sources are resolved at very short distance z,
and evolve to an invariant shape even in the microdiffraction
domain. This shape exhibits a central main maximum and
secondary lateral maxima that decreases monotonically. The
support of the main maximum, delimited by the first lateral
zeroes, defines the structured support of spatial coherence. Its
growth along the z axis is apparent in the graphs (a) and (c).

The shape invariance of the structured support across the
OP at a specific propagation distance is illustrated in Fig. 11,
for the same planar source and scale metric as in Fig. 10. The
graphs (a) in both figures are quite different to each other,
but the graphs in Figs. 10(c) and 11(b) become similar as
the distance z increases. This means that not only the axial
variations of the spatial coherence state are significant in the
microdiffraction domain, but also the transversal variations.
However, the structured support becomes both axially and
transversally shape invariant in the far field.

Thus there should be a region around the z axis at
each specific propagation distance, in which the structured
supports of spatial coherence produced by any uniform and
homogeneous planar source are equally shaped, as predicted
by the Van Cittert–Zernike theorem for the paraxial region in
the far field.

V. PARAXIAL VALIDATION

The predictions of this theory have not yet been directly
validated by experimentation because of strong technolog-
ical constraints. Nevertheless, its consistency can be well

FIG. 11. (Color online) Graphs of Eq. (24a) for the structured
support centered at xA = 500λ on the OP, provided by the same planar
source in Fig. 10 for (a) 0 � z � 102λ and (b) 102λ � z � 103λ. The
graphs are enhanced for presentation purposes.

013843-11
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FIG. 12. (Color online) Profiles of the moduli of the degree of
spatial coherence in Figs. 10 and 11, and of the paraxial approached
sinclike degree for 104λ � z � 106λ, i.e., such profiles remain
invariant along this propagation segment.

established by showing its ability to predict well-known
experimental results for the paraxial segment in the far-field
propagation.

For instance, under this approach the Van Cittert–Zernike
theorem predicts a sinclike degree of spatial coherence at
the OP, for the electromagnetic field emitted by a slit
uniformly illuminated. This prediction has been validated by
experimental results [5], particularly for the main maximum
that defines the spatial coherence support, and the first two
lateral lobes. (The spatial coherence in these lobes is usually
neglected in practical applications.)

The profiles in Fig. 12 allow comparing the moduli of the
nonparaxial degree of spatial coherence in Figs. 10 and 11
with the modulus of the paraxial sinclike degree, by regarding
a slit of width equal to the length of the radiant point source
arrangement, i.e., 5λ (λ = 0.632 μm). As expected, the exact
nonparaxial profiles are identical to each other and remain
invariant along the propagation segment 104λ � z � 106λ.
The paraxial approached sinclike profile fits well the exact
profiles until the fourth lateral lobe. Thus, according to the
experimental criteria for determining the spatial coherence
state of the electromagnetic wave field [5], Fig. 12 leads to
the conclusion that the paraxial approached version of the Van
Cittert–Zernike theorem provides an accurate approximation
for the far-field propagation.

Profiles in Fig. 13 point out the validity of the interference
condition and the effect of the polarization states of the radiant
point sources on the interference pattern. Three identical, spa-
tially coherent, and linearly polarized radiant point sources are
considered. The paraxial approached prediction significantly
fit the exact nonparaxial predictions for longer enough spacing
of the radiant point sources, as shown in profiles (b) and (d).
Such profiles are confirmed by experimental results. However,
if the spacing is comparable to the wavelength, the paraxial
approached prediction significantly deviates from the exact
nonparaxial prediction, as shown in profiles (a) and (c). The
deviation is due to the Lorentzian envelope and the spatial
frequency chirping of the nonparaxial patterns that cannot
be predicted by the paraxial approach. Nevertheless, both
types of predictions coincide in the shapes of the interference
patterns, i.e., high contrasted main maxima with only one weak
secondary maximum in between if the polarization states of
the radiant point sources are mutually parallel.

FIG. 13. (Color online) Profiles of the interference patterns pro-
duced by three identical, spatially coherent, and linearly polarized
radiant point sources in the far field (z = 108λ, λ = 0.632 μm). (a)
Mutually parallel polarization states and spacing 5λ. (b) Mutually
parallel polarization states and spacing 500λ. The state of the source
at ξA = −2.5λ is turned orthogonal to the states of the other two in
(c) and (d), and the spacing is the same as in (a) and (b), respectively.

These patterns turn to relatively low–contrasted, cosinelike
interference patterns as the polarization state of the radiant
point source at ξA = −2.5λ is turned orthogonal to the other
two. The spatial frequency of the pattern is determined by the
mutually parallel polarized sources, and the contrast loss is
due to the radiant power emitted by the source at ξA = −2.5λ.
Because of the short length of the considered segment, the
asymmetry of the profile (f) in Fig. 7 cannot be appreciated.
In summary, the experimental supported predictions of the
paraxial approached model appear as cases under specific
conditions of the exact nonparaxial formulation.

Figure 14 allows comparing the far-field diffraction profiles
(z = 104μm) predicted by the exact nonparaxial formulation
and the paraxial approached model. Linear arrays of point
sources are regarded for the former one, while slits of width
equal to the length of the corresponding point source array
are considered for the last one. Both types of predictions
point out the validity of the diffraction condition, and their

FIG. 14. (Color online) Profiles of the diffraction patterns pro-
duced by identical, spatially coherent, and mutually parallel, linearly
polarized radiant point sources in the far field (z = 104 μm). The
exact nonparaxial pattern is provided by three sources with spacing
0.8λ in (a) and by 16 sources with spacing 0.3λ in (b) (λ = 0.632 μm).
The paraxial approached pattern is provided by a slit of width 1.6λ

in (a) and 4.5λ in (b).
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fit is significantly good if the density of radiant point
sources of the planar source is high enough, as shown by
profiles (b). In this case, the profiles exhibit squared, sinclike
shapes, as reported by basic optics experiments. However, the
paraxial approached prediction significantly deviates from the
exact nonparaxial prediction under more strong restrictions
of the microdiffraction, like few radiant point sources with
subwavelength spacing, as illustrated by profiles (a). Once
more, the experimental supported predictions of the paraxial
approached model appear as cases under specific conditions
of the exact nonparaxial formulation.

The comparisons above point out that the Wigner optics for-
mulation (also called the Wigner phase-space representation)
is not suitable in the microdiffraction domain. Wigner optics
[11] is widely used at the present because of the versatility
and efficiency of its Fourier methods for partially coherent
wave fields, as well as the accepted physical meanings of their
parameters. However, its accuracy is limited to the paraxial
approach in the far-field propagation. For the microdiffraction
domain, the exact predictions of the theory proposed in this
work seem to be required. This formulation is consistent with
the experimental supported paraxial predictions, but novel
physical attributes should be conferred to the electromagnetic
wave field in order to apply it rigorously.

VI. SUMMARY AND CONCLUSION

The presented theory provides a unified framework for the
transport of the power and the states of spatial coherence
and polarization of electromagnetic wave fields, as well
as for diffraction and interference, in the microdiffraction
domain. The accuracy of the theory is assured by its exact
nonparaxial formulation, and its versatility is assured by a

precise separation of the physical and the spatial features.
In this sense, nonparaxial modes, determined only by the
boundary conditions of the experimental setups, establish a
spatial structure between the aperture and the observation
planes that is independent of the physical features of the planar
source. They are deterministic scalar functions, in contrast to
the physical source attributes which are formalized by tensors
of statistical nature. Furthermore, the theory characterizes any
planar source in terms of inserted sets of radiant and virtual
point sources, whose emissions are of a different nature and
are transported by nonparaxial modes of different orders.

The theory is consistent with the classical optical laws
as well as with the experimental supported paraxial predic-
tions, which appear as particular cases. It also overcomes
the limitations of the conventional paraxial theories in the
microdiffraction domain, being able to predict the strong
changes suffered by the electromagnetic wave field in this
domain.
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APPENDIX

This Appendix concerns the deduction of Eq. (1). The
elements of the electric cross-spectral density tensor are given
by the Wolf’s integral equation [2],

Wlm (r+,r−) =
(

k

4π

)2 ∫
AP

∫
AP

d2ξD d2ξA Wlm(ξ+,ξ−) t(ξ+) t∗(ξ−)

×
(

z + | z + rA − ξA + (rD − ξD)/2|
| z + rA − ξA + (rD − ξD)/2 |2

) (
z + | z + rA − ξA − (rD − ξD)/2|
| z + rA − ξA − (rD − ξD)/2 |2

)
× exp(i k | z + rA − ξA + (rD − ξD)/2 | − i k | z + rA − ξA − (rD − ξD)/2 | ), (A1)

where l, m stand for any combination of x, y, so
that Wlm(ξ+,ξ−) = 〈El(ξ+) E∗

m(ξ−)〉 and Wlm(r+,r−) =
〈El(r+) E∗

m(r−)〉 represent the correlations of the Cartesian
components of the electric field vectors at the AP and
the OP, respectively. The angular parenthesis and the as-
terisk denote ensemble average [2] and complex conjugate,
respectively.

Furthermore, El(ξ±) = E0(ξ±) ψl(ϑ(ξ±)) exp[iεl(ξ±) ],
with E0(ξ±) the magnitude of the electric field vector,
εl(ξ±) its phase, and ϑ(ξ±) its polarization angle with
respect to the x axis, so that ψx(ϑ(ξ±)) = cosϑ(ξ±) and
ψy(ϑ(ξ±)) = sinϑ(ξ±) are the polarization functions [3]. This
theory concerns random stationary electromagnetic fields, for
which the amplitude of the electric field vector, its phase, and
its polarization angle are statistically independent variables
to each other, because the first two depend on the complex
amplitude fluctuations of the field while the third depends on

its polarization fluctuations referred to a specific choice of
coordinate axes [2,13]. Therefore

Wlm(ξ+,ξ−) = 〈E0(ξ+) E0(ξ−)〉〈ψl(ϑ(ξ+)) ψm(ϑ(ξ−))〉
× 〈exp[iεl(ξ+) − iεm(ξ−) ] 〉 (A2)

stands. Now, let us take into account the following expressions:

〈E0(ξ+) E0(ξ−) 〉 = 〈 |E0(ξ+) |2〉 1
2 〈 |E0(ξ−) |2〉 1

2 η0(ξ+,ξ−),

(A3)

with η0(ξ+,ξ−) = 〈E0(ξ+) E0(ξ−) 〉/〈E2
0(ξ+) 〉 1

2 〈E2
0(ξ−) 〉 1

2

a real valued quantity that takes values only into the interval
[0, 1],

� lm(ξ±) = 〈
ψ2

l (ϑ(ξ±))
〉 1

2 δlm, (A4)
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with δlm the Kronecker δ, and

ηlm(ξ+,ξ−) = η0(ξ+,ξ−) �lm(ξ+,ξ−) 〈exp[ i βlm(ξ+,ξ−) ] 〉
(A5)

the spatial coherence-polarization tensor, with βlm(ξ+,ξ−) =
εl(ξ+) − εm(ξ−) and

�lm(ξ+,ξ−)

= 〈ψl(ϑ(ξ+)) ψm(ϑ(ξ−))〉/〈
ψ2

l (ϑ(ξ+))
〉 1

2
〈
ψ2

m(ϑ(ξ−))
〉 1

2

a real valued quantity that takes values only into the interval
[0, 1]. By regarding η0(ξ+,ξ−) = η0(ξ−,ξ+), �lm(ξ+,ξ−) =
�ml(ξ−,ξ+), and βlm(ξ+,ξ−) = −βml(ξ−,ξ+), then
ηlm(ξ+,ξ−) = η∗

ml(ξ−,ξ+) holds, i.e., the spatial
coherence-polarization tensor is Hermitian. It is

worth regarding that 0 � |ηlm(ξ+,ξ−)| � 1 holds, with
|ηlm(ξ+,ξ−)| = 1 for highly correlated electromagnetic wave
fields in both the electric field vector amplitudes and their
polarization angles, and with deterministic phase differences,
while | ηlm(ξ+,ξ−) | = 0 if the field amplitudes or polarization
angles are uncorrelated or the phase differences randomly
fluctuate. Partially correlated fields with quasideterministic
phase differences are characterized by 0 < | ηlm(ξ+,ξ−) | < 1.

Equations (A3)–(A5) allow expressing the 2 × 2 elec-
tric cross-spectral density tensor of elements Wlm(ξ+,ξ−)
[Eq. (A2)] as

W(ξ+,ξ−) = 〈 |E0(ξ+) |2〉 1
2 〈 |E0(ξ−) |2〉 1

2

×�(ξ+) η(ξ+,ξ−) �(ξ−). (A6)

So, Eqs. (A1)–(A6) yield Eq. (1).
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