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Detrimental consequences of small rapid laser fluctuations on stimulated Raman adiabatic passage
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We discuss the detrimental effect of small rapid random fluctuations of laser-field amplitude and phase upon
the efficiency of stimulated Raman adiabatic passage (STIRAP). Such fluctuations typically accompany the
laser stabilization procedures that produce nearly monochromatic light on top of a much broader bandwidth
Lorentz-profile pedestal which may carry only a few percent or less of the total power. As we will show, their
effects differ qualitatively from the fluctuations that have hitherto been considered (for example, phase diffusion).
We present analytic expressions for the population transfer efficiency of STIRAP when limited by stochastic
fluctuations of this type. These expressions show, in contrast to situations discussed in the past in which population
transfer improves with increasing peak Rabi frequencies, that for the weak broadband noise that accompanies a
strong narrow-spectral component, there is an optimum value for the peak Rabi frequency and that the effect of
fluctuations, although small, cannot be entirely eliminated in practice. The mission of the current work is to point
out that, under the given circumstances, efforts in experiments trying to overcome the detrimental consequences
of fluctuations by increasing the intensity, which is the intuitively proper approach, will not be successful.
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I. INTRODUCTION

A. STIRAP

Stimulated Raman adiabatic passage (STIRAP) has been
intensively investigated for more than 20 years (see reviews
in [1–5] and references therein) as a technique for transferring
population adiabatically between two selected quantum states.
As a view of current literature shows, the STIRAP procedure
has proven very useful for an increasing variety of purposes
in physics, chemistry, and engineering: more than a hundred
articles on this subject appear each year. In its most basic
implementation, the STIRAP technique exposes a three-
state quantum system to two sequential partially overlapping
transform-limited laser pulses. Initially, the population resides
in state |1〉, and the intended target of the population, state
|3〉, is entirely unpopulated. An excited state |2〉 serves as an
intermediary for the population transfer, although it acquires
only a negligible population at all times. The first pulse to
appear, S, or Stokes, has a constant carrier frequency ωS close
to the transition frequency ω23 between states |3〉 and |2〉 while
the constant carrier frequency ωP of the later pulse, P , or
pump, is close to the transition frequency ω12 of the transition
between states |1〉 and |2〉. The two carrier frequencies must
satisfy the two-photon resonance condition between initial and
final states,

ωP − ωS = ω12 − ω23, (1)

where ωnm is the transition frequency between states n and m.
STIRAP has proven particularly useful for producing

ultracold molecules by photoassociation (see, e.g., [6–12]).
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Experiments aiming at the formation of cold molecules in
their lowest quantum state (see, e.g., [13–20]) have, at times,
encountered unexpected difficulties in achieving anticipated
high efficiencies, despite experimental conditions that meet
traditional requirements for laser power and bandwidth.

Whereas transfer efficiencies of 90%–95% are often con-
sidered satisfactory for selective quantum-state preparation
in atoms and molecules, more recent interest in quantum
information processing [21,22] using STIRAP [23–29] calls
for the errors of gate operations to be 10−4 or less [22,30]. It
is thus important to understand possible limitations that would
prevent such achievements by STIRAP.

In this paper we examine one source of unanticipated
difficulty in achieving high efficiency with STIRAP: a noise
source that cannot be overcome by common remedies for
inefficiencies, such as increasing the laser power. Figure 1
shows a spectral line shape typical of those observed for
stabilized diode lasers: a narrow central component atop a
much smaller broad pedestal (cf. [31]). This line shape is the
basis of our subsequent analysis.

B. Adiabatic requirements and limitations

Successful population transfer with STIRAP requires that
the state vector adiabatically follows the dark, or population
trapping, adiabatic state but does not require specific pulse
shapes or intensities, apart from general constraints imposed
to ensure adiabatic evolution: the process is insensitive to
small variations in pulse amplitudes, widths, delay, and single-
photon detuning. This robustness of the STIRAP process has
prompted studies that guide the design of optimized pulses that,
given experimental limitations on pulse duration and intensity,
produce the highest transfer efficiency [30,32–41].
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FIG. 1. (Color online) Spectral line shape, typical for stabilized
diode lasers, assumed in the present analysis.

There has been much work, both theoretical and experimen-
tal, elucidating the conditions needed for complete population
transfer within the STIRAP procedure (see reviews [1–3,5]).
A condition for adiabatic following, for transform-limited
pulses, is that for each pulse the product of peak Rabi
frequency and pulse duration (the temporal pulse area) should
be much larger than π and that population transfer becomes
increasingly complete as the pulse areas become larger. The
most favorable situation occurs when the two pulses each fulfill
a single-photon resonance condition, ωP = ω12 and ωS = ω23,
but these conditions are not necessary: What matters is the
two-photon resonance condition Eq. (1). The consequences of
violating these conditions were analyzed in [42,43]. It is also
desirable for the peak Rabi frequencies to be the same for
both fields (within 10%–20%). In the analysis below we will
assume that the two peak values are equal. However, our basic
conclusions do not depend on this assumption.

Early work showed that if only three nondegenerate states
are involved and if the pulse envelopes are smooth and the pulse
areas are sufficiently large for each pulse, then the population
transfer can be very nearly complete. The detrimental effects
of near degeneracies [44], additional levels [45–49], and a high
density of molecular energy levels [50] have been discussed.

In the present paper we extend earlier work, discussed in
the following sections, that treated the effects of various noise
sources on the STIRAP process. We show that even with well-
stabilized laser fields there can remain a limit on the success
of the STIRAP population transfer.

C. Fluctuations

Irregular uncontrollable changes of the environment of a
quantum system, i.e., fluctuations and noise, affect the success
of any designed quantum procedure such as STIRAP. These
fluctuations enter the rotating-wave approximation (RWA)
time-dependent Schrödinger equation through detunings and
Rabi frequencies. Although the Rabi frequency derives entirely
from the excitation field and therefore incorporates such
fluctuations as it may have, the detuning derives from not
only the laser frequency but also the transition frequencies, and
these undergo fluctuations that originate with the environment,
including variations in neighboring atoms. Such environmental
effects are often treated by means of density-matrix equations

in which there occur relaxation terms that affect, at different
rates, the populations (diagonal elements of the density matrix)
and the coherences (off-diagonal elements). Here we do not
follow that approach but deal directly with a model of the
fluctuating field amplitude and frequency.

The STIRAP procedure relies on the creation and mainte-
nance of a dark state of the system, a superposition of initial
and final states |1〉 and |3〉, with the composition set by the two
fields, that has no linkage to the lossy excited state |2〉. The
effects of typical laser-field fluctuations on this dark state were
considered by Dalton and Knight well before the development
of STIRAP [51,52]. Using a δ-correlated phase-diffusion
model of the laser field (a Wiener-Levy, or W-L, stochastic
process [53], associated with a Lorentz spectral profile), they
found that laser fluctuations dephased the atomic coherences,
with consequent loss of the population trapping associated
with the dark state. They saw that fluctuations removed the
narrow coherence minimum in the absorption spectrum at
the two-photon resonance. However, they also found that
when the driving fields are critically cross-correlated in their
fluctuations (e.g., by deriving one field from the other so
that any laser jitter in the interaction zone is common to
both beams), then the two-photon coherences are unaffected
by laser fluctuations and the coherence minimum persists.
The favorable effects of cross-correlation on STIRAP were
reported, e.g., in Refs. [54–57].

It is important to realize that although it is convenient to
characterize the noise properties of a laser by a single number,
the laser bandwidth, this simplification may be inadequate for
predicting effects produced by the laser: a variety of phase
and amplitude variations can produce the same bandwidth, yet
have very different effects upon excitation, fluorescence, and
other laser-induced processes [53,58–60].

In the early papers on STIRAP there was already concern
about the effect of laser fluctuations and how these would
affect the need to maintain adiabatic evolution in order to
transfer population successfully. Kuhn et al. [61] carried out
the first numerical simulation of STIRAP with a noisy laser.
They used a stochastic model of zero-mean exponentially
correlated noise (an Ornstein-Uhlenbeck, or O-U, process
[53]). They assumed no cross-correlation of the two fields.
Because the O-U process incorporates two parameters (the
spectral density of the noise D and the correlation time
of fluctuations), the laser bandwidth alone is not sufficient
to define the process fully. Predictions based on the O-U
process can be more realistic, but they require more complete
characterization of the laser noise than just bandwidth.

The Ornstein-Uhlenbeck model of the laser fluctuations was
used in an extensive examination of the STIRAP process by
Yatsenko and coworkers [43,54–56]. They found that with this
type of laser fluctuation it was always possible, in principle,
to improve population transfer for a fixed pulse duration by
increasing the peak Rabi frequencies.

Among the other recent papers that have discussed the
detrimental effect of stochastic processes on STIRAP we note
Refs. [62–73].

D. Present work

Stabilizing the lasers is a natural procedure for reducing
fluctuations and diminishing nonadiabatic losses, but our
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analysis in the present work shows that even with such
refinements the transfer efficiency may fall well below the
desired value of unity.

The present work examines how a small stochastic mod-
ulation of the almost-monochromatic laser fields affects the
STIRAP efficiency. Such a field is emitted, for example, by
stabilized diode lasers [31]. When the narrowing of a laser
spectrum is accomplished with the technique of stabilization
to a high-finesse cavity, the resulting laser radiation spectrum
consists of a very narrow line (with a width typically much
less than 1 MHz, seemingly ideal for STIRAP) on a wide
background pedestal (with a width of 1 MHz or more),
as shown in Fig. 1. Typically, the total power of the wide
background is less than 10% of the total laser power. Hitherto,
the consequence of the noise related to the line shape shown
in Fig. 1 on the population transfer efficiency of STIRAP has,
to the best of our knowledge, not been considered.

We here adopt the means of describing laser fluctuations
used earlier [54], but we use a different model for the
underlying stochastic process, one that models the nature of
fluctuations that remain even when the laser has been carefully
stabilized. In contrast to earlier work, we will here show that,
when the field has a small broadband stochastic component,
increasing the peak Rabi frequency with a fixed pulse dura-
tion may not improve the STIRAP efficiency. Although the
effects of nonadiabaticity diminish with increasing peak Rabi
frequency, the stochastic contributions saturate. Consequently,
as we will show, there is an optimum peak Rabi frequency.

II. BASIC EQUATIONS

We consider a three-state quantum system with excitation
linkages in the usual � form: two long-lived, low-energy
states, states |1〉 and |3〉, each linked via electric dipole
interaction to an excited state |2〉.

We assume that the spontaneous radiative decay of the
excited state, which occurs at rate γ , goes entirely to states
other than |1〉 and |3〉 and that there are no interactions directly
linking |1〉 and |3〉. The quantum system interacts, via dipole
transition moments d, with the electric field E(t) of two pulses,
termed Stokes (S) and pump (P ):

E(t) = 1
2 [EP (t) exp(−iωP t − iϕP )

+ ES(t) exp(−iωSt − iϕS) + c.c.]. (2)

These have phases ϕP and ϕS and carrier frequencies ωP

and ωS that are close to the 1 ↔ 2 and 2 ↔ 3 transition
frequencies, respectively.

We model the pulse amplitudes EP (t) and ES(t)
as superpositions of strong, smooth, nonfluctuating real-
valued functions of time EP 0(t) and ES0(t) and small
stochastic complex-valued additive fields εP (t)EP 0(t) and
εS(t)ES0(t):

Ej (t) = [1 + εj (t)]Ej0(t), j = P,S. (3)

With this model the phases ϕP and ϕS are constant; without
loss of generality, we set these equal to zero.

We assume the statistical behavior of εj (t) = ε′
j (t) + iε′′

j (t)
to be

〈εj (t)〉 = 0,

〈ε′
i(t)ε

′′
j (t ′)〉 = 0,

〈ε′
i(t)ε

′
j (t ′)〉 = ε

(ampl)2
j0 exp

(−G
(ampl)
j |t − t ′|) δi,j ,

〈ε′′
i (t)ε′′

j (t ′)〉 = ε
(phase)2
j0 exp

(−G
(phase)
j |t − t ′|) δi,j ,

i,j = P,S, (4)

where angle brackets denote ensemble averages and δi,j is the
Kronecker delta. We introduced here the superscripts (ampl)
and (phase) to stress that for weak modulation the real part
ε′
j (t) is the stochastic amplitude modulation index and the

imaginary part ε′′
j (t) can be considered to be a small phase

modulation:

[1 + εj (t)]Ej0 � [1 + ε′
j (t)] exp[iε′′

j (t)]Ej0. (5)

Note that this phase modulation is different from the phase
fluctuations described by the O-U process. Due to the statistical
behavior (4) the total phase is not diffusing as it is for the O-U
process, but instead, it fluctuates around zero.

The optical spectrum of the field (3), when the amplitudes
are constant, consists of a narrow central component that is
almost monochromatic (treated as a δ function) and two broad
backgrounds of Lorentzian shape with the widths G

(ampl)
j and

G
(phase)
j . These carry the fraction

ε2
0 = ε

(phase)2
j0 + ε

(ampl)2
j0 � 1 (6)

of the total laser power. In real lasers the widths G
(ampl)
j and

G
(phase)
j are almost always equal. Hereafter, for the sake of

simplicity, we will assume

G
(ampl)
j = G

(phase)
j = GJ , ε

(phase)2
0j = ε

(ampl)2
0j = ε2

j0/2.

(7)
Figure 1 shows an example of this spectrum with the width

of the background Gj = 2π × 1 MHz and with the total noise
power equal to 2% of the total laser power (ε2

j0 = 0.02).
As is customary, we adopt the RWA. The three components

of the state vector form a three-component column vector
C(t) with elements {C1(t),C2(t),C3(t)} that obeys the time-
dependent Schrödinger equation,

d

dt
C(t) = −iW(t)C(t), (8)

where W(t) is a 3 × 3 RWA Hamiltonian matrix. For our
assumed one- and two-photon resonance this reads

W(t) = 1
2

⎡
⎢⎣

2ε̇′′
P (t) 	P (t)[1 + ε′

P (t)] 0

	P (t)[1 + ε′
P (t)] −iγ 	S(t)[1 + ε′

S(t)]

0 	S(t)[1 + ε′
S(t)] 2ε̇′′

S(t)

⎤
⎥⎦ . (9)
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Here the off-diagonal elements, the Rabi frequencies,

	P (t) = −〈1|d · EP 0(t)|2〉/�,
(10)

	S(t) = −〈3|d · ES0(t)|2〉/�,

are slowly varying real-valued functions of time.
It is convenient to express the RWA Hamiltonian matrix in

an alternative basis, using the time-dependent “bright” state

b(t) and “dark” state 
d (t),⎡
⎢⎣


b(t)


2(t)


d (t)

⎤
⎥⎦ =

⎡
⎢⎣

sin θ (t) 0 cos θ (t)

0 1 0

cos θ (t) 0 − sin θ (t)

⎤
⎥⎦

⎡
⎢⎣

|1〉
|2〉
|3〉

⎤
⎥⎦ .

(11)

The time-dependent mixing angle θ (t), defined through the
relationship

tan θ (t) = 	P (t)[1 + ε′
P (t)]

	S(t)[1 + ε′
S(t)]

, (12)

involves the noisy modulations term, and as a result, it has
a smooth part and a noisy part. With our assumed pulse
sequence of Stokes before pump, the dark state 
d (t) coincides
initially with the initially populated bare state |1〉, and it aligns
after the pulse sequence with the target state |3〉. Thus by
maintaining the state vector �(t) in this dark state at all
times we accomplish the population transfer |1〉 → |3〉 of a
traditional STIRAP process.

The expansion of the state vector in this basis reads

�(t) = Cb(t)
b(t) + C2(t)
2(t) + Cd (t)
d (t). (13)

After some algebra we obtain the time-dependent Schrödinger
equation for the column vector C(BD)(t) with components
{Cb(t),C2(t),Cd (t)},

i
d

dt
C(BD)(t) = W(BD)(t)C(BD)(t), (14)

where the RWA Hamiltonian matrix in the bright-dark basis
reads (with suppression of explicit notation of time depen-
dence)

W(BD)C(BD) = 1
2

⎡
⎢⎣

0 	rms 2iθ̇ + (ε̇′′
P − ε̇′′

S) sin 2θ

	rms −iγ 0

−2iθ̇ + (ε̇′′
P − ε̇′′

S) sin 2θ 0 0

⎤
⎥⎦

⎡
⎢⎣

Cb

C2

Cd

⎤
⎥⎦ . (15)

Here the rms Rabi frequency 	rms(t) is

	rms(t) =
√

	P (t)2[1 + ε′
P (t)]2 + 	S(t)2[1 + ε′

S(t)]2.

(16)

III. ANALYTICAL RESULTS

A. Formulation

The equations for the state amplitudes read

d

dt
Cd = [ − θ̇ − i

1
2

(ε̇′′
P − ε̇′′

S) sin 2θ
]
Cb,

d

dt
Cb = [

θ̇ − i
1
2

(ε̇′′
P − ε̇′′

S) sin 2θ
]
Cd − i

1
2
	rmsC2,

d

dt
C2 = −i

1
2
	rmsCb − 1

2
γC2. (17)

Two processes will produce changes in the dark-state ampli-
tude: the nonadiabatic coupling term θ̇ that is present with any
pulses and an explicitly stochastic term.

Due to the coupling between the dark state and the bright
state the population of the dark state decreases during the
STIRAP process. We assume the dark-state losses to be small,
and we take Cd = 1 in the equations for the amplitude Cb and
C2. The resulting equations read

d

dt
Cb = −i

1
2
	rmsC2 + θ̇ − i

1
2

(ε̇′′
P − ε̇′′

S) sin 2θ,

(18)
d

dt
C2 = − 1

2
γC2 − i

1
2
	rmsCb.

The presence of decay in Eq. (15) allows one to find
solutions to the Schrödinger equation using perturbation
theory. This was done for nonfluctuating fields in Ref. [74] for
the two-photon resonant case and in Ref. [43] for nonresonant
case. We will again use that approach.

B. Solution procedure

Equations (18) describe a damped harmonic oscillator
driven by the stochastic force. They can be solved for arbitrary
θ (t), 	rms(t), and ε(t). The result is

Cb(t) = i

∫ t

−∞
dt ′

	rms(t ′)
{
θ̇ (t ′) − i

2 [ε̇′′
P (t ′) − ε̇′′

S(t ′)] sin 2θ (t ′)
}

	(t ′)	rms(t)
[λ∗(t)F (t,t ′) − λ(t)F ∗(t,t ′)], (19)

C2(t) = −
∫ t

−∞
dt ′

	rms(t ′)
{
θ̇ (t ′) − i

2 [ε̇′′
P (t ′) − ε̇′′

S(t ′)] sin 2θ (t ′)
}

2	(t ′)
[F (t,t ′) − F ∗(t,t ′)], (20)
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where

	(t) =
√

	rms(t)2 − 1

4
γ 2, λ(t) = −1

4
γ + i

2
	(t),

(21)

F (t,t ′) = exp

(∫ t

t ′
λ(t ′′) dt ′′

)
.

Substituting Cb(t) from Eq. (19) into the first equation of
(17), we find the dark-state derivative Ċd (t). We integrate this
to obtain the dark-state amplitude Cd (t). The probability of
successful population transfer via STIRAP is the final value
of dark-state population, averaged over fluctuations

PSTIRAP = 〈|Cd (∞)|2〉. (22)

This probability differs from unity for two reasons: there is
a (small) probability PA that the evolution is not adiabatic,
and there is a (small) probability PN that the broadband noise
prevents success. It is convenient to evaluate the small noise-
dependent difference PN between PSTIRAP and what would be
obtained with completely adiabatic evolution by writing

PSTIRAP = 1 − PN − PA ≡ 1 − Ploss. (23)

To evaluate the noise contribution PN we assume complete
adiabaticity. Then the required expression is

PN ≈ 1 − 〈|Cd (∞)|2〉 = 2 Re
∫ ∞

−∞

〈{
θ̇ (t) + i

2
[ε̇′′

P (t) − ε̇′′
S(t)] sin 2θ (t)

}
Cb(t)

〉
dt

= i

∫ ∞

−∞
dt

∫ t

−∞
dt ′

〈
2	rms(t ′)

{
θ̇ (t) + i

2 [ε̇′′
P (t) − ε̇′′

S(t)] sin 2θ (t)
}{

θ̇(t ′) − i
2 [ε̇′′

P (t ′) − ε̇′′
S(t ′)] sin 2θ (t ′)

}
	(t ′)	rms(t)

〉

× [λ∗(t)F (t,t ′) − λ(t)F ∗(t,t ′)]. (24)

We are here examining the almost ideal STIRAP process in which there are negligible nonadiabatic losses in the absence of
any noise. The functions F (t,t ′) assure that the time difference t − t ′ is much less than the variation time of Rabi frequencies,
meaning that we can take 	rms(t ′) = 	rms(t) and 	(t ′) = 	(t). Finally, we neglect θ̇0(t), defined as the smooth part of the mixing
angle,

tan θ0(t) = 	P (t)/	S(t). (25)

Then we obtain

PN =
∫ ∞

−∞
dt

2i

	(t)

∫ t

−∞
dt ′

〈{
δθ̇ (t) + i

2
[ε̇′′

P (t) − ε̇′′
S(t)] sin 2θ0(t)

}{
δθ̇ (t ′) − i

2
[ε̇′′

P (t ′) − ε̇′′
S(t ′)] sin 2θ (t ′)

}〉

× [λ∗(t)F (t,t ′) − λ(t)F ∗(t,t ′)]. (26)

We assume small modulation |εS,P | � 1 so that

δθ̇ = θ̇ − θ̇0 � sin θ0 cos θ0[ε̇′
P − ε̇′

S]. (27)

With this assumption we obtain, for the noise contribution to the loss of STIRAP success, the expression

PN =
∫ ∞

−∞
dt

2i sin2 θ0 cos2 θ0

	(t)

∫ t

−∞
dt ′ [〈ε̇P (t)ε̇∗

P (t ′)〉 + 〈ε̇S(t)ε̇∗
S(t ′)〉][λ∗(t)F (t,t ′) − λ(t)F ∗(t,t ′)]. (28)

Using the correlation behavior of Eq. (4), we obtain finally the basic formula for the effect of small broadband noise on the
STIRAP success:

PN = 2
∫ +∞

−∞
dt sin2 θ0(t) cos2 θ0(t)	2

rms(t)

[
GS

4G2
S + 2GSγ + 	rms(t)2

ε2
S0 + GP

4G2
P + 2GP γ + 	rms(t)2

ε2
P 0

]
. (29)

This expression depends upon the specific pulses only through the variation of the rms Rabi frequency and the variation of the
traditional mixing angle. It sums separate contributions from the two fields. It can be evaluated numerically for any pulse shape
	rms(t).

C. Saturation

It is instructive to examine the limit when, during an interval from −T to T , the rms Rabi frequency is very large. The two
fractions then simplify, and one has the approximation

P ′
N ≈ 2

[
GSε

2
S0 + GP ε2

P 0

] ∫ +T

−T

dt sin2 θ0(t) cos2 θ0(t). (30)

This is independent of the peak Rabi frequency: increasing this parameter will not improve the STIRAP transfer.
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D. Model results

To obtain an analytical expression we took (as mentioned
above) the S and P amplitudes to be of equal magnitude and
shape, offset in time by td ,

	S(t) = 	0f (t), 	P (t) = 	0f (t − td ), (31)

and we used the following specific expression for the pulse-
shape function f (t) :

f (t) =
{

cos[π
2

t
τ

] −τ < t < τ,

0 otherwise.
(32)

For the pulse shape (32) with td = τ the rms Rabi frequency
is a constant, 	rms = 	0, during the time interval when both
pulses act. Then the result (29), expressed as a function of the
peak Rabi frequency 	0, reads

PN (	0) = 1

4
	2

0

[
GSτ

4G2
S + 2GSγ + 	2

0

ε2
S0

+ GP τ

4G2
P + 2GP γ + 	2

0

ε2
P 0

]
. (33)

For very large peak Rabi frequency this probability saturates
and cannot be smaller than

PN (	0) → 1
4

[
GSτε2

S0 + GP τε2
P 0

]
. (34)

E. Phase fluctuation noise

For comparison, the losses in the case of the two free-running
independent lasers with the phase fluctuations considered in
[54] are expressible as

P
(phase)
N =

∫ +∞

−∞
dt sin2[2θ (t)]

[
D

(ph)
P G

(ph)
P

(
2G

(ph)
P +γ

)
	rms(t)2+4G

(ph)2
P +2γG

(ph)
P

+ D
(ph)
S G

(ph)
S

(
2G

(ph)
S + γ

)
	rms(t)2 + 4G

(ph)2
S + 2γG

(ph)
S

]
, (35)

where D
(ph)
j and G

(ph)
J are the parameters of the Ornstein-

Uhlenbeck process describing the phase fluctuations. For
the pulse shape (32) the integral in (35) can be evaluated
analytically. The result is

P
(phase)
N (	0) = 1

4

D
(ph)
P G

(ph)
P

(
2G

(ph)
P + γ

)
τ

	2
0 + 4G

(ph)2
P + 2γG

(ph)
P

+ 1

4

D
(ph)
S G

(ph)
S

(
2G

(ph)
S + γ

)
τ

	2
0 + 4G

(ph)2
S + 2γG

(ph)
S

. (36)

This probability loss becomes arbitrarily small as the peak
Rabi frequency increases.

P
(phase)
N (	0) → 1

4	2
0

[
D

(ph)
P G

(ph)
P

(
2G

(ph)
P + γ

)
τ

+D
(ph)
S G

(ph)
S

(
2G

(ph)
S + γ

)
τ
]
. (37)

F. Nonadiabatic losses

The detrimental effects of nonadiabatic evolution, as distinct
from noise, are parametrized by the probability PA. These can

be written as [54]

PA(	0) =
∫ +∞

−∞
4γ

θ̇2

	rms(t)2
dt . (38)

For the pulse shape (32) the integral (38) can be evaluated
analytically. The result is

PA(	0) = γπ2

	2
0τ

. (39)

This loss diminishes monotonically with increasing peak Rabi
frequency, and therefore, in principle, it can be made arbitrarily
small.

IV. DISCUSSION AND CONCLUSION

Coherence losses caused by the different mechanisms
discussed here depend on the maximum Rabi frequency 	0

and interaction time τ in different ways. The nonadiabaticity
losses decrease as 	0 and τ increase. Note that for a short-lived
exited state, for which γ τ  1, the losses are not exponentially
small as one expects for adiabatic evolution of a long-lived
state. Nevertheless, by using laser pulses which are strong and
sufficiently long one can reach noise-free STIRAP efficiency
close to 100%.

A similar situation occurs if the laser phase fluctuations are
an O-U process. In this case one can improve the STIRAP
efficiency by increasing the Rabi frequency but not the
interaction time. Such laser fluctuations could be neglected
for stabilized lasers when D

(ph)
j � γ,	0.

Unfortunately, one cannot decrease the contribution of the
fast small fluctuations described by the effective modulation
index ε0 by increasing the Rabi frequency 	0. Figure 2 shows
an example of the dependence of the nonadiabatic and noise
modulation losses on the Rabi frequency 	0 calculated for
typical experimental conditions.

Our results show that there is an optimum Rabi frequency
for use with STIRAP: the efficiency decreases for either

.

.

.

.

.

.

.

(MHz)

FIG. 2. (Color online) The STIRAP efficiency loss Ploss(	0) for
the pulse shape (32) as a function of the maximum Rabi frequency 	0.
Curve N is the contribution PN (	0) from broadband noise, Eq. (33),
and curve A is the contribution PA(	0) from nonadiabaticity, Eq. (39).
Parameters are γ = 2π × 2 MHz, GS = GP = 2π × 1 MHz, τ = 4
μs, ε2

S0 = ε2
P 0 = 0.02.
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larger or smaller values. There is no other way to overcome
the problem of weak fluctuations of phase and amplitude
fluctuations, except by eliminating the spectral pedestal:
one cannot overcome the detrimental consequences of the
fluctuations by using larger Rabi frequencies. The mission
of the current work is to point out that, under the given
circumstances, efforts in experiments trying to overcome the
detrimental consequences of fluctuations by increasing the
intensity, which is the intuitively proper approach, will not
be successful
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