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Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials
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Analytical light-bullet solutions of a (3 + 1)-dimensional nonlinear Schrödinger equation with inhomogeneous
diffraction or dispersion and nonlinearity in the presence of the harmonic and parity-time-symmetric potentials
are explored. Diffraction or dispersion and nonlinearity play important roles in the evolutional characteristics
such as amplitude, width, and phase. The compression and broadening behaviors of light bullets are discussed and
compared in the exponential, Gaussian and hyperbolic diffraction or dispersion decreasing media and the periodic
distributed amplification system. Moreover, phase changes of light bullets in different systems are also illustrated.
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I. INTRODUCTION

In classical quantum mechanics, Hermiticity of every
operator is associated with a physical observable. In 1998,
the pioneering work of Bender and co-workers [1] reported
that fundamental physical symmetries such as parity (P ) and
time (T ) reversal may be sufficient (in suitable parametric
regimes) to ensure that the eigenvalues of the Hamiltonian
are real. The Hamiltonian H is invariant neither under parity
operator P̂ , which is defined by the spatial reflection relations
p→ −p and x→ −x (p and x stand for momentum and position
operators, respectively), nor under the time-reversal operator T̂

by p→ −p, x→x, and i → −i. Therefore, the PT symmetric
potential satisfies V (r) = V ∗(−r), with ∗ denoting complex
conjugation [1,2]; that is, the real component of a PT complex
potential must be a symmetric function of position, whereas
the imaginary part should be antisymmetric.

Owing to the mathematical correspondence between the
quantum Schrödinger equation and the paraxial equation
of diffraction [nonlinear Schrödinger equation (NLSE)], the
concept of PT symmetry has been introduced in the field of
optics in recent years. The role of potential V (r) in quantum
mechanics can be played as an optical potential in optics by a
complex refractive-index distribution n(r) = nR(r) + inI (r),
wherein the real component nR(r) describes the refractive-
index profile, while the imaginary part nI (r) denotes the gain
(+) or loss (−) in the system. In optics, the complex refractive-
index distribution obeys the condition n(r) = n∗(−r), namely,
PT -symmetric conditions imply nR(r) = nR(−r) and nI (r) =
−nI (−r), which indicates that the index distribution must be
an even function of position, whereas the gain and loss must
be an odd function.

In standard quantum well semiconductor lasers or semi-
conductor optical amplifiers and photorefractive crystals, gain
or loss levels are approximately ±40 cm−1 at wavelengths
approximately to 1 μm. These typical values are sufficient to
observe PT behavior [3,4]. Moreover, cubic, quadratic, and
photorefractive nonlinearity conditions in optics also provide
an additional degree of freedom to observe PT behavior [3,5].
In nonlinear optics, Musslimani et al. [5] was the first research
group to realize optical spatial solitons in PT -symmetric
potentials. The proposed PT systems can be realistically im-
plemented through a judicious inclusion of gain or loss regions
in optical waveguides [6]. More recently, optical PT symmetry

was experimentally observed in two-element coupled systems
composed of waveguides with gain and loss [7,8].

Quite recently, soliton propagations in optical media with
PT symmetry are presently attracting great interest both from
the theoretical and from the applicative points of view. The
PT symmetry can lead to altogether new optical dynamics,
such as abrupt phase transitions [9], the appearance of power
oscillations, and secondary emissions [6], etc. Optical solitons
in PT -symmetric periodic potentials were investigated [10].
Stable bright spatial solitons in defocusing Kerr media with
PT -symmetric potentials have also been reported [11]. Dark
solitons and vortices in PT -symmetric nonlinear media
were discussed, too [12]. Two-dimensional (2D) solitons in
defocusing Kerr media [11] and nonlocal media [13] with
PT -symmetric potentials have been exhibited.

Spatiotemporal localized structures such as optical soli-
ton [14,15], similariton [16,17], rogue wave [18], and light
bullet (LB) [19,20] have been a subject of intense investiga-
tion in long-distance communication and all-optical ultrafast
switching devices. Spatiotemporal solitons or bullets may
be understood as the result of the simultaneous balance
of diffraction and group velocity dispersion (GVD) by the
transverse self-focusing and nonlinear phase modulation in
the longitudinal direction, respectively [21]. Many of these
spatiotemporal localized structures are nonautonomous (this
terminology was presented first by Serkin [22,23]). However,
spatiotemporal localized structures in PT -symmetric poten-
tials are relatively less reported.

In this present paper, we first obtain LB solutions based
on a (3 + 1)-dimensional (3D) variable-coefficient NLSE
in harmonic and PT -symmetric potentials and discuss
the dynamical behaviors of LB in different diffraction or
dispersion decreasing media (DDM). The stability of these
LB solutions is also investigated. These results may provide
alternative methods in potential applications of synthetic
PT -symmetric systems.

II. MODEL AND TRANSFORMATION

The 3D variable-coefficient NLSE in harmonic and PT -
symmetric potentials has the form

iuz+ β(z)

2
(�⊥u + utt )+χ (z)|u|2u+γ (z)r2u + UPT u = 0,

(1)
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where �⊥ = (∂2
x ,∂2

y ),r ≡ (x,y,t), the complex envelope of
the electrical field u(z,r), longitudinal z and transverse x,y

coordinates, and comoving time t are respectively normalized
as (k0w0)−1(n2/n0)−1/2, the diffraction length LD ≡ k0w

2
0,

with the input width unit w0 with the wave number k0 ≡
2πn0/λ at the input wavelength λ and

√
LD . All coordinates

are made dimensionless by the choice of coefficients. Variable
coefficients β(z), χ (z), and γ (z) represent the diffraction
or dispersion, nonlinearity, and harmonica potential coef-
ficients, respectively. The complex PT -symmetric poten-
tial UPT (z,r) = v(z,r) + iw(z,r). Even function v(z,r) ≡
k2

0w
2
0nR(z,r) and odd function w(z,r) ≡ k2

0w
2
0nI (z,r) are the

real and imaginary components of the complex PT -symmetric
potential, respectively, and correspond to the index guiding
and the gain or loss distribution of the optical potential,
respectively.

In the context of the Bose-Einstein condensate, Eq. (1),
exchanging z and t , is also called the Gross-Pitaevskii
equation, which governs the evolution of matter waves. If
v = 0,w = γ (z), the model in [24–26] can be recovered. If
γ = 0,v = 0,w = γ (z), Eq. (1) governs the propagation of LB
in [19]. When β and χ are both constant and γ = 0, Eq. (1)
is the governing equation in [20]. When β is a constant and
v = 0,w = γ (z), Eq. (1) is the corresponding model in [27].

In order to derive the analytical LB solutions for Eq. (1),
substituting the transformation

u(z,r) = ρ0ω
−3/2U (Z,X,Y,T ) exp[iωzr

2/(2βω)], (2)

with

Z =
∫ z

0

β(s)

Bω(s)
dz,ω(z) = ρ2

0Bχ (z)

Gβ(z)
, (3)

X = x

ω(z)
, Y = y

ω(z)
, T = t

ω(z)
, (4)

into Eq. (1) yields a simpler NLSE,

iUZ + B

2
(UXX + UYY + UT T ) + G|U |2U + VPT U = 0,

(5)

with VPT (X,Y,T ) = V (X,Y,T ) + iW (X,Y,T ) and two con-
stants B and G.

Further, variable coefficients in Eq. (1) exist the following
constraints as follows:

γ (z) = βωzz − βzωz

2β2ω
, (6)

and

v(z,x,y,t) = β(z)

Bω(z)
V (X,Y,T ),

w(z,x,y,t) = β(z)

Bω(z)
W (X,Y,T ). (7)

From this relation (2), we know that solutions of Eq. (5)
can be as seeds to generate various solutions of Eq. (1) under
conditions (6) and (7). Note that functions v and w must
satisfy the restraint of even and odd functions, which make the
equation more difficult to solve. Therefore, it is very important
to obtain soliton solutions of Eq. (5).

III. SOLUTIONS TO THE SIMPLER NLSE

We seek a solution of the 3D NLSE (5) in the form

U (Z,X,Y,T ) = 
(X,Y,T ) exp [iλZ + i�(X,Y,T )] , (8)

where 
 and � are real valued functions that satisfy the
following differential equations:

B

2
(�
 − |∇�|2
) + V (X,Y,T )
 + G
3 = λ
, (9)

B

2

�� + B∇� · ∇
 + W (X,Y,T )
 = 0. (10)

First, we consider the complex PT -symmetric potential of
the Scarff II type in three dimensional extension as

V (X,Y,T ) = (
2 + W 2

0 /9
)
[sech2(X) + sech2(Y ) + sech2(T )]

+ (
V 2

0 − 2 − W 2
0 /9

)
sech2(X)sech2(Y )sech2(T )

(11)

and

W (X,Y,T ) = W0[sech(X)tanh(X) + sech(Y )tanh(Y )

+ sech(T )tanh(T )], (12)

which satisfies the properties of PT symmetry: V (X,Y,T ) =
V (−X,−Y,−T ) and W (X,Y,T ) = −W (−X,−Y,−T ). This
PT -symmetric potential is an extension of the corresponding
potential in [11,28].

A bound-state nonlinear solution to Eqs. (9) and (10) must
satisfy the localization condition 
 → 0 as (X,Y,T ) → ±∞.
Thus, we can derive


(X,Y,T ) = ±
√

18 + W 2
0 − 9V 2

0

9G
sech(X)sech(Y )sech(T )

(13)

�(X,Y,T ) = W0

3
{arctan[sinh(X)] + arctan[sinh(Y )]

+ arctan[sinh(T )]}, (14)

with constant B = 2, λ = 3 and two arbitrary constants V0 and
W0.

Therefore, Eq. (5) possesses the following soliton solution

U = ±
√

18 + W 2
0 − 9V 2

0

9G
sech(X)sech(Y )sech(T )

× exp {i[3Z + �(X,Y,T )]} , (15)

where �(X,Y,T ) is given by Eq. (14).
Moreover, Eq. (5) also admits a solution,

U = ±
√

−V2

G
sech(X)sech(Y )sech(T )

× exp

(
i

{
3B

2
Z ±

√
2V1

B
[tanh(X) + tanh(Y )

+ tanh(T )]

})
, (16)
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under the complex PT -symmetric potential

V = B[sech2(X) + sech2(Y ) + sech2(T )] + V1[sech4(X)

+ sech4(Y ) + sech4(T )]+V2sech2(X)sech2(Y )sech2(T )

(17)

and

W = ±2
√

2BV1[sech2(X)tanh(X) + sech2(Y )tanh(Y )

+ sech2(T )tanh(T )], (18)

with two arbitrary constants V1 and V2.
Solution (15) exists in self-focusing media (G > 0) in

Eq. (5) (positive nonlinearity) if 18 + W 2
0 − 9V 2

0 > 0, as well
as in self-defocusing media (G < 0) in Eq. (5) (negative
nonlinearity) if 18 + W 2

0 − 9V 2
0 < 0. Similarly, solution (16)

exists also in both self-focusing and self-defocusing media.
For B > 0,G > 0 in self-focusing media, solution (16) is
reasonable for V1 > 0,V2 < 0, while solution (16) exists for
B > 0,G < 0 in self-defocusing media if V1 > 0,V2 > 0.
This PT -symmetric potential is also a 3D extension of the
corresponding potential in [28].

Note that an abrupt phase transition, which is a new
optical dynamic in PT symmetry, can also be found in
solutions (15) and (16). Figure 1(a) is an isosurface plot of
the phase transition for solution (16). Two kinds of abrupt
phase transitions corresponding to the positive and negative
signs for solution (16) in the X-Y plane are shown in Fig. 1.
In this first case in Fig. 1(b), phase transit from the bigger
value in positive X or Y axis to the smaller value in negative
X or Y axis. The second case in Fig. 1(c) is opposite, that is,
phase transit from the bigger value in negative X or Y axis to
the smaller value in positive X or Y axis. The phase transition
of solution (15) is similar to that in Fig. 1(b). The letter “P”
in Figs. 1(b) and 1(c) denotes “phase,” and this notation also
appears in Figs. 2(e), 4(a), and 4(b).

(b)
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FIG. 1. (Color online) (a) Isosurface plot of phase for Eq. (16).
(b),(c) Two kinds of abrupt phase transitions corresponding to the
positive and negative signs for Eq. (16), respectively. The other
parameters are chosen as V1 = 10,B = 2 at Z = 0.

IV. DYNAMICAL BEHAVIORS OF LBS

From the transformation (2) and solutions (15) and (16),
we can obtain LBs for Eq. (1) under the PT -symmetrical
potentials (7) with Eqs. (11) and (12) and Eqs. (17) and (18).
The peak and width of LBs is related to ρ0ω

−3/2(z) and
ω(z) with ρ2

0Bχ (z)/[Gβ(z)], respectively, and the chirp of
phase is expressed by ωz/[2β(z)ω(z)]. These factors show
that diffraction or dispersion parameter β(z) and nonlinearity
parameter χ (z) strongly influence evolutional characteristics
of LBs including amplitude, width, and phase. Here we
discuss the compressed and broadened behaviors of LBs to
self-focusing and self-defocusing cases in different media.

We next discuss these behaviors in self-focusing media.
The first case is a medium with decreasing exponential diffrac-
tion or dispersion β(z) = β0 exp (−δz), χ (z) = χ0 exp (−δz −
σz) [29,30], where β0 and δ are related to diffraction or
dispersion, δ > 0 corresponds to DDM. χ0 and σ are the
parameters to describe the nonlinearity. When σ > 0, the
solution above can be applied to the problem of soliton propa-
gating in optical fiber amplifiers. For σ < 0, solution above
has application to the soliton management communication
links where fiber losses are compensated periodically by an
amplification system.

As shown in Figs. 2(a) and 2(b), the complex
PT -symmetric potential (7) with (11) and (12) in DDM
satisfies the properties of even and odd functions, respectively,
with regards to x,y and t ; that is, v(x,y,t) = v(−x,−y,−t)
and w(x,y,t) = −w(−x,−y,−t). Under this potential,
the spatiotemporal localized LB (2) with (15) shown in

(a)
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FIG. 2. (Color online) The profiles of (a) even function v and
(b) odd function w at t = 10 in DDM. Isosurface plots of compressed
LBs in DDM at (c) z = 0 and (d) z = 50. (e) Phase change
corresponding to (d). The parameters are chosen as β0 = 0.5,χ0 =
0.3,δ = 0.025,σ = 0.02,B = 2,G = 1,ρ0 = 1,W0 = 10,V0 = 3.
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FIG. 3. (Color online) Isosurface plots of broadened LBs in
PDAS at (a) z = 0 and (b) z = 50. (c) Phase change along the
propagation distance z. (d) The comparison of amplitude and
width of LB in different systems. The parameters are chosen
as β0 = 0.5, χ0 = 0.3, δ = 0.025, σ = 0.02, B = 2, G = 1, ρ0 =
0.4, W0 = 10, V0 = 1, C = 5, L = 40.

Figs. 2(c) and 2(d) is gradually compressed along the
propagation distance z. The amplitude of LB increases little
by little, while the width gradually decreases. Figure 3(e)

exhibits the phase change to this case in the x-y plane. The
phase of LB is expressed as φ = ωz/[2β(z)ω(z)] + 3Z +
W0{arctan[sinh(X)] + arctan[sinh(Y )] + arctan[sinh(T )]}/3,
which is a result of the superposition of the chirped phase
(parabolic shape) and the abrupt phase transition similarly to
Fig. 1(b). Therefore, the phase shows a change at x = 0 or
y = 0 on the parabolic background from small value in the
negative x or y axis to big value in the positive x or y axis.

Besides the compressed LB, we can discuss the broadened
LB in a periodic distributed amplification system (PDAS)
with β(z) = β0 exp(−δz)χ (z), χ (z) = χ0 + χ1 sin(σz) [31],
where constants β0, δ, χ0, χ1, and σ have similar meanings
to those in DDM. From Figs. 3(a) and 3(b), LB is gradually
broadened along the propagation distance z, and the phase
change will also appear. This phase change is also a result of
the superposition of the chirped phase and the abrupt phase
transition similar to Fig. 1(b). Along the propagation distance
z, the value of the chirped phase adds little by little, and
the influence of the abrupt phase transition on total phase
φ gradually attenuates, as shown in Fig. 3(c).

Moreover, LB (2) with (15) is also broadened when
it propagates in the hyperbolic DDM β(z) = β0{L/[(C −
1)z + L]}χ (z), χ (z) = χ0 + χ1 sin(σz) [32,33] and the Gaus-
sian DDM β(z) = β0 exp[−ln(C)(z/L)2]χ (z), χ (z) = χ0 +
χ1 sin(σz) [32,34]. Parameter C is the inverse of the com-
pression ratio parameter, L denotes length of the medium,
and other parameters are same as those in PDAS. Figure 3(d)
exhibits the comparison of amplitude and width of LB in
different DDMs. LB has the biggest stretch when it propagates
along the hyperbolic DDM and the smallest stretch when it
propagates along the PADS. However, the change of amplitude
has a different case. Within the distance z = 0 and z = 25, the
amplitude of LB decreases fastest in the hyperbolic DDM and
slowest in the Gaussian DDM. From z = 25 to z = 40, the
amplitude of LB decreases fastest in the hyperbolic DDM and
slowest in the PDAS. From z = 40 to z = 50, the amplitude
of LB decreases fastest in the Gaussian DDM and slowest in
the PDAS.

In self-defocusing media, we can also find the compression
and broadened behaviors of LB (2) with (16). The evolutional
behaviors of the intensity in self-defocusing media are similar
to that above discussion in self-focusing media; however,
the phase change has opposite case. As shown in Figs. 2(e)
and 3(c), the phase change at x = 0 or y = 0 from a small
value in the negative x or y axis to a big value in the positive x

or y axis. In self-defocusing media, the phase change at x = 0
or y = 0 is from big value in the negative x or y axis to small
value in the positive x or y axis [see Fig. 4(a)].

Similarly to LB in Figs. 3(a) and 3(b), the broadened
behavior of LB (2) with (16) in PDAS can also been found.
However, the phase of LB (2) with (16) in PDAS is different
from that in Fig. 3(c). The parabolic shape opens downward
in this case, and the phase change at x = 0 or y = 0 is also
from big value in the negative x or y axis to small value
in the positive x or y axis. In this example, the complex
PT -symmetric potentials in Figs. 4(c) and 4(d) have different
profiles compared with those in Figs. 2(a) and 2(b). There
is a symmetric relation between the profiles in Figs. 4(c)
and 4(d) and Figs. 2(a) and 2(b). Obviously, here v(x,y,t)
and w(x,y,t) still satisfy the properties of even and odd
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FIG. 4. (Color online) Phase changes of LB (2) with (16)
in (a) the exponential DDM and (b) PDAS. The profiles of
(c) even function v and (d) odd function w at t = 10 in
PDAS. The parameters are chosen as (a) β0 = 0.5, χ0 = −0.3, δ =
0.025, σ = 0.02, B = 2, G = −1, ρ0 = 1, V1 = 10, V2 = 3; and
(b)–(d) β0 = −0.5, χ0 = 0.5, χ1 = 0.3, δ = 0.025, σ = 0.02, B =
−2, G = 1, ρ0 = 0.4, V1 = −10, V2 = −1.

functions, respectively, with regards to x, y, and t , that is,
v(x,y,t) = v(−x,−y,−t) and w(x,y,t) = −w(−x,−y,−t).

V. STABILITY OF LB SOLUTIONS

In the following, we discuss the stability of analytical
LB solutions. The stability of analytical solutions has
important values in the realistic application because only
stable solutions can be found in the experiment. The current
situation is somewhat confusing and even controversial. Some
authors reported that the spatiotemporal pulses spread out
or collapse [35]. Alexandrescu et al. [36] also pointed out
that the stabilization of solutions in both scalar and vectorial
layered media is difficult to achieve due to the irreversibility
of the internal energy flows between the wave substructures,
e.g., rings and peaks, during propagation. Most of them
consider the stability of radially symmetric structures and
do not include the modulation of diffraction. However,
other authors verified that it is possible to obtain stable LB
solutions with modulating the diffraction or dispersion and
the nonlinearity [19,37,38].

Moreover, in order to avoid the problem of three-
dimensional beam collapse, some mechanisms have been
presented, such as a saturable nonlinearity [39] or an optical
cavity [40]. Stable 3D dissipative localized structures or LBs
have also been studied in the nonlinear Kerr cavity [41],
in the type II second-harmonic generation [42], and in the
optical parametric oscillator [43]. However, our situation is
different: The modulation of the diffraction or dispersion,
the nonlinearity, and PT -symmetric potentials are altogether
affected concurrently.

We start from the linear stability analysis for
Eq. (5). We consider a perturbation of an exact solu-
tion [44,45] U (Z,X,Y,T ) = {Un(X,Y,T ) + ε[R(X,Y,T ) +
I (X,Y,T )] exp (iδZ)} exp (iλZ) of Eq. (5), where ε is an
infinitesimal amplitude, Un(X,Y,T ) is a respective eigenmode
[a solution of Eqs. (9) and (10)], and R(X,Y,T ) and I (X,Y,T )
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FIG. 5. (Color online) Eigenvalue for different cases: (a),(b) self-
focusing nonlinearity; (c) self-defocusing nonlinearity.

are the real and imaginary parts of perturbation eigenfunctions,
which may grow upon propagation with the perturbation
growth rate δ. Inserting this expression into Eq. (5) and
linearizing it around the unperturbed one (the first-order term
of ε), we arrive at the eigenvalue problem

L+R = δI,

L−I = δR, (19)

where δ is an eigenvalue and R and I are eigenfunctions
with Hermitian operators L+ = −B

2 (∂XX + ∂YY +
∂T T ) − 3GUn(X,Y,T )2 − (V + iW ) + λ and L− =
−B

2 (∂XX + ∂YY + ∂T T ) − GUn(X,Y,T )2 − (V + iW ) + λ.
The linear stability of a soliton is decided by the nature of
the spectrum of the above eigenvalue problem (19). If any
eigenvalue δ has an imaginary part, the perturbed solution
would grow exponentially with Z and thus corresponding
solitons become linearly unstable. On the contrary, when
all imaginary parts of δ are equal to zero, solutions can be
completely stable.

Numerical calculations reveal that in the self-focusing
nonlinearity for V0 = 1 these localized modes are stable below
the threshold W0 ∼ 0.021. For W0 > 0.021, the corresponding
localized modes become unstable. Figures 5(a) and 5(b)
display the real and imaginary parts of both the stable and the
unstable localized solutions below and above this threshold.
Linear stability analysis of the localized modes corresponding
to self-defocusing nonlinearity reveals that these modes are
always unstable for all V1 and V2. A numerical solution of
the eigenvalue problem (19) has been shown in Fig. 5(c),
which also implies that the corresponding modes are linearly
unstable.

In the following, we study analytical solutions evolving
along distance when they are disturbed from their analytically
given forms for Eq. (1). We perform a direct numerical
simulation, a 3D split-step Fourier technique, adapted for
z-dependent coefficients, with initial white noise for Eq. (1)
with initial fields coming from the transformation (2) and
solutions (15) and (16) in some cases. Four examples of such
behaviors are exhibited in Fig. 6.
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FIG. 6. (Color online) (a),(b) Stable LBs for Fig. 5(a) in the
exponential DDM and PADS corresponding to Figs. 2 and 3 at z =
100. (c),(d) Unstable LBs for Figs. 5(b) and 5(c) in the exponential
DDM corresponding to Figs. 2 and 4 at z = 100. An added 5% white
noise is added to the initial values. The parameters are the same as
those in the corresponding analytical plots except for these parameters
marked in Fig. 5.

Figures 6(a) and 6(b) essentially present the numerical rerun
of LBs corresponding to Fig. 2 at z = 100 and Fig. 3 at z = 100
except for these parameters marked in Fig. 5(a). The numerical
solution does not give to any visible instability, and good
agreement with analytical solutions is observed. Numerical
calculations indicate no collapse, and stable propagations over
100 diffraction or dispersion lengths are observed except for
some small oscillations. Moreover, LB is more stable in the
PDAS than in the DDM because only small oscillation of
surface for LB appears in Fig. 6(b), but a very small distortion
exists in Fig. 6(a). As the coefficients are trigonometric
functions in the PDAS, the sign-changing nonlinearity is
produced, and this leads to a more stable solution shown in
Fig. 6(b). Figs. 6(c) and 6(d) exhibit unstable LBs for Figs. 5(b)
and 5(c) in the exponential DDM corresponding to Figs. 2
and 4 at z = 100. As expected, LBs which are predicted to be
unstable in Figs. 5(b) and 5(c) cannot maintain their original
shapes, distort and collapse, and ultimately decay into noise.

From these analysis above, we know that in the complex
PT -symmetric potential of the Scarff II type expressed as (11)
and (12), for a certain V0, the value of W0 should be much
smaller than that of V0, which influences the structure of the
index guiding. More important, the value of W0 shows that
the gain (loss) should be enough small; otherwise, any small
fluctuations of the field are amplified (absorbed), eventually
leading to instability. Moreover, for the same parameters of the
complex PT -symmetric potential (i.e., W0 and V0), the sign-
changing nonlinearity in PADS leads to a more stable solution
than that in the DDM. It is seen that after the application of
diffraction or dispersion management LBs remain stable for
larger propagation distances. This shows clearly the effect of
the oscillating diffraction or dispersion coefficient on the wave
stabilization.

VI. CONCLUSIONS

In summary, we review the main points offered in this
paper.

(i) Analytical LB solutions are obtained and tested by
means of direct simulations. We obtain analytical LB solutions
of a 3D NLSE with inhomogeneous diffraction or dispersion
and nonlinearity in the presence of the harmonic and parity-
time symmetric potentials. Diffraction or dispersion and non-
linearity play important roles in the evolutional characteristics
including amplitude, width, and phase. The numerical rerun
to analytical solutions does not give to any visible instability,
and good agreement with analytical solutions is observed.

(ii) The compression and broadening behaviors of LBs are
studied. The compression and broadening behaviors of LBs
are discussed and compared in the exponential, Gaussian, and
hyperbolic DDM and the PDAS. Moreover, phase changes
of LBs in different systems are also illustrated. These phase
changes are the result of the superposition of the chirped phase
and the abrupt phase transition similarly to Fig. 1.

These results are potentially useful for future experiments
and applications of synthetic PT -symmetric systems.
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