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Guiding ultraslow weak-light bullets with Airy beams in a coherent atomic system
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We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold,
lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that
under EIT condition the light bullet with ultraslow propagating velocity and extremely low generation power
formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also
steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet
can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate
in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass
an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light
bullets is also proposed.
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I. INTRODUCTION

In the past two decades, much attention has been paid to
the study of spatial-temporal optical solitons, or light bullets,
which describe a fascinating class of nonlinear optical pulses
localized in three spatial dimensions and one temporal dimen-
sion [1]. Due to the balance between diffraction, dispersion,
and nonlinearity, these optical pulses are capable of arresting
spatial-temporal distortion and propagate stably for a long
distance. Light bullets are of great interest because of their
rich nonlinear physics and important applications [2–22].
However, up to now most light bullets are produced in passive
optical media, in which far-off resonance excitation schemes
are employed in order to avoid significant optical absorption.
For generating the light bullets in passive media, very high
light intensity is usually needed to obtain nonlinearity strong
enough to balance the dispersion and diffraction effects. In
addition, an active control on the property of light bullets is
not easy to realize in passive media because of the absence of
energy-level structure and selection rules that can be used and
manipulated.

For practical applications, light bullets having low gen-
eration power and good controllability are highly desirable.
Active optical media, in which light interacts with matter
resonantly, can be adopted to achieve such goal. However,
in resonant media there is usually a large optical absorption.
In order to suppress the large optical absorption, a technique
called electromagnetically induced transparency (EIT) [23]
can be used. Due to the quantum interference effect induced
by a control field, the propagation of a weak probe field in EIT
media exhibits not only large suppression of optical absorption,
but also significant reduction of group velocity, and great
enhancement of Kerr nonlinearity, etc., [24]. Based on these
important features, new types of temporal [25–28] and spatial
[29–32] optical solitons were predicted in highly resonant
atomic systems via EIT. The existence of ultraslow light bullets
was also demonstrated [33]. Active control of these optical
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solitons by using Stern-Gerlach gradient magnetic fields were
also explored recently [34,35].

In this article, we investigate how to guide stable ul-
traslow weak-light bullets by means of Airy beams in a
cold, lifetime-broadened four-level atomic system via EIT.
Under EIT condition, the assisted-field envelope obeys a
(2 + 1)-dimensional linear Helmholtz equation supporting
Airy beam solutions, which contributes a trapping potential to
the probe-field envelope governed by a (3 + 1)-dimensional
nonlinear Schrödinger equation [36]. We show that, both
analytically and numerically, the light bullet with ultraslow
propagating velocity (∼10−5c; c is the light speed in vacuum)
and extremely low generation power (∼1 μW) formed by the
balance between diffraction and nonlinearity in the probe field
can be not only stabilized but also guided by the assisted
field. In particular, when the assisted field is taken to be
an Airy beam the light bullet can be trapped into the main
lobe of the Airy beam, propagate ultraslowly in longitudinal
direction, accelerate in transverse directions, and hence move
along a parabolic trajectory. Interestingly, the light bullet
can bypass an obstacle when guided by two sequential Airy
beams. In addition, a technique of generating ultraslow helical
weak-light bullets using sequential Airy and Bessel beams is
proposed. The results presented here are useful for guiding
new experimental findings and have potential applications in
optical information processing and transmission.

Before proceeding, we note that due to the pioneering work
by Berry and Balazs [37], recently there is growing interest
focused on the study of Airy beams. Due to their unique inter-
ference, Airy beams undergo no temporal spreading (spatial
diffraction) and have the ability to freely accelerate (bend)
requiring no waveguiding structures or external potentials
[38]. In addition to fundamental research interest, accelerating
Airy beams have led to many intriguing ideas and exciting
applications, including particle and cell micromanipulation,
laser micromachining, generation of curved plasma channel,
generation of curved electron beams, and so on [39–42].
Different from the previous studies, where Airy light beams
have been used to manipulate the movement of material (or
massive) particles, in our work the particles are not material
ones but light wave packets (light bullets), which are steered
by using Airy light beams in a highly controllable way.
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The article is arranged as follows. In the next section,
we introduce the model and deduce the nonlinear envelope
equations governing the envelopes of probe and assisted fields.
In Sec. III, we investigate the guiding of ultraslow weak-light
bullets with Airy beams. We also demonstrate that the light
bullet can bypass an obstacle when it is guided by two
sequential Airy beams. In Sec. IV, generation of ultraslow
helical weak-light bullets is discussed. Finally, in the last
section we summarize the main results obtained in this work.

II. MODEL AND NONLINEAR ENVELOPE EQUATIONS

A. Model

We consider a cold, lifetime-broadened atomic system
with N -type energy-level configuration, shown in Fig. 1(a).
A weak, pulsed probe field [strong, continuous-wave (cw)
control field] with angular frequency ωp (ωc) and wave vector
kp (kc) interacts resonantly with the energy states |1〉 and
|3〉 (|2〉 and |3〉). In addition, a weak assisted laser field with
angular frequency ωa and wave vector ka couples to energy
states |2〉 and |4〉, which contributes a cross-phase modulation
(CPM) to the probe field, as shown below. The energy
levels can be selected from the D2 line of 87Rb atoms, with
the states assigned as |1〉 = |5S1/2,F = 1,mF = −1〉, |2〉 =
|5S1/2,F = 2,mF = 0〉, |3〉 = |5P3/2,F = 2,mF = −1〉, and
|4〉 = |5P3/2,F = 2,mF = 1〉 (see Fig. 1). In the figure, fij is
the relative transition strength, defined by fij = |pij /D|2 ×
120. Here D = 3.58 × 10−27 cm C and pij is the dipole
transition matrix element between the state |i〉, and the state
|j 〉 [43]. The electric-field vector in the system can be written
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FIG. 1. (Color online) (a) Energy-level diagram and excitation
scheme of the lifetime-broadened four-state atomic system interacting
with a weak pulsed probe field (with half Rabi frequency �p), a
strong cw control field (with half Rabi frequency �c), and a weak
cw assisted field (with half Rabi frequency �a). �3, �2, and �4 are
one-photon, two-photon, and three-photon detunings, respectively.
The energy levels are taken from the D2 line of 87Rb atoms,
with |1〉 = |5S1/2,F = 1,mF = −1〉, |2〉 = |5S1/2,F = 2,mF = 0〉,
|3〉 = |5P3/2,F = 2,mF = −1〉, and |4〉 = |5P3/2,F = 1,mF = 1〉.
fij = |pij /D|2 × 120 is the relative transition strength, with D =
3.58 × 10−27 cm C and pij being the dipole transition matrix element
between the state |i〉 and the state |j〉. (b) The geometry of the system.
The lower part shows the intensity pattern of the assisted field, chosen
as an Airy beam, in the x-y plane.

as E = ∑
l=p,c,a elEl exp [i(kl · r − ωlt)] + c.c., where el is

polarization direction of lth field with envelope El . The
geometry of the system is illustrated in Fig. 1(b).

Under electric-dipole and rotating-wave approximations,
the Hamiltonian in the interaction picture reads Ĥint =
−�

∑4
j=1 �j |j 〉 〈j | − �(�p|3〉〈1| + �c|3〉〈2| + �a|4 〉 〈2| +

H.c.), where �3 = ωp − (ω3 − ω1),�2 = ωp − ωc −
(ω2 − ω1), and �4 = ωp − ωc + ωa − (ω4 − ω1)
are, respectively, the one-, two-, and three-photon
detunings. �p = (ep · p13)Ep/�, �c = (ec · p23)Ec/�, and
�a = (ea · p24)Ea/� are, respectively, half Rabi frequencies
of the probe, control, and assisted fields.

The equation of motion for the density matrix σ reads

∂σ

∂t
= − i

�
[Ĥint,σ ] − �σ, (1)

where � is a 4 × 4 relaxation matrix. Explicit expressions
of the equations of motion for σij have been given in
Appendix A.

Electric-field evolution is controlled by Maxwell equa-
tion ∇2E − (1/c2)∂2E/∂t2 = (1/ε0c

2)∂2P/∂t2, with P =
N{p13σ31 exp[i(kp · r − ωpt)] + p23σ32 exp[i(kc · r −
ωct)] + p24σ42 exp[i(ka · r − ωat)] + c.c.}. Under a slowly
varying envelope approximation, we obtain the equations for
�p and �a:

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p

+ c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + κ13σ31 = 0, (2a)

i
∂

∂z
�a + c

2ωa

(
∂2

∂x2
+ ∂2

∂y2

)
�a + κ24σ42 = 0, (2b)

where κ13,24 = Nωp,a|ep,a · p13,24|2/(2ε0�c), with N being
atomic concentration. For simplicity, the probe field and the
assisted field have been assumed to propagate in the z direction,
i.e., kp,a = ezkp,a .

B. Asymptotic expansion and nonlinear envelope equations

Because we are interested in the nonlinear evolution and
the possible formation of optical solitons in the system, we
employ the standard method of multiple scales, to inves-
tigate the evolution of both the probe and assisted fields.
The atoms are assumed to be initially populated in the
state |1〉. We make the asymptotic expansions σij = σ

(0)
ij +

εσ
(1)
ij + ε2σ

(2)
ij + ε3σ

(3)
ij + · · · , and �p,a = ε�(1)

p,a + ε2�(2)
p,a +

ε3�(3)
p,a + · · · , with σ

(0)
ij = δi1δj1 (both δi1 and δj1 are Kro-

necker delta symbols). Here ε is a small parameter character-
izing the typical amplitude of the probe and assisted fields.
To obtain divergence-free expansions, all quantities on the
right-hand sides of the asymptotic expansions are considered
as functions of the multiscale variables zl = εlz (l = 0,1,2),
tl = εlt (l = 0,2), x1 = εx, and y1 = εy. Substituting these

013821-2



GUIDING ULTRASLOW WEAK-LIGHT BULLETS WITH . . . PHYSICAL REVIEW A 89, 013821 (2014)

expansions into Eqs. (A1) and (2), one can obtain a series
of linear but inhomogeneous equations for σ

(l)
ij and �(l)

p,a

(l = 1,2,3,...), which can be solved order by order.
At the first order, we obtain the solution under linear level:

�(1)
p = Feiθ , �(1)

a = G, (3a)

σ
(1)
j1 = −δj2�

∗
c + δj3(ω + d21)

D
Feiθ (j = 2,3) (3b)

with D = |�c|2 − (ω + d21)(ω + d31), and other σ
(1)
ij being

zero. In the above expressions, θ = K(ω)z0 − ωt0, and F and
G are yet to be determined envelope functions depending on
the slowly varying variables t2, z1, and z2. We see that in this
order the two weak fields evolve independently. Moreover,
the assisted field is free, but the probe field experiences
a dispersion and absorption obeying the linear dispersion
relation:

K(ω) = ω

c
+ κ13

ω + d21

D
. (4)

Shown in Fig. 2 is the imaginary part Im K(ω) [Fig. 2(a) ]
and the real part Re K(ω) [Fig. 2(b) ] of K(ω) as functions of
frequency ω. As an example, we take the system parameters as
�12 ≈ 1 kHz, �13 ≈ �23 ≈ 6 MHz,�2,3 = 0 s−1, and κ13 =
1.0 × 109 cm−1 s−1. The dashed and the solid lines in both
panels correspond to the presence (�c = 1.0 × 107 s−1) and
the absence (�c = 0) of the control field, respectively. One
sees that when �c is absent, the probe field has a large
absorption [the solid line of Fig. 2(a)]; however, when �c

is applied an EIT transparency window is opened [the dashed
line of Fig. 2(a)]. The steep slope for large control field [the
dashed line of Fig. 2(b)] results in a slow group velocity at
the center frequency of the probe field (i.e., ω = 0 [44]). The
suppression of the absorption and the reduction of the group
velocity are due to the EIT effect induced by the control field.

At the second order, the solvability condition for σ
(2)
ij and

�(2)
p,a requires ∂F/∂z1 = 0 and ∂G/∂z1 = 0, and hence both

F and G are independent of z1. At the third order, using the

solvability condition for σ
(3)
ij and �(3)

p,a we obtain the coupled
nonlinear equations for F and G:

i

(
∂

∂z2
+ 1

Vg

∂

∂t2

)
F + c

2ωp

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F

+α11|F |2F + α12|G|2F = 0, (5a)

i
∂

∂z2
G + c

2ωa

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
G + α21|F |2G = 0, (5b)

where Vg = (∂K/∂ω)−1 is the group velocity of the envelope
F . The explicit expressions for the coefficient of self-phase
modulation (SPM) of the probe field (i.e., α11), and the CPM
coefficients between the two fields (i.e., α12 and α21), have
been given in Appendix B.

Since the selected atomic transition between |2〉 and |4〉 is
much weaker than those between |1〉 and |3〉 and between |2〉
and |3〉, the coupling constants in Eq. (2) satisfy κ24 � κ13, and
hence α21 � α11,α12. In this way the CPM term in Eq. (5b) can
be safely neglected. Under this condition, Eq. (5b) is reduced
into a linear Helmholtz equation. As a result, we obtain the
following envelope equations:

i

(
∂

∂z
+ 1

Vg

∂

∂t

)
U + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
U

+α11|U |2U + α12|V |2U = 0, (6a)

i
∂V

∂z
+ c

2ωa

(
∂2

∂x2
+ ∂2

∂y2

)
V = 0, (6b)

after returning to the original variables, where U = εF and
V = εG. One sees that the role of the assisted-field envelope
V is now acting as an external potential [controlled by Eq. (6b)]
to the probe field envelope U [controlled by Eq. (6a)]. This is
desirable because the external potential |V |2 can be used not
only to stabilize the motion of U but also to guide it along a
particular path, as shown below.
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FIG. 2. (Color online) The imaginary part Im K(ω) [panel (a)] and the real part Re K(ω) [panel (b)] of the linear dispersion relation K(ω)
of the probe field as functions of ω. In both panels, the dashed and solid lines correspond to the presence (�c = 1.0 × 107 s−1) and the absence
(�c = 0) of the control field, respectively. The other parameters are given in the text. A transparency window is opened for the large control
field [the dashed line in panel (a)]. The steep slope of the dashed-dotted line for the large control field [the dashed line in panel (b)] results in
an ultraslow group velocity.
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III. GUIDING ULTRASLOW WEAK-LIGHT BULLETS
WITH AIRY BEAMS

A. Estimation on the coefficients in the nonlinear
envelope equations

Before solving Eqs. (6a) and (6b), we first make an
estimation on their coefficients by using realistic physical
parameters. Equations (6a) and (6b) can be written into the
dimensionless form

i

(
∂

∂s
+ λ

∂

∂τ

)
u + 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u

+ g11|u|2u + g12v
2
0 |v|2u = 0, (7a)

i
∂v

∂s
+ δ

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
v = 0, (7b)

where u = U/U0, v = V/(U0v0), s = z/LDiff ,
λ = LDiff/(Vgτ0), τ = t/τ0 (with τ0 being the typical probe
pulse length), (ξ,η) = (x,y)/R⊥ (with R⊥ being the typical
probe beam radius), g11 = �α11/|α11|, g12 = �α12/|α11|,
and δ = ωp/ωa . Here � = LDiff/LNL, with LDiff ≡ ωpR2

⊥/c

being the typical diffraction length, LNL = 1/(|α11U
2
0 |) being

the typical nonlinear length, and U0 being the typical Rabi
frequency of the probe field. The typical Rabi frequency of
the probe field can be solved as U0 =

√
c/(ωpR2

⊥|α11|) if we
take � = 1, i.e., take LDiff = LNL. v0 is proportional to the
typical Rabi frequency of the assisted field, which is a free
parameter that can be used to adjust the magnitude of the
CPM coefficient, and hence control the stability of U .

Because the system we consider is lifetime broadened, the
coefficients in Eq. (7a) are generally complex. If the control
field Rabi frequency �c is small, the imaginary part of the
coefficients is comparable with their real part, and hence
stable light bullet solutions do not exist. However, under EIT
condition |�c|2 � γ31γ21 [45] the absorption of the probe field
can be largely suppressed, and hence the imaginary part of
these coefficients can be made to be much smaller than their
real part.

To show this we calculate the values of coefficients
in Eqs. (7a) and (7b) by considering a cold atomic gas
of 87Rb atoms, with D2 line transitions 5 2S1/2 → 5 2P3/2.
The energy levels are chosen as those in Fig. 1. From
the data of 87Rb [43], we have the dipole matrix ele-

ments |p13| ≈ |p23| = −
√

1
8 × 3.58 × 10−27 cm C and |p24| =√

1
120 × 3.58 × 10−27 cm C. The other system parameters

are taken as �12 = 1 kHz, �13 ≈ �23 ≈ �24/2 = 35 MHz,
κ13 = 1.0 × 1010 cm−1 s−1, κ24 = 1.0 × 109 cm−1 s−1, �c =
5.0 × 107 s−1, �2 = −1.5 × 106 s−1, �3 = −3.0 × 108 s−1,
�4 = −1.0 × 109 s−1, R⊥ = 4.0 × 10−3 cm, and U0 = 9.0 ×
106 s−1. Then we have δ ≈ 1.0, g11 ≈ 1.0 − 0.018i, g12 ≈
0.59 − 0.005i, g21 ≈ 0.06 + 0.001i, LDiff = LNL ≈ 1.26 cm,
and the group velocity

Vg ≈ 5.6 × 10−6c. (8)

It is clear that the imaginary parts of the coefficients in
Eqs. (7a) and (7b) are indeed much less than its real parts. The

physical reason for so small an imaginary part is due to the EIT
effect induced by the control field that makes the absorption of
the probe field largely suppressed. In the following discussion,
the small imaginary parts of the coefficients are neglected for
analytical analysis, but they are taken into account in numerical
simulations.

Note that Eq. (7a) is valid only for the probe feld with a
large pulse length τ0 for which group-velocity dispersion effect
of the system can be neglected. To estimate the required order
of magnitude of τ0, we compare the characteristic dispersion
length (defined by LDisp = Re(τ 2

0 /|∂2K/∂ω2|ω=0) and the
diffraction length LDiff defined above. By setting LDisp = LDiff

we obtain τ0 = 1.48 × 10−6 s. Consequently, if τ0 is much
larger than 1.48 × 10−6 s, LDisp will be much longer than LDiff

and hence the group-velocity dispersion effect of the system
can be neglected safely.

B. Guiding a linear light bullet with one Airy beam

We first study the possibility of guiding a three-dimensional
(3D) linear light bullet with one Airy beam. If U0 is much
smaller than 9.0 × 106 s−1, the typical nonlinear length LNL

will be much longer than the typical diffraction length LDiff ,
and hence � � 1. Thus, the SPM term in Eq. (7a) can be
neglected because g11 ∝ � � 1. However, the condition � � 1
will also suppress the CPM term which contributes to the
trapping potential to the probe field. Without the potential,
if a light bullet is excited, it will be highly unstable due
to the transverse instability [4,5]. In addition, the potential
will also be used to guide the light bullet. In order to avoid
the suppression of the CPM term, we can use a large v0 to
fulfill the condition �v2

0 ∼ 1. Taking into account the above
considerations, Eq. (7a) reduces to a (3 + 1)-dimensional
linear Schrödinger equation with a linear potential to the probe
field.

Now we turn to the Helmholtz equation (7b). As we know,
it admits different types of centrosymmetric beam solutions
such as Gaussian beam, Bessel beam, and Laguerre-Gaussian
beam [46,47], etc. However, in this work we are interested in
a particular type of anticentrosymmetric beam solution, i.e.,
the Airy beam, with the form v(s,ξ,η) = Ai(ξ − s2/4)Ai(η −
s2/4)ei(ξ/2+η/2−s2/6)s [37]. At the entrance of the medium
v(0,ξ,η) = Ai(ξ )Ai(η), which can be experimentally realized
by a Gaussian beam passing through a third-order phase
mask. The Airy beam solution has many striking features.
In particular, the intensity profile of its transverse part remains
invariant (i.e., it does not spread out) when bending along a
parabolic trajectory. However, the Airy beam is not square
integrable (i.e.,

∫
Ai2(x)dx → ∞). One possible way to solve

this problem is to introduce an exponential aperture function,
i.e., v(0,ξ,η) = Ai(ξ )Ai(η)ea1ξ+a2η [48,49]. Here aj (j = 1, 2)
are positive parameters introduced to ensure containment of the
infinite Airy tail. Typically, aj � 1 so that the resulting profile
closely resembles the intended Airy function. By directly
integrating Eq. (7b) we have

v(s,ξ,η)

= Ai(ξ − s2/4 + ia1ξ )Ai(η − s2/4 + ia2ξ )

× ei(ξ/2+η/2−s2/6)sea1ξ−a1ξ
2/2+ia2

1ξ/2ea2η−a2η
2/2+ia2

2η/2. (9)
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It is clear that the center position of the Airy beam (9) moves
along the trajectory ξ = η = s2/4, and hence tends to bend
itself in transverse directions (i.e., the x and y directions).

Substituting the solution (9) into Eq. (7a) without the SPM
term, we obtain the equation

i

(
∂

∂s
+ λ

∂

∂τ

)
u + 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u

+ g12v
2
0 |Ai(ξ − s2/4 + ia1ξ )

× Ai(η − s2/4 + ia2ξ )|2e2a1ξ−a1ξ
2
e2a2η−a2η

2
u = 0. (10)

We see that the Airy beam provides an “external potential” to
the probe field. Equation (10) can be solved by taking [34,35]

u(τ,ξ,η,s) = φ(τ,s)ψ(τ,ξ,η) (11)

with

φ(τ,s) = 1
4
√

2πρ2
e−(s−τ/λ)2/(4ρ2) = 1

4
√

2πρ2
e−(z−Vgt)2/(4ρ2L2

Diff ),

(12)

where ρ is a free real parameter. When writing Eq. (12) we
have assumed that the probe-field envelope is a Gaussian pulse
propagating in the z direction with velocity Vg . In this way, the
transverse distribution ψ(τ,ξ,η) satisfies the linear equation

iλ
∂ψ

∂τ
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
ψ

+ g12v
2
0 |Ai(ξ − s2/4 + ia1ξ )Ai(η − s2/4 + ia2ξ )|2

× e2a1ξ−a1ξ
2
e2a2η−a2η

2
ψ = 0, (13)

and its stationary solutions can be obtained by the transfor-
mation ψ = exp (iμτ )ψ̃(ξ,η), leading to the linear eigenvalue
equation

Lψ̃ = λμψ̃, (14)

with the operator

L = 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)

+ g12v
2
0 |Ai(ξ + ia1ξ )Ai(η + ia2ξ )|2e2a1ξ−a1ξ

2
e2a2η−a2η

2
,

where ψ̃ is a real function and μ is the propagation constant.
If ψ̃ is transversely localized, u will be localized in all three
spatial directions and evolve in time. In this way, u will
describe a linear light bullet in (3 + 1) dimensions.

In Fig. 3 we show the guiding of a typical linear light bullet
with the assisted field taken to be an Airy beam. Figures 3(a)
and 3(d) show the intensity pattern of the linear light bullet
by solving Eq. (14). Here we have taken τ0 = 7.5 × 10−6 s
so that λ = 1. To test the stability of the linear light bullet,
we calculate the power of the probe pulse, defined by
P = 2π

∫∫∫ +∞
−∞ ψ2 dξ dη dτ , as a function of the propagation

constant μ. For a given v0, P first increases to arrive a max-
imum, and then decreases. According to Vakhitov-Kolokolov
criterion [50], the domain in which the linear light bullet is
stable is the one with dP/dμ > 0. Generally, the stability
domain is small for small v0, however, it can be enlarged by
increasing v0. This is because a larger v0 means a stronger
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FIG. 3. (Color online) Guiding a linear light bullet with Airy
beam (U0 = 1.8 × 10−6 s−1). (a)–(c) Intensity patterns of the linear
light bullet in the x-z plane at τ/τ0 = 0, 2, and 4, respectively. Dashed
lines denote the trajectory of the main lobe of the Airy potential.
(d)–(f) Intensity patterns of the linear light bullet in the x-y plane
at τ/τ0 = 0, 2, and 4, respectively. A significant diffraction can be
observed in (c) and (f).

trapping to the optical pulse provided by the potential. In our
calculation, the stability domain is 0 < μ � 0.6 with v0 = 23.

The guiding of such linear light bullet is studied by making a
simulation of Eq. (13) with the stationary solution in Figs. 3(a)
and 3(d) as the initial condition. The results are presented in
Figs. 4(b) and 4(c) [Figs. 4(e) and 4(f)] at τ/τ0 = 2 and 4,
respectively. We see that the linear light bullet is indeed guided
by the Airy-shaped assisted field. Specifically, it is trapped
in the main lobe of the Airy beam, propagates ultraslowly
in longitudinal direction, accelerates in transverse directions,
and moves along a parabolic trajectory. However, the linear
light bullet is unstable because a significant diffraction occurs
during the propagation, which makes it spread along the
parabolic trajectory and leak energy to the other lobes of the
Airy beam [see Figs. 4(c) and 4(f)].

C. Guiding nonlinear light bullets with one Airy beam

Since the diffraction-induced spreading occurs during the
propagation of the linear light bullet, a natural idea is to use the
SPM effect of the system to balance the diffraction. To have a
significant SPM, one must increase the amplitude of the probe
field. By taking U0 = 9.0 × 106 s−1 (five times larger than that
in the linear case), we have g11 ≈ 1 and hence the SPM term
plays an important role in Eq. (7a). Substituting the solution
(9) into Eq. (7a), we obtain the (3+1)-dimensional nonlinear
Schrödinger equation

i

(
∂

∂s
+ λ

∂

∂τ

)
u + 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u

+ g11|u|2u + g12v
2
0 |Ai(ξ − s2/4 + ia1ξ )

× Ai(η − s2/4 + ia2ξ )|2e2a1ξ−a1ξ
2
e2a2η−a2η

2
u = 0. (15)
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FIG. 4. (Color online) Guiding nonlinear light bullet with Airy
beam. (a)–(c) Intensity patterns of the nonlinear light bullet in the x-z
plane at τ/τ0 = 0, 2, and 4, respectively. (d)–(f) Intensity patterns of
the nonlinear light bullet in the x-y plane at τ/τ0 = 0, 2, and 4. (g)
Schematic diagram of the propagation of the nonlinear light bullet in
three-dimensional space. Vx (Vy) is the velocity in the x (y) direction;

Vr =
√

V 2
x + V 2

y is the radial velocity in the x-y plane; Vg is the group

velocity in the z direction; VLB =
√

V 2
r + V 2

g is the total velocity; R

is the transverse displacement after the nonlinear light bullet passing
through the atomic medium; θ is the angle between Vr and Vg; the
(red) solid spheres represent the nonlinear light bullet. (h) R and θ as
functions of z. The solid and dashed lines are analytical results; the
“×” symbols are results by numerical simulations.

With (11) and (12), we have

iλ
∂ψ

∂τ
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
ψ + g11|ψ |2ψ

+ g12v
2
0 |Ai(ξ − s2/4 + ia1ξ )Ai(η − s2/4 + ia2ξ )|2

× e2a1ξ−a1ξ
2
e2a2η−a2η

2
ψ = 0. (16)

Similarly, the stationary solutions of Eq. (16) can be obtained
by the transformation ψ = exp (iμτ )ψ̃(ξ,η), leading to the
nonlinear eigenvalue equation

Lψ̃ + g11ψ̃
3 = λμψ̃, (17)

where the operator L is the same as that defined in Eq. (14).
Figures 4(a) and 4(d) show the intensity pattern of a

stationary nonlinear light bullet by solving Eq. (17). The values
of τ0 and ρ are the same as those used in the last section. For
a given v0, the probe-field power P first increases to arrive a
maximum, and then decreases. However, the stability domain
of a nonlinear light bullet is larger than that of a linear one.
This is because the focusing nonlinearity favors the formation

of the nonlinear light bullet, and hence enhances its stability.
For example, the stability domain is 0 < μ � 1.5 for v0 = 7.3.

The guiding of the nonlinear light bullet is studied by
making a numerical simulation of Eq. (16) with the stationary
solution given in Figs. 4(a) and 4(d) as an initial condition.
The results in Figs. 4(b) and 4(c) [Figs. 4(e) and 4(f)] are
for τ/τ0 = 2 and 4, respectively. We see that the nonlinear
light bullet is indeed guided by the Airy-beam-shaped assisted
field. Importantly, different from the linear light bullet given
in the last section no evident diffraction is observed during the
propagation of the nonlinear light bullet. This is because the
diffraction is completely balanced by the SPM effect even if
the trajectory of the nonlinear light bullet is bent.

The position of the nonlinear light bullet can be obtained by
the trajectory of the main lobe of the Airy beam, which reads

(X,Y,Z) =
(

R⊥V 2
g

4L2
Diff

t2,
R⊥V 2

g

4L2
Diff

t2,Vgt

)
. (18)

From Eq. (18) we see that the nonlinear light bullet accel-
erates in both x and y directions with the same accelerated
velocity R⊥V 2

g /(2L2
Diff), and propagates in z direction with

the constant propagating velocity Vg . In a mechanical point of
view, the acceleration of the nonlinear light bullet is caused
by the transverse force produced by the potential contributed
by the assisted field.

For clearance, in Fig. 4(g) we show the schematic diagram
for the propagation of the nonlinear light bullet in three-
dimensional space. In this figure, Vx and Vy are, respectively,
the velocities of the nonlinear light bullet in x and y directions,
Vr =

√
V 2

x + V 2
y is the radial velocity in the transverse plane,

Vg is the velocity in z direction, VLB =
√

V 2
r + V 2

g is the total
velocity, R is the transverse displacement after the light bullet
passing through the atomic medium, and θ is the angle between
Vr and Vg describing the output direction.

Shown in Fig. 4(h) are R and θ as functions of z. The solid
and dashed lines are analytical results, while “×” symbols
are results by making numerical simulation. We see that
the position of the nonlinear light bullet can be controlled
and manipulated by the Airy beam. For example, we obtain
R ≈ 0.05 cm and θ ≈ 1.35 × 10−2 rad after the nonlinear light
bullet passing through a medium with the length 6LDiff =
7.56 cm. We note that the magnitude of the output angle
obtained here is one order larger than that obtained using a
Stern-Gerlach gradient magnetic field in Ref. [51].

The generation power of the (3+1)-dimensional nonlinear
light bullet described above can be estimated by calculating
Poynting’s vector. The peak power of the probe field is given
by P̄max = 2ε0cnpS0(�/|p13|)2U 2

0 |umax|2, with np and S0 being
the reflective index and the cross-section area of the probe
beam, respectively. Taking S0 = πR2

⊥ ≈ 0.5 × 10−4 cm2 and
using the other parameters given above, we obtain the
generation power of the nonlinear light bullet

P̄max ≈ 1.8 μW. (19)

Consequently, the nonlinear light bullet in the present system
may have not only an ultraslow propagating velocity but also a
very low generation power. This is fundamentally different
from the other generation schemes where the light bullets
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have the propagating velocity of the same order of c and their
generation power up to megawatt is needed [9,17].

D. Guiding nonlinear light bullets with two
sequential Airy beams

In this section we show that if the assisted field is taken
to be two sequential Airy beams, the nonlinear light bullet
can easily bypass an obstacle. To this end, we assume that the
assisted field takes the form

v(τ,s,ξ,η) = {f1(τ )Ai(ξ − s2/4 + ia1ξ )Ai(η − s2/4 + ia2ξ )

× ei(ξ/2+η/2−s2/6)s + f2(τ )Ai[ξ − (s − s0)2/4

+ ia1ξ ]Ai[η − (s − s0)2/4 + ia2ξ ]

× ei[ξ/2+η/2−(s−s0)2/6](s−s0)}ea1ξ−a1ξ
2/2+ia2

1ξ/2

× ea2η−a2η
2/2+ia2

2η/2, (20)

where f1(τ ) = 1
2 {1 − tanh[2(τ − τ1)]} and f2(τ ) =

1
2 {1 + tanh[2(τ − τ1)]}, with s0 being the length of the
medium. Clearly, the solution (21) obeys the Helmholtz
equation (7b) because it is a combination of two sequential
Airy beams, propagating, respectively, along z and −z

directions in different time.
In Figs. 5(a)–5(e) we show the intensity patterns of the

nonlinear light bullet at t/τ0 = 0, 2, 4, 6, and 8, respectively, for
τ1 = 4 and s0 = 8. In the first time interval, i.e., τ ∈ (0,4), the
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FIG. 5. (Color online) Nonlinear light bullet bypasses an obsta-
cle. (a)–(e) Intensity patterns of the nonlinear light bullet in the x-z
plane for τ/τ0 = 0, 2, 4, 6, and 8, respectively. The black polygons
represent an obstacle. (f) The propagation of the nonlinear light bullet
[represented by the (red) solid spheres] in the 3D space. The “�”
shape trajectory of the nonlinear light bullet enables it to bypass the
obstacle (represented by the black polygon).

nonlinear light bullet with initial position (x,y,z) = (0,0,0) is
trapped in the forward Airy beam [i.e., the beam with f1(τ ) ≈
1, f2(τ ) ≈ 0] and moves along the main lobe of the beam to
the position (x,y,z) = (4R⊥,4R⊥,4LDiff) at τ = 4, as shown
in Fig. 5(c). In the second time interval, i.e., τ ∈ (4,8), the
forward Airy beam is switched off and the backward Airy
beam [i.e., the beam with f1(τ ) ≈ 0, f2(τ ) ≈ 1] is switched
on. In this time interval, the nonlinear light bullet is trapped in
the backward Airy beam and moves along the main lobe of the
beam to the position (x,y,z) = (4R⊥,4R⊥,8LDiff) at τ = 8,
as shown in Fig. 5(e). Interestingly, we see that the nonlinear
light bullet travels along a “�” shape trajectory. Consequently,
if there is an obstacle which is put in the position below the
“�” shape trajectory, the nonlinear light bullet can bypass the
obstacle, as shown in Fig. 5(f) (in all panels, the black polygon
represents the obstacle).

IV. GENERATION OF NONLINEAR HELICAL
LIGHT BULLETS

The Airy beam can also be used to generate an ultraslow
helical weak-light bullet proposed in Ref. [35]. To this end, we
assume that the assisted field takes the form

v(τ,s,ξ,η) = f1(τ )Ai(ξ − s2/4 + ia1ξ )Ai(η − s2/4 + ia2ξ )

× ei(ξ/2+η/2−s2/6)sea1ξ−a1ξ
2/2+ia2

1ξ/2

× ea2η−a2η
2/2+ia2

2η/2 + f2(τ )J1(
√

2br), (21)

with f1(τ ) and f2(τ ) being the same as those defined in
Eq. (20), J1 being the first-order Bessel function, b being a real
constant characterizing the radius of the Bessel function, and
r =

√
ξ 2 + η2. It is clear that the solution (21) also obeys the

Helmholtz equation (7b) because it is a combination of Bessel
and Airy beams which are both solutions of the Helmholtz
equation.

In Figs. 5(a)–5(d) we show the intensity patterns of the light
bullet at t/τ0 = 0, 2, 4, and 6, respectively, for τ1 = 4 and b =
0.05. In the first time interval, τ ∈ (0,4), the nonlinear light
bullet is trapped in the Airy beam and moves to the position
(x,y) = (4R⊥,4R⊥) at the end of the first interval, as shown in
Fig. 6(c). After the first time interval, we switch off the Airy
beam and switch on the first-order Bessel beam, the nonlinear
light bullet is then trapped in the first ring of the first-order
Bessel beam and moves along the ring if the trapping potential
contributed by the ring is narrow and deep enough. This is
possible because in each ring of the Bessel beam the potential
energy is degenerate and reaches its minimum, therefore a light
bullet will move along the ring if an initial transverse velocity
Vt tangent to the ring is given. Notice that after switching off
the Airy beam the velocity of the light bullet in the transverse
plane is the radial velocity Vr which is orthogonal to the ring,
and hence it cannot trigger on the rotary motion when the
first-order Bessel beam is switched on. However, a tangent
velocity Vt can be produced by various methods such as using
a gradient magnetic field [35] or a shift of the Bessel lattice
[52]. Then, the nonlinear light bullet rotates around the circle,
as shown in Fig. 6(d).

Since now the nonlinear light bullet has two orthogonal
velocities—the tangent velocity Vt and the group velocity Vg—
they can actually make a helical motion in the 3D space, as
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FIG. 6. (Color online) Generating a nonlinear helical light bullet
with Airy beam. (a)–(d) Intensity patterns of the nonlinear light bullet
in the x-y plane at t/τ0 = 0, 2, 4, and 6, respectively, for τ1 = 4
and b = 0.05. (e) The propagation of the helical light bullet in 3D
space. The solid line with arrow denotes the motion trajectory of the
nonlinear light bullet. The radius of the ring R ≈ 5.66R⊥.

shown in Fig. 6(e), where the solid line with arrow denotes the
motion trajectory of the nonlinear light bullet. Because both
velocities are much smaller than c and the generation power
of the nonlinear light bullet is very weak, such light bullet is
named as the ultraslow helical weak-light bullet.

In general, it is possible to move a nonlinear light bullet
from the center of the transverse plane to any ring of Bessel

lattices. By using such assisted field with sequential Airy
and Bessel beams, one can manipulate and control the output
position of a nonlinear light bullet in a very efficient way.

V. SUMMARY

In this article, we have studied the possibility of guiding
stable ultraslow weak-light bullets by using Airy beams in a
cold, lifetime-broadened four-level atomic system via EIT. We
have shown that under the EIT condition the light bullet with
ultraslow propagating velocity (∼10−5 c) and extremely low
generation power (∼1 μW) formed by the balance between
diffraction and nonlinearity in the probe field can be not
only stabilized but also guided by the assisted field. In
particular, when the assisted field is taken to be an Airy
beam the light bullet can be trapped into the main lobe of the
Airy beam, propagate ultraslowly in longitudinal direction,
accelerate in transverse directions, and hence move along
a parabolic trajectory. We have demonstrated that the light
bullet can bypass an obstacle by using two sequential Airy
beams. A technique of generating ultraslow helical weak-
light bullets in the present system has also been proposed.
The results obtained in this work are useful for guiding
new experimental findings and have potential applications in
optical information processing and transmission. For instance,
the guided light bullets suggested here can be used to design
all-optical switching and logic gates. In addition, they can also
be employed to design new types of all-optical routers for
transmitting optical information.
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APPENDIX A : EQUATIONS OF MOTION FOR σi j

Equations of motion for σij are given by

i
∂

∂t
σ11 − i�31σ33 + �∗

pσ31 − �pσ ∗
31 = 0, (A1a)

i
∂

∂t
σ22 − i�32σ33 − i�42σ44 + �∗

cσ32 − �cσ
∗
32 + �∗

aσ42 − �aσ
∗
42 = 0, (A1b)

i

(
∂

∂t
+ �3

)
σ33 − �∗

pσ31 + �pσ ∗
31 − �∗

cσ32 + �cσ
∗
32 = 0, (A1c)

i

(
∂

∂t
+ �4

)
σ44 − �∗

aσ42 + �aσ
∗
42 = 0, (A1d)

(
i

∂

∂t
+ d21

)
σ21 + �∗

cσ31 + �∗
aσ41 − �pσ ∗

32 = 0, (A1e)

(
i

∂

∂t
+ d31

)
σ31 + �p(σ11 − σ33) + �cσ21 = 0, (A1f)

(
i

∂

∂t
+ d41

)
σ41 + �aσ21 − �pσ43 = 0, (A1g)

(
i

∂

∂t
+ d32

)
σ32 + �c(σ22 − σ33) + �pσ ∗

21 − �aσ
∗
43 = 0, (A1h)
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(
i

∂

∂t
+ d42

)
σ42 + �a(σ22 − σ44) − �cσ43 = 0, (A1i)

(
i

∂

∂t
+ d43

)
σ43 + �aσ

∗
32 − �∗

pσ41 − �∗
cσ42 = 0, (A1j)

where �ij is the rate at which population decays from the state |i〉 to the state |j 〉, dij = �i − �j + iγij with γij ≡ (�i +
�j )/2 + γ

dph
ij . Here �i = ∑

Ej <Ei
�ij and γ col

ij denotes the dipole dephasing rate caused by atomic collisions.

APPENDIX B : EXPLICIT EXPRESSIONS OF α j l

The explicit expressions of αjl read

α11 = κ13

D

{
�ca

∗(2)
32 − (ω + d21)

[
4

�31
Im

(
d21

D

)
+ a

(2)
22

]}
, (B1a)

α12 = − κ13|�c|2
(ω + d41)D2

, (B1b)

α21 = κ24

|�c|2 − d42d43

[
d43a

(2)
22 + �ca

∗(2)
32 − |�c|2

(ω + d41)D

]
(B1c)

with

a
(2)
22 =

⎡
⎣ 2

�31
Im

(d21

D

) −
Im

(
1

d∗
32D

)
Im

(
1

d32

) − �32

�31|�c|2
Im

(
d21
D

)
Im

(
1

d32

)
⎤
⎦ , (B2a)

a
(2)
33 = 2 Im

(
d21
D

)
�31

, (B2b)

a
(2)
32 = 1

d32

[
�c

D∗ + �c

(
a

(2)
33 − a

(2)
22

)]
. (B2c)
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