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Swarm optimization for adaptive phase measurements with low visibility
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Adaptive feedback normally provides the greatest accuracy for optical phase measurements. New advances in
nitrogen-vacancy-center technology have enabled magnetometry via individual spin measurements, which are
similar to optical phase measurements but with low visibility. The adaptive measurements that previously worked
well with high-visibility optical interferometry break down and give poor results for nitrogen-vacancy-center
measurements. We use advanced search techniques based on swarm optimization to design better adaptive
measurements that can provide improved measurement accuracy with low-visibility interferometry, with
applications in nitrogen-vacancy-center magnetometry.
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I. INTRODUCTION

An important feature of quantum mechanics is that it
imposes fundamental limits on how accurately physical
quantities can be measured. On the other hand, by taking
advantage of the features of quantum mechanics, one can
perform measurements that are far more accurate than would
otherwise be possible. Many types of precision measurement
use a form of interferometry. One particular example is optical
interferometry, which is used to measure distance via changes
in phase. In this case, if one uses N independent photons, then
the accuracy of the phase measurement scales as 1/

√
N . On the

other hand, if one takes advantage of quantum mechanics by
using N photons in a special entangled state, then the accuracy
can scale as 1/N , yielding vastly higher accuracy for large
N [1–3].

A commonly considered entangled state is the NOON state,
where N photons are in a superposition of being all in one
arm of the interferometer or the other [4–6]. These states
have the advantage that they provide accuracy scaling as 1/N ,
with the drawback that the phase needs to be initially known
to this accuracy; otherwise, the measurement is ambiguous.
One way of interpreting the accuracy is that m measurements
with m copies of this state will yield accuracy 1/(N

√
m). An

alternative approach is to combine measurements using NOON
states with many different values of N . The measurements with
smaller values of N are used to resolve the ambiguity in the
measurements with larger values of N . This is the approach
used in Refs. [7,8]. Instead of considering NOON states, one
can instead consider multiple passes through a phase shift [9].

Another area of interferometry is that using transitions
in atomic or solid-state systems. This can be used for time
standards or frequency measurement or probing physical
quantities that affect the frequency. The particular application
we consider here is the use of a single nitrogen-vacancy
(NV) center in diamond to probe the magnetic field at
the nanoscale [10–15]. Experiments in such systems have
demonstrated sensitivity of ∼3 nT [11] and spatial resolution
of ∼5 nm [12]. The NV center has excellent properties for
magnetic sensing because it can be individually addressed and
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maintains spin coherence for a significant period of time at
room temperature.

A fundamental difficulty with these measurement tech-
niques is that the measurement signal has periodic modulation.
The measurement time is either restricted to half an oscillation
period, or the magnetic field range must be known accurately
in advance. This is essentially the same problem that occurs
when performing phase measurements with NOON states,
and it is therefore natural to apply the same measurement
schemes as were developed for NOON states. This is what was
proposed in Ref. [16], and it was experimentally demonstrated
in Refs. [17–20]. For this system the interpretation is that the
measurements provide a high dynamic range, rather than a
quantum improvement as in the case of NOON states.

In optical interferometry, it has been found that adaptive
measurements are typically the most accurate [7,9,21–25].
That is, information from early parts of the measurement are
used to adjust how the measurement is performed. In fact, for
measurements on a single mode, nonadaptive measurements
are unable to achieve better than 1/

√
N scaling even for

highly nonclassical states [26]. In contrast, for measurements
on multiple time modes, such as measurements on multiple
NOON states, nonadaptive measurements can yield the same
accuracy scaling as adaptive measurements [8,27].

An important difference between optical measurements
and measurements with NV centers is that the NV-center
measurements have lower visibility. There is both a reduced
initial visibility, and the visibility decreases exponentially with
interaction time due to decoherence. In the experiment in
Ref. [17] the initial visibility is only about 80%, whereas
visibilities in optical interferometry are often 98% or bet-
ter [9]. It turns out that when the visibility is this low, the
adaptive measurement schemes that have been developed
in previous work become very inaccurate [16]. That is
why nonadaptive measurements were used in Refs. [17,18].
Even the nonadaptive measurements have somewhat poor
performance for low visibility. It should be possible for some
adaptive method to provide improved performance because
adaptive measurements are more general than nonadaptive
measurements.

The adaptive techniques that were considered for NV-
center magnetometry before were those based on the tech-
nique from Refs. [21,22]. This technique only optimizes
the measurement locally, in the sense that it minimizes the
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variance after the next detection. An alternative technique
is to use global optimization to minimize the final variance
at the end of the measurement. Such an optimization is far
more challenging, but particle swarm optimization techniques
have been found to be effective for single-time-mode adaptive
measurements [28,29]. Particle swarm optimization has also
been used to design nonadaptive measurements for the related
task of Hamiltonian parameter estimation [30]. An alternative
technique for measurements with multiple NOON states of
different sizes was proposed by Cappellaro [31]. Here we
combine particle swarm optimization techniques with the
method of Cappellaro to find adaptive measurements that
provide improved performance for NV-center magnetometry.

II. RAMSEY INTERFEROMETRY

In this section we summarize Ramsey interferometry and
how it is used with NV centers. The probe state is prepared
in the superposition state (|0〉 + |1〉)/√2. Given that the
energy-level splitting is �E, the state evolves over time t

to (|0〉 + e−it�E/�|1〉)/√2. In the case we are interested in,
the energy-level splitting is due to the different spin states
and is proportional to the magnetic field. Therefore the state
is (|0〉 + e−2itγB |1〉)/√2, where γ is the gyromagnetic ratio.
For readout, the state is measured in the basis (|0〉 ± |1〉)/√

2. The probabilities of the measurement results are
then

P (±|B) = 1
2 [1 ± cos(2tγB)]. (1)

The negatively charged NV center, denoted NV−, has
an energy-level diagram as shown in Fig. 1. There are two
sets of energy levels, 3A and 3E, labeled by the irreducible
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FIG. 1. (Color online) The energy-level structure of an NV cen-
ter. (a) There are two sets of energy levels, 3A and 3E. We consider the
electronic spin state ms = 0 of 3A, which has the further hyperfine
splitting into mI = 0 and ±1. (b) The structure of the NV center,
consisting of a substitutional nitrogen impurity N (blue circle)
adjacent to a vacancy V (black circle), tetrahedrally arranged with
respect to each other and to the nearby carbon atoms C (red circles).

representations of the symmetry group of the defect center.
There are three allowable electronic spin states for each, with
ms = 0 and ±1. The electronic spin states ms = ±1 for 3A
were used in Ref. [18]. In the case of 14N, the energy level
ms = 0 for 3A is further split into nuclear energy levels mI = 0
and ±1. The nuclear spin states mI = 0 and −1 were used in
Ref. [17]. These were then mapped to electronic spin states for
readout.

In order to obtain the superposition state, Ref. [17]
initialized the system in the mI = 0 state, then used a π/2 pulse
to obtain a superposition of mI = 0 and −1. After allowing the
system to accumulate a phase depending on the magnetic field,
another π/2 pulse was used; then the system was measured
in the mI = 0 and −1 basis. The advanced phase estimation
algorithms developed in optics depend on using a controllable
phase that is either controlled in a predetermined way (in the
nonadaptive case) or based on the results of measurements
(in the adaptive case). In optics this controlled phase can be
implemented by putting a phase modulator in one arm of an
interferometer. In the interferometry experiment in Ref. [17]
this controlled phase was implemented by changing the phase
of the second π/2 pulse. By changing the phase of the pulse,
the system could be rotated around the x or y axis of the Bloch
sphere.

In general, consider a rotation of the form

R(θ ) = exp[i(σx sin θ + σy cos θ )π/4]. (2)

Performing this rotation followed by a measurement yields the
probabilities

P (±|B) = 1
2 [1 ± cos(2tγB − θ )]. (3)

Hence this technique provides a controlled phase that is
mathematically equivalent to that used in optics.

For the phase measurement technique of Refs. [16–18],
the times used are multiples of a base time τ . It is therefore
convenient to define a phase

φ := 2γBτ. (4)

The phase shifts will be of the form 2kφ. No multiples of φ

smaller than 1 will be considered, so φ is measured in the
range (−π,π ]. The corresponding range for measurement of
B is (−Bmax,Bmax], where

Bmax := π

2γ τ
. (5)

An important feature of Ramsey interferometry is the visi-
bility of the interference. It starts significantly less than 100%,
then exponentially decays with time due to decoherence.
Taking this into account, the probability distribution for the
measurement results is [16]

P (±|φ) = 1
2

[
1 ± fde

−2kτ/T2 cos(2kφ − θ )
]
, (6)

where fd is a factor representing the visibility of the measure-
ment and T2 is the transverse spin coherence time. The time T2

indicates the decay rate of spin coherence in the system and sets
an effective limit on the maximum duration of measurements
on the system.

If one were to just use all measurements with the same
interaction time τ , then for a total interaction time T the phase
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variance would be no less than 1/N , where N := T/τ . This
corresponds to an uncertainty in B lower bounded as

�B � 1

2γ τ
√

N
. (7)

We can reduce the variance by increasing τ , but that also
reduces the range of the measurement. The dynamic range
(the ratio of the maximum magnetic field that can be detected
to the uncertainty) is upper bounded as

Bmax

�B
� π

√
N. (8)

In contrast, when we use multiple interaction times, the
phase variance is lower bounded as approximately (π/N )2

[the exact lower bound is in Eq. (15)]. The corresponding
upper bound to the dynamic range is then

Bmax

�B
∼< N. (9)

That is, we potentially obtain a square improvement in the
dynamic range by using measurement techniques with mul-
tiple interaction times. This is analogous to the improvement
from the standard quantum limit to the Heisenberg limit with
NOON states.

III. MEASUREMENT TECHNIQUES AND ANALYSIS

A. Bayesian estimation

In order to determine estimates of the phase (and thereby
the magnetic field), it is convenient to use Bayesian estimation
to calculate the probability distribution for the system phase
based on successive measurement results [21,22]. This enables
one to calculate the exact phase variance for a given measure-
ment scheme [21,22]. It is assumed that the magnetic field
is initially unknown, other than being confined to the range
(−Bmax,Bmax]. This means that there is no initial knowledge
of the phase, so the prior distribution is

P (φ|�u0) = 1

2π
. (10)

Here the notation that is used is that the successive mea-
surement results are u1, u2, and so forth, and a vector of n

measurement results is �un := (u1, . . . ,un). The initial vector
of zero length before any measurement results are taken is �u0.

Each interferometric measurement provides additional in-
formation about the phase φ and therefore the magnetic field.
This information is quantified by using Bayes’ rule to update
the probability distribution as

P (φ|�un) ∝ P (un|φ)P (φ|�un−1), (11)

where un is the outcome of the most recent measurement. Note
that the denominator of the Bayesian function has not been
explicitly given here as it is independent of the measurement
outcome and serves only as a normalizing factor for the
probability distribution. The formula to use for P (un|φ) is
given in Eq. (6).

B. The Fourier series representation

As the Bayesian probability distribution is a product of
sinusoids, it is convenient to use the Fourier series of the

probability distribution function to represent it. We write the
general form of the probability distribution as

P (φ) =
∞∑

w=−∞
bweiwφ. (12)

Note that, in practice, the sum need not be taken to infinity
because the probability distribution is a product of a limited
number of sinusoids.

Combining the representation above with Eq. (6), it is
possible to derive the simple update rule for the coefficients of
the Fourier series

bn
w = 1

2
bn−1

w + unV

4
bn−1

w−2k e
−iθ + unV

4
bn−1

w+2k e
iθ , (13)

where V := fde
−2kτ/T2 . Note that this formula is only appli-

cable when the system is restricted to integer multiples of
the interaction time, which will be the case for the metrology
methods considered within this paper. Numeric simulations of
the phase estimation process may be performed by tracking the
coefficients of the probability distribution and updating them
for each measurement using the formula given above.

To estimate the accuracy of the phase measurement, it is
convenient to use the Holevo variance [32]

VH := 1

|〈ei(φ̂−φ)〉|2 − 1, (14)

where φ̂ is the estimate of the phase. To account for biased
estimates of the phase, one can use 〈cos(φ̂ − φ)〉 in place of
〈ei(φ̂−φ)〉. The Holevo variance is close to the usual variance
for narrowly peaked distributions. For phase an advantage of
the Holevo variance is that it is naturally modulo 2π . That
is, a phase close to −π is regarded as also close to π . In the
case where the phase is used for measuring the magnetic field,
this is a little problematic because an estimate near −Bmax

would be regarded as accurate if the actual magnetic field is
near Bmax.

To avoid the problem of having a large error in the
estimate of the field near ±Bmax, one can consider an initial
probability distribution for the magnetic field that is in the
range (−B ′

max,B
′
max], where B ′

max = Bmax − c�B. Here c is a
constant chosen such that the probability of the error (in the
magnetic field estimate) being larger than c�B is negligible.
Then the actual dynamic range would be B ′

max/�B, but this
only differs from Bmax/�B by a constant. We do not consider
that correction in this work because we consider a large
dynamic range where it is negligible.

Another feature of the Holevo variance is that it means
only one coefficient of the Fourier series for the probability
distribution is important. First, the optimal phase estimate to
use is φ̂ = arg(b−1) [22]. Second, the Holevo variance can be
determined exactly by summing the value of |b−1| over all
combinations of measurement results. See Ref. [27] for an
explanation of how this is done. It is therefore unnecessary to
track all nonzero coefficients, and we can restrict ourselves to
recording those that contribute to the final value of b−1. This
considerably simplifies the calculation. The calculation can be
further simplified by noting that the probability distribution
is real, so b−w = b∗

w, and only half the coefficients need be
stored.
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The lower bound to the Holevo variance is [21,33]

VH � tan2

[
π

N + 2

]
. (15)

This bound is slightly less than (π/N )2, but it approaches
(π/N )2 in the limit of large N . The lower bound 1/N given
in Sec. II for measurements with equal interaction times was
also in terms of VH . In that case it is not a tight lower bound,
and there does not appear to be a known analytic expression
for the tight bound.

C. Phase measurement protocols

There are several different aspects of the phase estimation
procedure that can be controlled with the aim of achieving the
best possible estimate. One can obtain improved performance
with entangled states; for example, the equivalent of optical
NOON states would be N entangled NV centers. Entangled
NV centers have been demonstrated [34] but are not yet at the
stage where they can effectively be used for magnetometry.
For this reason we consider the improvement of the choice of
interaction time and controlled phase θ .

The procedure to perform the phase is to begin with the
longest viable interaction time and then systematically reduce
it by a factor of 2, performing multiple repetitions for each
interaction time. In the following we use the terminology
“detection” for the individual measurements, to distinguish
them from the overall measurement based on the combination
of these individual detections. The initial interaction time is
2Kτ , and the sequence of multipliers is 2K,2K−1, . . . ,21,20.

The number of detections used for the longest interaction
time is denoted G, and each time the interaction time is halved,
the number of detections is increased by F . Therefore, for
interaction time 2kτ , the number of detections is

Mk = G + F (K − k). (16)

The total interaction time used is then [16]

T = τ [G(2K+1 − 1) + F (2K+1 − 2 − K)]. (17)

This sequence with varying numbers of detections was
introduced in Ref. [8] and used in Refs. [16–18,20].

Although it was found to be possible to take F = 0 for
adaptive measurements [9], for nonadaptive measurements it
is necessary to take F > 0 [8]. Reference [16] found that
the nonadaptive measurements gave better results than the
adaptive technique of Ref. [9] for poor visibility. Nevertheless,
if the initial visibility was too low, the nonadaptive measure-
ments were still quite poor. The experiments in Refs. [17,18]
addressed this by increasing the number of detections for each
interaction time. Reference [17] used G = 36 and F = 8,
whereas Ref. [18] used G = F = 9.

The key difference in our approach is how we adjust
the controlled phase θ based on the measurement results. In
general, the strategy for choosing the controlled phase based
on measurement results can be described by a binary decision
tree, as in Fig. 2. The approach used in Ref. [28] was to choose
the size of the step dependent on the detection result and the
number of previous detections.

A more common approach is to update the controlled phase
based on the estimate of the system phase. This approach

FIG. 2. An illustration of a basic symmetric protocol decision
tree. The horizontal axis indicates the phase offset from its initial
setting.

is essentially an adaptive homodyne measurement, similar to
Refs. [24,35]. Here, after detections with interaction times
down to 2kτ , the phase information has only been obtained
modulo 2π/2k . This means that the only nonzero Fourier
coefficients bw are those where w mod 2k = 0. This is
advantageous for computation because it means that only
those coefficients need be recorded. However, it means that
one cannot use b−1 for an estimate of the phase (unless
k = 0). Instead, one can use b−2k for an estimate of the phase
modulo 2π/2k; that is, it is an estimate of 2kφ. Taking θ to
be an estimate of 2kφ plus π/2 yields the point where the
probabilities in Eq. (6) are most sensitive to φ. One can also
choose the controlled phase to minimize the phase variance
after the next detection [9,21,22,27].

Nevertheless, this adaptive approach performs very poorly
with reduced visibility of the interference. Recently, a variation
was proposed by Cappellaro [31] for this type of phase
estimation, in which the controlled phase is updated only after
each change of interaction time. That is, when the interaction
time is changed from 2kτ to 2k−1τ , the controlled phase is
taken to be

θ = 1
2 arg(b−2k ). (18)

An estimate of 2kφ is obtained as arg(b−2k ). This is then divided
by 2 to obtain an estimate of 2k−1φ, which is needed because
one has 2k−1φ − θ in the argument of the cosine in Eq. (6).

Note that there is ambiguity modulo π in the estimate of
2k−1φ, but this is unimportant because adding π yields equiva-
lent results. Specifically, adding π exchanges the probabilities
for detection results u = +1 and u = −1. Hence, if π is added
and the detection result is u = −1, the following calculations
are the same as if π were not added and the detection result
were u = +1. This means that the same variance must be
obtained regardless of whether π is added.

Formula (18) does not have π/2 in it, so it does not give
the point where the probabilities are most sensitive to φ.
However, it turns out that when π/2 is not used, this is the
phase that minimizes the variance after the next detection (after
the change in interaction time). This can be verified using the
formula in Ref. [22]. Note that this phase is locally optimal, in
that it minimizes the variance after the next detection, but is not
(necessarily) globally optimal because it need not minimize the
variance at the end of the measurement.
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FIG. 3. (Color online) A performance comparison of different
optimization methods for an example simulation. The methods
shown are Matlab’s inbuilt nonlinear programming suite, a simulated
annealing approach, and the particle swarm algorithm. Each was
given the same runtime for a phase estimation simulation task.

IV. OPTIMIZATION ALGORITHMS AND TECHNIQUES

To find an improved adaptive protocol for this type of
phase estimation system, we applied numerical optimization
to minimize the variance estimated by repeated simulations.
Several different optimization algorithms were tested, includ-
ing nonlinear programming methods and simulated annealing;
however, we found that the procedure which gave the best
result in a reasonable amount of time was particle swarm
optimization (PSO), which was also used in [28,29].

A comparison of some example results from the three
different techniques is shown in Fig. 3. These calculations
were for all the same interaction time τ . Because N is the
total interaction time divided by τ , here it is the number of
detections. For this example T2 was taken to be infinite for
simplicity. Approximately the same calculation times were
allowed in each case. Matlab’s inbuilt optimization routine
produced the largest variances. Simulated annealing produced
somewhat improved results, and PSO produced the smallest
variance.

The PSO algorithm uses a group of interacting “particles”
to search the phase space of the problem. Each particle has a
velocity which is updated with semirandom adjustments that
are dependent on the best values found by both the individual
particle and the entire group. The formula for the velocity
update is

�v′ = χ [�v + cgrg(�xg − �x) + clrl(�xl − �x)], (19)

where �x is the particle position, �v is the particle velocity, and
�v′ is the updated velocity. The variables �xg and �xl are the
currently known global and local optimums, respectively, χ

is an overall damping factor to ensure convergence, cg and
cl are weightings for the current global and local optimums,
respectively, and rg and rl are random numbers that are chosen
uniformly in the interval [0,1) at each step. The quantities
χ , cg , and cl are constant throughout the procedure; we used

χ = 0.729 and cg = cl = 2.05. These are the weighting values
recommended by Kennedy and Eberhart [36], the developers
of the algorithm, and we found these to perform relatively
well.

The space consisted of the phase increments after each
detection. That is, after each detection there was an increment
in the controlled phase θ that depended on the number of
the stage and the detection result but not on prior results.
The position is the set of these phase increments. The initial
positions were chosen uniformly at random in the space. The
initial velocities were chosen uniformly at random, with the
maximum velocity corresponding to half the size of the space
per iteration. The maximum velocity tended to act as a soft
bound on the area covered, as the particles would usually stay
within an area of dimensions that were roughly 3 times the
maximum velocity.

We used fixed boundaries since we were examining a
domain equivalent to one full phase rotation. The phase space
had reflective boundaries to prevent a trapping effect near the
edges. The simulations used ten particles; we tested higher
numbers of particles, but that did not improve the performance.
The maximum number of iterations was set at 300 to allow the
particles to fully converge.

V. SIMULATION AND OPTIMIZATION
OF MEASUREMENT PROTOCOLS

We ran simulations to compare the performance of several
different protocols. In each case, we used a sample size of at
least 216 (65 536), which is intended to be sufficiently large
to ensure accurate results while still being tractable for the
computation equipment we used. In order to reduce the random
variation just due to the sampling, we used the same set of
random numbers each time. At the end we used a different set
of random numbers to obtain the final estimate of the variance.
This is to ensure that the small variance was not just an artifact
of the particular random numbers used.

For our optimized adaptive stepping, the optimization
program allowed for asymmetric steps, meaning that the
size and direction of a step after a detection outcome are
independent of the step resulting from the alternative outcome.
This also means that we were required to optimize over twice
as many variables.

A further consideration was the number of detections for
each interaction time. For most of the results, we used the
values G = 6 and F = 2, which were found to be sufficiently
large to give improved scaling at high visibility while also
being useful for comparison with results from other work,
such as [16]. Smaller detection numbers were found to perform
poorly for all protocols.

The results are shown in Figs. 4 and 5, with panels (a)
and (b) corresponding to initial visibilities of fd = 95% and
fd = 85%, respectively. In Figs. 4 and 5 we took T2 = 103τ . In
Fig. 4, the results for nonadaptive measurements are shown, as
used in Ref. [16]. For initial visibility of fd = 95% the product
VH N decreases with N , whereas for fd = 85% the product
VH N slightly increases with N . These results are similar to
those in Ref. [16] (see Fig. 3 of that work).
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FIG. 4. (Color online) A comparison of variances for different
methods vs N (the ratio of the total interaction time to τ ). Shown are
lines for a nonadaptive decision-tree protocol, a phase update protocol
based on Cappellaro’s work, and a phase update protocol with a
reduced number of detections (G = 2, F = 1). The limit for a single
interaction time is shown as the dashed line, and the limit for multiple
interaction times is shown as a solid line. (a) and (b) have initial
visibilities of fd = 95% and fd = 85%, respectively. All protocols
shown other than the reduced-detection phase update protocol use
G = 6 and F = 2.

Note that VH is inversely proportional to the square of the
dynamic range; that is,

VH = π2

(
�B

Bmax

)2

. (20)

This means that the limit to the dynamic range for equal
measurement times (8) corresponds to VHN being constant.
Similarly, the ultimate limit to the dynamic range in (9)
corresponds to VH N scaling as 1/N . These limits are shown
in Figs. 4 and 5 for reference. It can be seen that for the
nonadaptive measurement the results are quite similar to what
could be obtained for equal interaction times.

An improved result is obtained by only updating the
controlled phase each time the interaction time is reduced,
according to the Cappellaro approach discussed above. This
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FIG. 5. (Color online) A comparison of variances for different
methods vs N (the ratio of the total interaction time to τ ). Shown
are lines for a phase update protocol based on Cappellaro’s work, an
optimized decision-tree protocol, and a hybrid protocol combining
an optimized decision-tree with phase updates. The limit for a single
interaction time is shown as the dashed line, and the limit for multiple
interaction times is shown as a solid line. (a) and (b) have initial
visibilities of fd = 95% and fd = 85%, respectively.

yields a result that beats the equal-interaction-time limit for
visibilities of both 95% and 85%. It has a scaling quite similar
to the ultimate limit, although it is a significant distance above
the line (about a factor of 10). The alternative values G = 2,
F = 1, which yield fewer detections for each interaction time,
give much higher variances.

The phase variances obtained using the PSO method to
choose the controlled phases are shown in Fig. 5. This
improves on the phase update based on Cappellaro’s technique
for a visibility of 95% but not for 85% visibility. To improve
the performance, we tested a combined protocol using both
optimized adaptive steps and a phase update based on the
Bayesian distribution at each change in interaction time. This
method outperformed all others for both visibilities examined.

To be more specific about how this hybrid protocol works,
whenever the interaction time is changed, the controlled
phase is updated according to the Cappellaro formula (18).
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Otherwise, the controlled phase is adjusted according to step
sizes that we search for numerically. This technique should
provide a variance that is no larger than Cappellaro’s technique
because Cappellaro’s technique is obtained if the other step
sizes are zero. Optimizing the other step sizes should only
decrease the variance (unless there was poor convergence of
the optimization).

It might at first be expected that the hybrid protocol should
perform no better than the optimized protocol. However, the
Cappellaro formula depends on all previous detection results,
whereas the optimization provides a time step depending on
only the most recent detection result. This means that the
protocol using only optimized adaptive steps will not be able
to provide the same controlled phases as the hybrid protocol. It
is likely that this is the reason for the improved performance of
the hybrid protocol, although it is also possible that there was
poor convergence of the optimization for the protocol using
only optimized adaptive steps. On the other hand, the hybrid
protocol is not guaranteed to give better performance. This is
because the Cappellaro formula is not globally optimal; that
is, it does not minimize the final phase variance at the end of
the measurement.

Although this hybrid protocol shows scaling similar to the
fundamental limit for moderate values of N , it has an upturn
for the largest values of N . This is similar to the result found
in Ref. [16] and is again due to the fixed coherence time T2.
The largest value of N shown is 8164, which corresponds
to the longest interaction time being 512τ . In comparison, the
coherence time was T2 = 103τ , so the upturn occurs where the
longest interaction time is comparable to T2. This is similar
to the result in Ref. [16]. Hence, although our technique can
provide improved performance for reduced initial visibility, it
is still limited by the coherence time, which is a fundamental
limitation.

VI. CONCLUSIONS

Adaptive measurements usually give more accurate re-
sults than nonadaptive measurements, but previous adaptive
techniques gave poor results for measurements with reduced

visibility. The nonadaptive measurements gave better results,
but when the initial visibility is too small, even nonadaptive
measurements perform poorly. A partially adaptive scheme
was proposed by Cappellaro, which provided some improve-
ment [31].

Here we have used PSO to find a hybrid technique that
uses the adaptive step from Cappellaro as well as optimizing
the other adaptive steps in the measurement. This technique
substantially improves on the technique of Cappellaro, as well
as the nonadaptive technique and the earlier adaptive technique
from Ref. [9]. As a result, this hybrid technique should give
a substantially improved result when applied to NV-center
magnetometry.

This numerical optimization is relatively time-consuming,
but this would not cause a problem for experiments because it
can be performed in advance. That is, the numerical optimiza-
tion provides a lookup table, and during the experiment one
would call up this lookup table, which can be performed very
rapidly. It would be necessary to calculate the adaptive step of
Cappellaro (18) in real time, but that can also be performed
very rapidly.

An alternative approach is to use PSO to search for an
adaptive technique without also using the Cappellaro update
step. It was found that this gives poorer results than the hybrid
technique. For an initial visibility of 95%, it still gave an
improvement over the Cappellaro technique, but it performed
very poorly for 85% visibility.

For these results we have not optimized over the number
of detections for each interaction time. There is a possibility
that modifying the number of detections for each interaction
time may yield a result that is further improved. Further work
remains to be done to determine the best numbers of detections
to use and the dependence of this number on the visibility.
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