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Geometric spin Hall effect of light in tightly focused polarization-tailored light beams
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Recently, it was shown that a nonzero transverse angular momentum manifests itself in a polarization-dependent
intensity shift of the barycenter of a paraxial light beam [Aiello et al., Phys. Rev. Lett. 103, 100401 (2009)]. The
underlying effect is phenomenologically similar to the spin Hall effect of light but does not depend on the specific
light-matter interaction and can be interpreted as a purely geometric effect. Thus, it was named the geometric
spin Hall effect of light. Here, we experimentally investigate the appearance of this effect in tightly focused
vector beams. We use an experimental nanoprobing technique in combination with a reconstruction algorithm to
verify the relative shifts of the components of the electric energy density and the shift of the intensity in the focal
plane. By that, we experimentally demonstrate the geometric spin Hall effect of light in a highly nonparaxial
beam.
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I. INTRODUCTION

Angular momentum (AM) carried by a beam of light
often plays a fundamental role in light-matter interaction.
An important example is the Imbert-Fedorov shift, which
is a manifestation of the so-called spin Hall effect of light
(SHEL) [1–3]. In the most basic case, the effect occurs at a
planar interface between two media with different refractive
indices. It describes the polarization-dependent transverse
spatial and/or angular shift of the propagation axis of the
reflected and refracted light beam. While the SHEL is present
both in reflection and in refraction, the spatial shift has
first been predicted and experimentally demonstrated in total
internal reflection configuration [4,5]. In the past decade,
interest concerning the SHEL has been rising. On the one hand,
advancements in modern metrology enable the measurement
of very small lateral displacements, which allows for utilizing
the SHEL for sensing material properties [6–9]. On the other
hand, the control of light in the subwavelength regime is
crucial, for instance, in nano-optics [10,11].

Just recently, a type of beam shift was described that
is in many ways similar to the aforementioned phenomena
but does not depend on light-matter interaction [12]. This
so-called geometric spin Hall effect of light (gSHEL) refers
to a transverse shift of the barycenter of the beam intensity—
defined as the z component of the time-averaged Poynting
vector Sz—while the actual propagation axis of the beam—
defined by the barycenter of the total energy density and the
propagation direction—remains unaffected [12]. This shift of
the barycenter of Sz is connected to the relative shifts of
the components of the electric energy density [12–14]. The
gSHEL occurs when a nonzero transverse angular momentum
is present, i.e., an AM component parallel to a plane of
observation. Until now, this effect has only been investigated
for collimated paraxial beams [12–15]. We now demonstrate
the appearance of the gSHEL in tightly focused vector
beams both theoretically and experimentally. We generate the
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necessary transverse AM by breaking the symmetry of the spin
distribution of the light beam to be focused tightly (similar to
[16,17]). This transverse AM is actually linked to the shift of
the barycenter of Sz and the relative shifts of the components of
the electric energy density. In the presented scheme, the latter
causes a deformation of the focal spot, i.e., the distribution
of the total electric energy density. We utilize a recently
developed amplitude and phase reconstruction algorithm [18]
to verify the link between the deformation of the focal spot and
the relative shifts of the components of the energy density. In
addition, we reconstruct the distribution of Sz and determine
its relative shift in comparison to the barycenter of the total
energy density.

II. GENERATION OF TRANSVERSE ANGULAR
MOMENTUM BY TIGHT FOCUSING

The basic concept of the experiment is the generation of
transverse AM via focusing with a high-numerical-aperture
(high-NA) microscope objective (see Fig. 1). The principle
can be explained within the framework of ray optics. We start
by preparing a collimated monochromatic beam of light with
spatially separated left- and right-handed circular polarization
components [17]. The intensity profile of this spin-segmented
beam is symmetric with respect to the y axis, and the
propagation axis is the optical axis of the focusing system
(z axis). Such conditions are fulfilled for a beam profile
described by (

Ex

Ey

)
∝

( −i

sgn(x)

)
xe

− x2+y2

w2
0 , (1)

with the polarization vector (−i,sgn(x)) accounting for the
laterally separated left- and right-handed circular polarization.
The intensity profile of the beam in the entrance aperture of
the microscope objective is represented by a TEM10 mode
with width w0. Since the incoming beam is collimated, we can
neglect the z component of the electric field in this representa-
tion. When the paraxial beam impinges on the focusing system,
the partial rays of the beam and, consequently, the spins are
redirected and therefore tilted towards the optical axis, crossing
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FIG. 1. (Color) Schematic illustration of the generation of light
with purely transverse angular momentum. In front of the focusing
system the paraxial beam propagating in the positive z direction is
spatially separated in a left- and right-handed circularly polarized part
along the x axis. The spin (red arrows) in the upper part of the beam
is parallel to the optical axis while it is antiparallel in the lower part.
Focusing of such a spin-segmented beam profile leads to the tilting
of the spin vectors and, for symmetry reasons, to the generation of
purely transverse angular momentum Jt in the focal plane.

at the geometrical focus (see red arrows in Fig. 1). In the focal
plane, the longitudinal components of the AM cancel due to
the chosen symmetry of the input distribution, whereupon
the transverse components of the AM add up. Therefore, a
state of light with even purely transverse AM is generated as
reported in Ref. [17]. In addition to this intriguing property,
the presence of transverse angular momentum in the chosen
frame of observation should also cause a beam shift. Thus, by
defining the focal plane as the plane of observation, we expect
the barycenter of Sz to be shifted relative to the barycenter
of the electric energy density of the beam. Furthermore, the
individual components of the electric energy density should
be shifted relative to each other [12,13]. In order to test these
expectations quantitatively, we evaluate the field distribution
in the focal plane for an incoming beam defined by Eq. (1).
The profile of this paraxial input beam is depicted in Fig. 2(a).
For the numerical calculation of the focal fields we apply
the Richards-Wolf integrals [19] and use the same optical
parameters as in the experiment shown later. The wavelength
λ0 of the incoming paraxial beam is 590 nm and its width
w0 is 1.9 mm. For focusing, an aplanatic immersion-type
microscope objective with a NA of 1.3 and effective focal
length f = 3 mm is used. The medium behind the objective
(immersion oil and glass) has a refractive index of n = 1.5.

As already mentioned, the barycenter of the energy density
lies per definition on the propagation axis of the beam.
The energy density includes both the total energy density
of the electric field |Etot|2 and the magnetic field |Btot|2
[20]. However, here we restrict ourselves to the electric
field, since |Etot|2 and |Btot|2 exhibit almost exactly the same
barycenter [21]. Consequently, we compare the barycenter of
|Etot|2 [black cross in Fig. 2(c)] and the barycenter of the
intensity Sz [black cross in Fig. 2(b)]. Calculations yield a
relative shift �Sz

of approximately −17 nm along the y axis.
To highlight the relative shifts visually and as a reference
value, a dashed white line, representing the y position of the
barycenter of |Etot|2, is plotted in Figs. 2(b)–2(f). This relative
shift of Sz is similar to the results for paraxial beams and
is a direct consequence of the transverse AM in the focal
plane [12]. In addition, the transverse AM is indicated by the
relative phases of the components of the electric field [see
Figs. 2(d)–2(f)]. No longitudinal spin AM is present, since the
phase difference between Ex and Ey , ��x,y = �x − �y , is
an element of {−π,0,π}. Furthermore, the absence of a phase

FIG. 2. (Color) (a) Normalized electric energy density distribu-
tion |E0|2 of the incoming paraxial beam (TEM10 mode, w0 =
1.9 mm). The white ring corresponds to the geometric aperture of
the microscope objective (NA = 1.3). The black arrows indicate spin
segmentation. (b) Focal distribution of the intensity Sz, (c) focal
distribution of the electric energy density |Etot|2. Both distributions are
normalized to their respective maximum value. (d)–(f) Components
of the electric energy density |Ex |2, |Ey |2, and |Ez|2 [normalized to
the maximum value of |Etot|2 in (c)], and their corresponding relative
phases �x , �y , and �z (see insets). Black and white crosses mark the
position of the barycenter for each individual quantity and the dashed
white line indicates the y coordinate of the barycenter of |Etot|2 in (c)
and is used as reference in (b)–(f).

vortex for all three components �x , �y , and �z is equivalent
to the absence of longitudinal orbital AM. In the barycenter
of the focal spot defined via |Etot|2, the electric field vector is
rotating around the x axis (��y,z = π/2), which implies the
generation of purely transverse AM [17].

Another consequence of the presence of the transverse AM
and the observed shift of the barycenter of Sz is the deformation
of the focal spot. While the electric energy density distribution
of the incoming beam |E0|2 is symmetric with respect to
the x axis, the symmetry of the focal spot is broken [see
Figs. 2(a) and 2(c)]. This asymmetry is caused by the relative
shifts of the distributions of the energy density components
[see Figs. 2(d)–2(f)]. Here, the barycenter of |Ex |2 is shifted
downwards (�Ex

= −33 nm), |Ey |2 exhibits almost no shift
(�Ey

= 3 nm), and |Ez|2 is shifted upwards (�Ez
= 77 nm).
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Since the size of the focal spot and the relative shifts have
the same order of magnitude, the shape of the focal spot is
distinctly and visibly deformed.

For the given configuration, the connection of the relative
shifts and the deformation is obvious, since in contrast to
|Ey |2 and |Ez|2, |Ex |2 has a zero crossing on the y axis.
This focal interference pattern is the justification for using
the aforementioned spin-segmented beam. In this experiment,
it is therefore sufficient to measure the asymmetric shape of the
focal spot to verify the relative shifts of the components of the
electric energy density. Beyond that, we reconstruct the focal
phase and amplitude distributions for each individual field
component, to confirm the gSHEL as origin of the deformation.

III. EXPERIMENTAL APPROACH AND RESULTS

To measure the deformation of the focal spot and for
the reconstruction of the focal field distribution, we use a
scanning technique [22] in which a gold nanosphere (diameter
90 nm) sitting on a glass substrate is utilized as a field probe
[see Fig. 3(a)]. Since the particle is much smaller than the
wavelength, it gets excited by the local electric field only,
and its polarizability is proportional to the local electric field
vector. To suppress the influence of the glass substrate and to
guarantee an emission pattern of the excited particle similar
to that of a pointlike electric dipole, we embed the particle
in immersion oil, index matched to the glass substrate. With
the above-mentioned scheme, the focal spot can be probed by
measuring the scattered and transmitted light for each lateral
position of the particle relative to the beam axis in the focal
plane.

Nano articlep
on Glass
Substrate

SQWP

xy

z

(a) (b)

Camera

MO

MO

Immersion Oil

FIG. 3. (Color) (a) Schematics of the nanoprobe scanning tech-
nique. A subwavelength gold nanosphere (diameter 90 nm) is scanned
through the focal plane of the tightly focused vector beam. At
each position, the particle is excited by the local electric field.
By measuring the scattered and transmitted light, the focal spot
can be reconstructed. (b) Scheme of the experimental setup. The
paraxial beam (x-polarized TEM10 mode) impinges on a segmented
quarter-wave plate (SQWP) with perpendicular fast axes. As a
result, a laterally separated left- and right-handed circularly polarized
beam is generated (red arrows). This beam is coupled into a high-
numerical-aperture immersion-type objective (MO) and focused onto
the sample, consisting of a particle sitting on a glass substrate. The
sample is embedded in immersion oil index matched to the substrate.
A second MO, identical to the first one and with the same focal plane,
is mounted below the sample. It collects the forward-scattered and
transmitted light. The back focal plane of the second MO is imaged
with a camera.

The utilized nanoscanning setup is depicted in Fig. 3(b) (see
also [22]). We start with an incoming x-polarized TEM10 mode
[see Fig. 3(b)] impinging on a segmented quarter-wave plate
(SQWP). The two fast axes of the SQWP are perpendicular
to each other [17]. Therefore, a beam with linear polarization
perpendicular to the split axis is converted into a beam with
spatially separated left- and right-handed circular polarization
[see red arrows in Fig. 3(b)]. By choosing a TEM10 mode as an
input beam and overlapping its nodal line with the split axis of
the SQWP, the diffraction at the split is minimized, resulting in
a high-quality beam profile. The created spin-segmented beam
is then strongly focused by an immersion-type microscope
objective (NA = 1.3). The focal spot is probed by the gold
nanosphere sitting on a glass substrate and embedded in
immersion oil. The particle is scanned through the focal
plane by a three-dimensional piezostage. A second microscope
objective (NA = 1.3), equivalent to the upper one, is index
matched to the glass substrate from below. The objective
collects the transmitted light of the tightly focused beam as
well as the light scattered forward by the particle. Its back
focal plane is imaged with a CCD camera. For each position
of the particle relative to the beam an image is recorded.
The measured data can be used either to directly showcase
the deformation of the focal spot or to reconstruct the focal
field distribution, including phase and amplitude values of
the individual field components [18]. To account for the fully
embedded nanoprobe, we had to adapt the reconstruction
algorithm presented in Ref. [18].

First of all, we demonstrate the deformation of the focal
spot. For that purpose, we integrate over the intensity pattern
for each camera picture. This results in a simple scan image,
which assigns one intensity value measured in transmission
for each position of the particle. If the wavelength of the
beam is adjusted close to the resonance of the particle, the
position-dependent signal is dominated by the extinction of
the beam, resulting in a drop of the signal, when the particle is
placed in the focal spot. In Fig. 4(a) the experimental scan
image for the incoming spin-segmented beam is depicted.
Due to the limited solid angle of the microscope objective,
used for collecting the light after interaction with the particle,
the scan image cannot be interpreted as an exact description
of the total electric energy density in the focal plane. For
instance, if the particle is excited by Ez, only a small amount
of the scattered field is collected by the microscope objective.
In contrast, an electric dipole excited by Ex or Ey scatters
more dominantly into the collected solid angle. This results in
different weightings of the components of the energy density
when probing the focal electric field by just scanning the
particle through the beam and measuring the intensity of
the scattered or extinct field. Still, the measured scan image
[see Fig. 4(a)] allows for a comparison with the calculated
theoretical distribution of |Etot|2 in Fig. 2(c). However, to
verify the presence of transverse AM, the shift of Sz, and the
relative shifts of |Ex |2, |Ey |2, and |Ez|2, the aforementioned
reconstruction algorithm is applied [18]. The concept is
based on the interference between the light scattered off the
nanoparticle and the transmitted light beam. Depending on the
position of the particle and its local polarization and phase,
different interference patterns are measured in the back focal
plane of the collecting microscope objective. Via evaluating
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FIG. 4. (Color) (a) Experimental scanning result, normalized
to its maximum value, measured in transmission. The signal is
dominated by the extinction of the transmitted beam. (b)–(f) The
reconstructed distributions of Sz, |Etot|2, |Ex |2, |Ey |2, and |Ez|2
are depicted. Both |Etot|2 and Sz are normalized to their respective
maxima, while |Ex |2, |Ey |2, and |Ez|2 are normalized to the maximum
value of |Etot|2.

the back focal plane images for different solid angles, the
focal field distribution is reconstructed (see the Appendix
and [18] for further details of the reconstruction technique).
The phase and amplitude distributions of the individual
electric field components reconstructed from experimental
data [see Figs. 4(b)–4(f)] are in very good agreement with
the theoretically predicted distributions in Figs. 2(b)–2(f).
Slight aberrations, such as the nonplanar phase front and
the asymmetry with respect to the y axis, are linked to
imperfections of the incoming beam and shape deviations of
the field probe. For comparison, the relative shifts along the
y axis are calculated from the reconstructed distributions to
�rec

Sz
= −21 nm, �rec

Ex
= −34 nm, �rec

Ey
= 4 nm, and �rec

Ez
=

72 nm. Also these values are in very good agreement with the
theoretically predicted shifts and confirm the appearance of
transverse AM and the theory of the gSHEL.

IV. CONCLUSION

We have discussed the manifestation of the gSHEL in a
specially polarized tightly focused vector beam. The input

beam was chosen to be laterally spin segmented, so that
focusing resulted in the generation of transverse AM. As a
direct consequence, predicted by the theory of the gSHEL, a
deformed focal field distribution was observed. We were able
to measure the deformation of the focal spot and verify the
relative shifts of the components of the electric energy density
as its cause. For that we utilized an experimental nanoprobing
technique in combination with a reconstruction algorithm.
The described and measured appearance of the gSHEL under
tight focusing conditions can be relevant for the investigation
of polarization-dependent effects at the nanoscale, e.g., in
nanoplasmonics.

APPENDIX: ADAPTATIONS OF THE
RECONSTRUCTION TECHNIQUE

In this Appendix, we discuss the necessary adaptations
of the reconstruction technique described in Ref. [18] to the
experiment presented in the main text. The basic systematical
difference is the lack of an optical interface, since, in the case
presented here, the particle is embedded in a homogenous
environment (glass and index-matching immersion oil). We
start with a short derivation of the reconstruction algorithm.

1. Theoretical considerations

Let us define a coordinate system R = (R,θ,φ), which
we relate to the center of the considered beam in the focal
plane. In a homogenous medium, a source-free vectorial
electromagnetic field can be expressed as

Ei(R) =
∞∑

n=1

n∑
m=−n

AmnN(1)
mn(R) + BmnM(1)

mn(R), (A1)

where Amn and Bmn are multipole expansion coefficients.
M(1)

mn(R) and N(1)
mn(R) are regular vector spherical harmonics

(VSHs) [23]

M(1,3)
mn = γmng

(1,3)
n

[
eθ

im

sin θ
P m

n − eφ

∂

∂θ
P m

n

]
eimφ

= γmng
(1,3)
n X(II )

mn (θ,φ) ,

N(1,3)
mn = γmn

{
eRn(n + 1)

g(1,3)
n

kR
P m

n

+ ∂
(
Rg(1,3)

n

)
R ∂R

[
eθ

∂

∂θ
P m

n + eφ

im

sin θ
P m

n

]}
eimφ

= γmn

[
eRn(n + 1)

g(1,3)
n

kR
P m

n eimφ

+ ∂
(
Rg(1,3)

n

)
R ∂R

X(I )
mn(θ,φ)

]
, (A2)

where g(1)
n represents a spherical Bessel function jn(kR) and

g(3)
n a spherical Hankel function hn(kR) of the first order.

The prefactor γmn = {[(2n + 1)(n − m)!]/[4πn(n + 1)(n +
m)!]}1/2 and P m

n are Legendre polynomials with argument
cos θ . The plane-wave representation of the first (regular) and
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third type (irregular) VSH is written as [23]

M(1,3)
mn = (−i)nγmn

2π (1 + δ(1,3),1)

∫
�

d�eik·RX(II )
mn (θk,φk),

(A3)

N(1,3)
mn = (−i)n−1γmn

2π (1 + δ(1,3),1)

∫
�

d�eik·RX(I )
mn(θk,φk).

The Kronecker delta δ(1,3),1 is equal to 1 for regular VSH and
equal to 0 for irregular VSH.

Now, we consider the position-dependent scattering of the
spherical gold nanoparticle, which is scanned through the
light beam in the focal plane. For that purpose, we introduce
a new coordinate frame attached to the particle (R′,θ ′,φ′),
which is related to the original one by R = R′ + R0, where
R0 = (R0,θ0,φ0) is the displacement. The polar (θ ′ = 0) and
the azimuthal (φ′ = 0) axes are parallel to the corresponding
axes θ = 0 and φ = 0. The functions M(1)

mn, N(1)
mn of the original

coordinate frame can be expressed as a sum of functions M′(1)
μν ,

N′(1)
μν of the new coordinate frame and the corresponding elec-

tric field becomes E′
i = ∑∞

ν=1

∑ν
μ=−ν A′

μνN′(1)
μν + B ′

μνM′(1)
μν .

The expansion coefficients A′
μν and B ′

μν are found from the
VSH addition theorem [24] and can be expressed in the matrix
representation [23] [

B′

A′

]
= D̂(R0)

[
B
A

]
, (A4)

with the displacement operator D̂(R0). The field scat-
tered by the particle can be expressed as a sum of the
irregular VSH

E′
s =

∞∑
ν=1

ν∑
μ=−ν

C ′
μνN′(3)

μν (R′) + D′
μνM′(3)

μν (R′), (A5)

where M(3)
μν(R′) and N(3)

μν(R′) are irregular VSH, see Eq. (A2),
and Cμν and Dμν are multipole expansion coefficients of the
scattered field. Furthermore, for the sake of convenience, we
introduce the concept of the T matrix [23], which relates
the vector representations of scattered and incident fields as
E′

s = T̂E′
i . So, the total electric field Et = Et + (D̂∗T̂D̂)Et .

The density of the time-averaged Poynting vector Pt =
1/2 Re[Et × H∗

t ] describes the direction of the electromagnetic
power flow through a spherical surface element d�. In
matrix form and far away from the focal spot it can be
represented as

Pt = 1
2 Re(E∗

t ŵtEt ),
(A6)

ŵt = ŵb + D̂∗T̂∗ŵsT̂D̂ + D̂∗T̂∗ŵe + ŵeT̂D̂.

Here ŵi , ŵs , ŵe are azimuthally (θ ) and polarly (φ) dependent
operators

ŵi = i

2k2

√
ε

μ

[
i sin

(
ν1−ν2

2 π
)
X(II)

μ1ν1
· X∗(II)

μ2ν2
cos

(
ν1−ν2

2 π
)
X(I)

μ1ν1
· X∗(II)

μ2ν2

− cos
(

ν1−ν2
2 π

)
X(II)

μ1ν1
· X∗(I)

μ2ν2
i sin

(
ν1−ν2

2 π
)
X(I)

μ1ν1
· X∗(I)

μ2ν2

]
,

(A7)

ŵs = i

k2

√
ε

μ

[
iν2−ν1+1X(II)

μ1ν1
· X∗(II)

μ2ν2
iν2−ν1 X(I)

μ1ν1
· X∗(II)

μ2ν2

−iν2−ν1 X(II)
μ1ν1

· X∗(I)
μ2ν2

iν2−ν1+1X(I)
μ1ν1

· X∗(I)
μ2ν2

]
, ŵe = 1

2
ŵs .

The energy transmitted into the solid angle � = [θ ∈ (θ1,θ2),
φ ∈ (φ1,φ2)] is

T (φ1,φ2,θ1,θ2) =
∫

�

d�Pt (θ,φ) (A8)

or, in a matrix form,

T (φ1,φ2,θ1,θ2) = Re(E∗
i ŴtEi). (A9)

Here, Ŵt denotes the operator ŵt , whose elements were
integrated over a region �:

Ŵt =
∫

�

d�ŵt . (A10)

2. Experimental implementation

Equation (A9) is the theoretical foundation of the recon-
struction technique. Since the parameters of the gold particle
are known for the given wavelength of λ = 590 nm (diameter
90 nm, ε = −5.67 + 1.14i), we can calculate the matrix
elements of ŵt . From the experimental point of view, it is
possible to access T (�) via imaging the back focal plane
of the microscope objective in transmission with a CCD

camera (see main text). � is limited by the solid angle of the
microscope objective. We measure T (�) for eight different
solid angles simply by integrating the measured intensity
over the corresponding angular region [see Figs. 5(a)–5(d)
and 5(m)–5(p)]. For one particle position relative to the
beam, this results in eight equations. However, the number
of equations can be increased drastically via repeating the
same measurement for different particle positions R0. The
actual reconstruction is performed as follows. The particle is
scanned through the focal plane of the beam. For each particle
position, an image of the back focal plane is recorded. The step
size between each position is chosen to be 16 nm, whereby the
size of the scan field is 1.6 × 1.6 μm2. A total number of
10 201 images are recorded. For each position and image, we
integrate over the eight solid angles, resulting in eight power
values. Those values can be reassembled to eight scanning
images [see Figs. 5(e)–5(h) and 5(q)–5(t)]. In a last step, we
fit multipole expansion coefficients to the experimental data.
Here, we consider multipoles up to the order of eight. The
resulting fitted distributions can be seen in Figs. 5(i)–5(l) and
5(u)–5(x). The good overlap between the experimental scan
images and the fitted distributions shows that the fit has been
successful.
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FIG. 5. (Color online) (a)–(d), (m)–(p) Images of the back focal plane. Different integration areas are highlighted with a white frame.
(e)–(h), (q)–(t) The associated experimental scanning images. Each pixel of a scanning image represents the measured power value within the
integration area for the corresponding particle position. (i–l), (u–x) Fitted distributions.

To compare the reconstructed beam with the calculated
distributions of |Etot|2, |Ex |2, |Ex |2, and |Ez|2 (see main text
Fig. 2), we insert the fitted multipole expansion coefficients

in Eq. (A1). The z component of the Poynting vector Sz

is proportional to Re[E × (i∇ × E)∗]z and can be calculated
accordingly. The results are plotted in Fig. 4 in the main text.
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