
PHYSICAL REVIEW A 89, 013817 (2014)

Diffractionless image propagation and frequency conversion via four-wave mixing
exploiting the thermal motion of atoms
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A setup to frequency-convert an arbitrary image encoded in the spatial profile of a probe field onto a signal
field using four-wave mixing in a thermal atom vapor is proposed. The atomic motion is exploited to cancel
diffraction of both signal and probe fields simultaneously. We show that an incoherent probe field can be used
to enhance the transverse momentum bandwidth which can be propagated without diffraction, such that smaller
structures with higher spatial resolution can be transmitted. It furthermore compensates linear absorption with
nonlinear gain, to improve the four-wave mixing performance since the propagation dynamics of the various field
intensities is favorably modified.
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I. INTRODUCTION

A promising route towards the implementation of all-
optical information processing or future quantum technologies
is to combine different technologies into a hybrid system. This
way, the different core functionalities can be realized using
different methods, exploiting their individual advantages.
But the various technologies typically operate at different
characteristic frequencies, such that efficient frequency con-
version is usually required. Such frequency conversion can
be accomplished using nonlinear four-wave mixing (FWM)
processes [1], which have already been widely studied and
applied in various settings. Example are conventional up- and
down-frequency conversion to generate vacuum-ultraviolet
(VUV) or extreme-ultraviolet (XUV) [2–6] or far infrared
(IR) [7–11] light.

But since FWM is a nonlinear process, it sensitively
depends on the intensities of the applied fields, and thereby on
the propagation dynamics [12] and on the transverse intensity
profile of the applied fields. It is well known, however, that light
beams propagating in free space rapidly spread, together with a
distortion of the transverse beam profile due to diffraction. The
origin for diffraction is that each momentum component of the
propagating beam acquires a different phase shift throughout
the propagation. Diffraction is a fundamental limitation in
particular for the creation, detection, or propagation of small
images, due to the large momentum bandwidth. The effect
of diffraction thus is not only to destroy the information
carried in the transverse beam profile, but also to distort any
nonlinear processes such as FWM, due to the modification
of the spatial intensity profiles. This raises the question of
whether diffraction can be manipulated such that nonlinear
processes can be effective.

In order to suppress or even remove the diffraction, different
methods have been suggested. First, there are particular
characteristic spatial modes which satisfy the paraxial prop-
agation equation, and therefore can propagate in free space
without change in their transverse profiles [13]. These are
Airy [14,15], Bessel [16–18], Mathieu [19,20], and parabolic
(Weber) beams [20–22]. An alternative method is to induce
a spatially varying index of refraction experienced by the
propagating light, effectively forming an optically written

waveguide [23–33]. However, those schemes operating in
position space typically only allow propagation of specific
modes through a particular waveguide, and cannot be applied
to multimode fields.

As an alternative approach, recently, Firstenberg et al. have
proposed [34–36] and demonstrated experimentally [37] a
novel scheme to eliminate paraxial diffraction of a probe
field carrying an arbitrary image encoded into its spatial
profile [38]. In contrast to previous approaches, it operates
in the momentum space. The method takes advantage of
electromagnetically induced transparency (EIT) in a thermal
atomic vapor, under the influence of atomic motion and
collisions. These induce a linear susceptibility experienced
by the propagating field which is k⊥-square dependent in
momentum space. This susceptibility can be manipulated in
such a way that the phase shifts giving rise to diffraction are
exactly canceled. Since the phase shift of each momentum
component is eliminated individually, arbitrary images within
a certain bandwidth can be propagated without diffraction. The
method, however, necessarily involves strong single-photon
absorption, since the diffraction can only be canceled at a
negative two-photon detuning between the probe and control
fields, leading to an imperfect EIT condition.

Here, we propose a method to transfer and frequency-
convert an arbitrary image encoded in the spatial profile of
a probe field onto a signal field using four-wave mixing in
a hot atom vapor. We demonstrate how diffraction can be
avoided in this conversion by exploiting the atomic motion
to cancel the paraxial diffraction of both the probe and
signal fields simultaneously. Furthermore, we show that an
incoherent two-way pump field can be employed to improve
the performance in various ways. It redistributes populations
in zeroth order of the probe field, which together with the
applied control fields leads to the formation of additional
coherences. This on the one hand allows us to cancel linear
absorption with nonlinear gain such that the light intensities
are maintained throughout the propagation. On the other hand,
the pump field broadens the transverse momentum bandwidth
that can be propagated without diffraction, such that smaller
spatial structures become accessible. Third, the pump leads to
modified propagation dynamics of the field intensities, which
improves the FWM process such that residual broadening
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and absorption of the probe and signal fields before the
FWM equilibrium is reached are minimized. We analyze our
setup first for Gaussian probe beams, and finally show that
arbitrary images can be propagated and frequency-converted
without diffraction. All examples are based on 87Rb at room
temperature.

The paper is organized as follows. In Sec. II A, we introduce
our model and discuss a possible experimental realization in
87Rb. In Sec. II B, we characterize the spatial evolution of the
probe and signal fields, and discuss the possibility to reproduce
the spatial profile of the probe field onto the signal field. In
Sec. II C, we obtain the linear and nonlinear susceptibilities
of the thermal atom vapor. Section III discusses our main
results. In Sec. III A, we analyze the linear and nonlinear
susceptibilities, and discuss the elimination of diffraction and
frequency conversion by the linear and nonlinear responses
of the medium. Results with and without incoherent pump
fields are compared, and the effect of the pump is studied.
Section III B presents our numerical results on the propagation
dynamics of a pump field with Gaussian spatial profile. We
show that it can be frequency-converted into a signal field via
the FWM process, and that the two resulting fields can be
propagated without diffraction. The effects of the incoherent
pump on the power and width of the outgoing probe and signal
fields are studied in detail in Sec. III C. Finally, we show
in Sec. III D that a two-dimensional image encoded in the
spatial profile of the probe field can be propagated without
diffraction, and is reproduced to the FWM signal field in a
suitably prepared thermal medium. Sec. IV concludes with
a discussion and summary. Details on the calculation of the
linear and nonlinear susceptibilities including the effect of the
thermal motion are provided in the Appendix.

II. THEORETICAL MODEL

A. Setup

We consider a five-level atomic system as shown in
Fig. 1(a), which is designed as follows. The three lev-
els |1〉, |2〉, and |3〉 form a �-shaped electromagnetically
induced transparency setup. Transition |1〉 ↔ |3〉 is driven
by a weak probe field with Rabi frequency �p(r,t) =
�μ31 · �epEp(r,t)/2�, while a resonant control field with Rabi
frequency �c1(r,t) = �μ32 · �ec1Ec1(r,t)/2� is applied to tran-
sition |2〉 ↔ |3〉. This �-type setup is enlarged to a double-�
system by additionally applying a resonant control field with
Rabi frequency �c2(r,t) = �μ42 · �ec2Ec2(r,t)/2� to transition
|2〉 ↔ |4〉. The fourth transition |1〉 ↔ |4〉 is not driven by
an external field, but due to four-wave mixing a signal field
�s(r,t) = �μ41 · �esEs(r,t)/2� can be generated throughout the
propagation of the light fields through the medium. Finally,
we apply a two-way incoherent pump field [39–42] to the
transition |1〉 ↔ |5〉, which together with spontaneous decay
from |5〉 into the other states effectively forms a one-way
pumping from |1〉 into the other atomic states. Here, �μij

is the dipole moment between states |i〉 and |j 〉 (i,j ∈
{1,2,3,4}). En and �en are the slowly varying envelopes and unit
polarization vectors of the electric fields with n ∈ {p,s,c1,c2}.
The incoherent pump field induces a redistribution of the
populations in zeroth order of the probe field, which together

FIG. 1. (Color online) Schematic setup proposed to realize
diffractionless image reproduction via four-wave mixing in a thermal
atom vapor. (a) In the considered five-level model, the lower three
states in a � configuration form the basic electromagnetically
induced transparency setup for the probe propagation. The fourth
state together with an additional control beam leads to a four-level
double-� system, which enables four-wave mixing to generate an
additional signal field. Finally, a two-way incoherent pump field
is applied to the fifth auxiliary state. In effect, the single-photon
absorptions for both the probe and signal fields are reduced, and
the four-wave mixing process is enhanced. (b) Colinear propagation
of the four coherent fields in the thermal atomic medium to satisfy
the phase matching condition. Due to atomic motion, the paraxial
diffraction of arbitrary profiles of both probe and signal fields can be
eliminated over a certain bandwidth of the transverse beam profile.
Eventually, the incident image encoded onto the probe is copied to
the FWM signal field, which also propagates without diffraction.

with the control fields leads to the formation of additional
atomic coherences. These coherences will turn out to favorably
affect the propagation dynamics in a nontrivial way.

As discussed in more detail later, the required level
scheme can be realized, e.g., in 87Rb, with magnetic sublevels
52S1/2, F = 1, mF = −1 and F = 2, mF = −2 as the two
lower states |1〉 and |2〉, and 52P1/2, F = 2,mF = −1 and F =
1,mF = −1 as the two upper states |3〉 and |5〉, respectively.
State |4〉 then can be chosen as 5 2P3/2, F = 2, mF = −2. We
use the parameters of this implementation as summarized in
the caption of Fig. 2 for the numerical calculations presented
below.

B. Propagation dynamics

In order to derive analytical expressions, we assume the
undepleted pump approximation for the strong control fields,
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FIG. 2. (Color online) Motion-induced linear susceptibilities for
the probe (a) and signal (b) fields in momentum space. The figures
show the linear dispersion without incoherent pump field (black
dotted line) and with incoherent pump field (solid blue curve). It can
be seen that the dispersion is essentially unaffected by the pump and
remains approximately quadratic in the central region k⊥ � k1. In
contrast, the linear absorption with (dashed green curve) and without
(dot-dashed red curve) are strongly modified by the incoherent pump.
Parameters are λp = 795 nm, λs = 780 nm, �D1 = 2π × 5.75 MHz,
�D2 = 2π × 6.07 MHz, �31 = �D1/4, �32 = �D1/6, �41 = �D2/4,
�42 = �D2/6, �51 = �D1/12, �52 = �D2/2, γ21 = 0.001�31, T =
300 K, vth = 240 m/s, �k = 22.8 m−1, �c1 = 1.55�32, �c2 =
1.43�42, �c1 = 0, �c2 = 0, and �p = �. With incoherent pump
field, n0 = 1.32 × 1018 m−3, γc = 1600�kvth, and p = 0.7�31. With-
out incoherent pump field, n0 = 6.2 × 1017 m−3, γc = 30000�kvth,
and p = 0. In both cases, parameters are chosen such that the
diffraction for both probe and signal fields can be eliminated, and
that the transverse momentum scales with and without pump are
comparable, k0 ≈ k1.

such that they only acquire phase shifts as a result of self-
and cross- phase modulation during the FWM process. In the
paraxial approximation for propagation in the z direction, we
obtain the propagation equations in momentum space

(
∂

∂z
+ i

k2
⊥

2kp

)
�p(k⊥,z)

= i
kp

2
[χp(k⊥)�p(k⊥,z) + χsp(k⊥)�s(k⊥,z)], (1a)

(
∂

∂z
+ i

k2
⊥

2ks

)
�s(k⊥,z)

= i
ks

2
[χs(k⊥)�s(k⊥,z) + χps(k⊥)�p(k⊥,z)]. (1b)

Here, kp [ks] is the wave number of the probe [signal] field.
The terms ik2

⊥/2kp(s) characterize the paraxial diffraction of
the probe (signal) field, and lead to spatial broadening and
energy spreading throughout the field propagation, thereby
severely distorting the spatial profiles of the incident fields.
The linear responses of the atomic medium to the probe and
signal fields are given by χp(k⊥) and χs(k⊥) respectively,
while χps(k⊥) [χsp(k⊥)] characterizes the nonlinear forward
[backward] FWM process from �p [�s] to �s [�p].

We can see from Eqs. (1) that each wave vector component
of the probe field is proportionally transferred onto the signal
field and vice versa. Therefore, eventually images carried
by the transverse degrees of freedom of the probe field
can be copied to the signal field via the interplay of the
FWM processes. In this transfer, the relative intensities of
the output probe and signal fields depend on their coupling
strengths to the atomic medium. As shown in the following,
the combination of the linear and nonlinear responses of
the thermal vapor can be manipulated in such a way that it
exactly eliminates the diffraction of both fields due to atomic
motion when the FWM process reaches the equilibrium.
As a result, the initial spatial profile of the probe field is
then reproduced and thereby frequency converted essentially
without diffraction to the signal field during the FWM process.

C. Linear and nonlinear susceptibilities

For the calculation of the linear susceptibilities χp,χs and
the nonlinear susceptibilities χps,χsp under the influence of
atomic motion, we follow the approach introduced in Ref. [35].
In the following, we focus on the main results, whereas the
detailed derivation is summarized in the Appendix. Through-
out the derivation, we apply a sequence of approximations.
In particular, we assume that the two control fields and
the incoherent pump are plane waves. For the weak probe
and signal fields, we apply the slowly varying envelope and
paraxial approximations, but allow for arbitrary spatial profiles
within the paraxial regime. In the Dicke limit, in which the
Doppler shift for the Raman two-photon transition �kvth is
much smaller than the combination of the collision rate γc and
the incoherent pump p, i.e.,

�kvth � γc + p

2
, (2)

we find

χp(k⊥) = i
3λ3

pK31n0�31

8π2

(
ρ

(0)
11 − ρ

(0)
33 + �c1

(
ρ

(0)
11 − ρ

(0)
33

) + i�c1ρ
(0)
23 − �bρ

(0)
43

i� − �1 − Dk2
⊥

)
, (3a)

χs(k⊥) = i
3λ3

sK41n0�41

8π2

(
ρ

(0)
11 − ρ

(0)
44 + �c2

(
ρ

(0)
11 − ρ

(0)
44

) + i�c2ρ
(0)
24 − �aρ

(0)
34

i� − �1 − Dk2
⊥

)
, (3b)
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χsp(k⊥) = i
3λ3

pK31n0�31

8π2

(
−ρ

(0)
34 + �b

(
ρ

(0)
11 − ρ

(0)
44

) + i�c1ρ
(0)
24 − �c1ρ

(0)
34

i� − �1 − Dk2
⊥

)
, (3c)

χps(k⊥) = i
3λ3

sK41n0�41

8π2

(
−ρ

(0)
43 + �a

(
ρ

(0)
11 − ρ

(0)
33

) + i�c2ρ
(0)
23 − �c2ρ

(0)
43

i� − �1 − Dk2
⊥

)
, (3d)

where λp [λs] is the wavelength of the probe [signal] field, and
n0 is the atomic density. K31 and K41 are related to the single-
photon spectrum for both fields and can be treated as real
numbers close to resonance [35]. Their definitions are given in
Eqs. (A23) of the Appendix. � = �p − �c1 is the two-photon
detuning of the lower � subsystem, �ij is the spontaneous
emission rate from state |i〉 to |j 〉, and ρ

(0)
ij are the zeroth-order

populations or coherences for a single atom at rest, which are
determined by the incoherent pump p and the two control
fields �c1 and �c2. Further,

D = v2
th

γc1 − i�
, (4)

γc1 = γc + p/2 + γ21. (5)

The effective line width in the susceptibilities Eqs. (3) is

�1 = p/2 + γ21 + �c1 + �c2, (6)

with power broadening contributions of the two control fields
�c1 = K31�

2
c1 and �c2 = K41�

2
c2, and �a = K31�

∗
c1�c2 and

�b = K41�c1�
∗
c2.

III. RESULTS

A. Susceptibilities

1. Without incoherent pump

In this section, we show how the atomic motion can be
exploited to eliminate the paraxial diffraction of both probe
and signal fields. We start with the case without incoherent
pump field, i.e., p = 0. Then, ρ(0)

11 = 1 is the only nonvanishing
zeroth-order density matrix element, and Eqs. (3) simplify to

χp(k⊥) = i
3λ3

pK31n0�31

8π2

(
1 + �c1

i� − �0 − D0k2
⊥

)
, (7a)

χs(k⊥) = i
3λ3

sK41n0�41

8π2

(
1 + �c2

i� − �0 − D0k2
⊥

)
, (7b)

χsp(k⊥) = i
3λ3

pK41n0�31

8π2

�b

i� − �0 − D0k2
⊥

, (7c)

χps(k⊥) = i
3λ3

sK41n0�41

8π2

�a

i� − �0 − D0k2
⊥

, (7d)

where �0 = γ21 + �c1 + �c2 and D0 = v2
th/(γc + γ21 − i�).

Setting �c2 = 0 such that state |4〉 is not accessed, the system
reduces to a three-level �-type setup, and we recover the result
for χp(k⊥) of Ref. [35,37]. In the region k⊥ � k0 (with k the
modulus of k), Eqs. (7) can be approximated to first order in k2

⊥

to give

χp(k⊥) = 3λ3
pK31n0�31

8π2

[
i

(
1 − �c1

2�0

)
− �c1

2�0

(
1 − k2

⊥
k2

0

)]
,

(8a)

χs(k⊥) = 3λ3
sK41n0�41

8π2

[
i

(
1 − �c2

2�0

)
− �c2

2�0

(
1 − k2

⊥
k2

0

)]
,

(8b)

χsp(k⊥) = 3λ3
pK41n0�31

8π2

�b

2�0

[
−1 − i + k2

⊥
k2

0

]
, (8c)

χps(k⊥) = 3λ3
sK41n0�41

8π2

�a

2�0

[
−1 − i + k2

⊥
k2

0

]
. (8d)

Here, k0 = √
�0/Dr0 with Dr0 = v2

th/γc, where we have
neglected γ21 since it is much smaller than γc. We have also set
� = −�0 in order to remove the dependence of the imaginary
parts of the linear and nonlinear susceptibilities on k2

⊥. Note
that the real parts proportional to k2

⊥ remain positive in the
central region k⊥ � k0.

Results for the linear and nonlinear susceptibilities in
Eq. (7) as a function of k⊥ are shown in Figs. 2 and 3. Note
that in order to facilitate a comparison of the shapes of the
respose curves, in these figures, we have chosen parameters
in such a way that k0 ≈ k1, i.e., the scales of the transverse
wave vectors with and without incoherent pump fields are
approximately the same. In the central area k⊥ � k1, the
linear and nonlinear dispersions are quadratic in k⊥ with a
constant offset (black dotted line). Recalling the propagation
equations in paraxial approximation for the probe and signal
fields, Eqs. (1), we immediately find that the combination of
linear and nonlinear susceptibility has a suitable functional
dependence to cancel the effect of diffraction throughout the
propagation, provided that the two fields have the same spatial
structure. Indeed, as shown later, the FWM process duplicates
the spatial shape of the probe onto the signal field. Since the
elimination of diffraction operates over a certain momentum
range, it does not depend on the spatial profile of both fields
within a certain bandwidth range. Within this bandwidth,
diffraction of arbitrary spatial structure can be removed by
the atomic motion [35].

This elimination of the diffraction, however, is accompa-
nied by strong single-photon absorption as shown in Fig. 2
by the dot-dashed red curve. This significant attenuation of
the output intensities of both fields is inevitable without
pump field, since a negative two-photon detuning � = −�0

deviating from the EIT resonance condition is required for the
cancellation of diffraction. This forms a major obstacle for
practical applications of the present scheme.
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FIG. 3. (Color online) Motion-induced nonlinear susceptibilities
related to the forward (a) and backward (b) FWM processes. The
figures show the nonlinear dispersion without incoherent pump
field (black dotted line) and with incoherent pump field (solid blue
curve). As for the linear susceptibilities, the dispersion is essentially
unaffected by the pump and remains approximately quadratic in the
central region k⊥ � k1. In contrast, the nonlinear absorption with
(dashed green curve) and without (dot-dashed red curve) is strongly
modified by the incoherent pump. Parameters can be chosen such that
the nonlinear and the linear absorption cancel for a suitable choice of
the pump field. Parameters are as in Fig. 2.

2. With incoherent pump

We next consider the effect of the incoherent pump field,
which redistributes the populations in the five-level system.
Subsequently, the control fields create additional coherences
already at zeroth order in the probe and signal fields. The
aim of this control is to cancel the single-photon absorption,
without perturbing the diffraction cancellation. The zero-order
populations and coherences ρ

(0)
ij for motionless atoms can

be obtained by solving the steady-state master equation. The
analytic exact expressions for ρ

(0)
ij are too complicated to be

shown here. Instead, we show the relevant ρ
(0)
ij as functions of

the incoherent pump field strength in Fig. 4. As the intensity
of the incoherent pump increases, the population of the initial
ground state |1〉 decreases, while that of the other states
increases. Due to the two coherent control fields, atomic
coherences are established in the control field part of the
double-� system. For resonant control fields �c1 = �c2 = 0
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FIG. 4. (Color online) (a) Zeroth-order populations ρ
(0)
ii (i =

1,2,3,4) and (b) coherences ρ
(0)
ij (i �= j ) for a motionless atom as a

function the intensity of the two-way incoherent pump field. At zero
pump intensity, the atoms are in the ground state |1〉. As the intensity
of the incoherent pump increases, atoms are gradually redistributed
among the other four states, and atomic coherences arise between |2〉,
|3〉, and |4〉 due to interactions with the two coherent control fields
�c1 and �c2. Parameters are as in Fig. 2.

as considered in the following, ρ
(0)
23 and ρ

(0)
24 are purely

imaginary while ρ
(0)
34 is real.

In the region k⊥ � k1, we can expand Eqs. (3) to first order
in k2

⊥ to give (i ∈ {s,p,sp,ps})

χi(k⊥) ≈ χ
(0)
i + χ

(1)
i

k2
⊥

k2
1

+ O(k4
⊥). (9)

and the critical transverse wave number scale is set by

k1 =
√

�1

Dr1
= 1

vth

√(
p

2
+ �c1 + �c2

)(
p

2
+ γc

)
, (10)

where Dr1 = v2
th/γc1 follows from Eq. (4) on resonance and

�1 is defined in Eq. (6). We find that k1 grows rapidly
with increasing incoherent pump rate p, which enables
operation of the diffractionless image propagation over a
larger transverse wave number bandwidth compared to the
case without incoherent pump field.

Specifically, we obtain

χp(k⊥) = 3λ3
pK31n0�31

8π2

{
i
(
ρ

(0)
11 − ρ

(0)
33

) + �c1
(
ρ

(0)
11 − ρ

(0)
33

) + i�c1ρ
(0)
23 − �bρ

(0)
43

�1

[
− 1 + i

1 + α2
+ α(2�1 + γc1)2

2(γc1 + �1)2

k2
⊥

k2
1

]}
, (11a)

χs(k⊥) = 3λ3
sK31n0�41

8π2

{
i
(
ρ

(0)
11 − ρ

(0)
44

) + �c2(ρ(0)
11 − ρ

(0)
44 ) + i�c2ρ

(0)
24 − �aρ

(0)
34

�1

[
− 1 + i

1 + α2
+ α(2�1 + γc1)2

2(γc1 + �1)2

k2
⊥

k2
1

]}
, (11b)
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χsp(k⊥) = 3λ3
pK41n0�31

8π2

{
−iρ

(0)
34 + �b

(
ρ

(0)
11 − ρ

(0)
44

) + i�c1ρ
(0)
24 − �c1ρ

(0)
34

�1

[
− 1 + i

1 + α2
+ α(2�1 + γc1)2

2(γc1 + �1)2

k2
⊥

k2
1

]}
, (11c)

χps(k⊥) = 3λ3
sK41n0�41

8π2

{
−iρ

(0)
43 + �a

(
ρ

(0)
11 − ρ

(0)
33

) + i�c2ρ
(0)
23 − �c2ρ

(0)
43

�1

[
− 1 + i

1 + α2
+ α(2�1 + γc1)2

2(γc1 + �1)2

k2
⊥

k2
1

]}
. (11d)

Here,

α =
√

γc1

2�1 + γc1
, (12)

In order to remove the dependence on k2
⊥ for the imaginary

parts of the linear and nonlinear susceptibilities and at the same
time keep the real parts positive in the central area k⊥ � k1 as
desired, we have calculated the condition for the two-photon
detuning,

� = −α�1. (13)

In Figs. 2 and 3, we show the imaginary and real parts of
the linear and nonlinear susceptibilities against the transverse
wave vector k⊥. It can be seen that the single-photon absorption
has been considerably reduced due to the incoherent pump
(dashed green curve), together with an increase of the nonlinear
gain. Still, both the linear and the nonlinear absorptions remain
approximately constant in the central area k⊥ � k1. At the
same time, the linear and nonlinear dispersions (solid blue
curve) are proportional to k2

⊥ except for constant offsets, and
essentially unchanged compared to the case without incoherent
pumping. We thus conclude that the parameters can be chosen
such that the paraxial diffraction of both the probe and
the signal fields can be approximately eliminated after the
FWM process has reached its equilibrium, but with significant
reduction of absorption compared to the case without pump.

It should be noted that it is not possible to fully compensate
the single-photon absorption for both signal and probe fields
using only the linear gain from the atomic coherences, since
ρ

(0)
43 [ρ(0)

34 ] in χp(k⊥) [χs(k⊥)] will partially cancel out the
gain effect of ρ

(0)
23 [ρ(0)

24 ] as shown in Eqs. (11a) and (11b).
However, Fig. 2 shows that, together with the nonlinear gain
from the FWM process, the loss can be eliminated or even
overcompensated.

B. Propagation dynamics

In Sec. III A, we have discussed the essential mechanism for
the elimination of the paraxial diffraction of arbitrary spatial
profiles of both probe and signal fields, after the FWM process
has evolved into the balanced state. Equations (1) and (11)
show that each wave vector component of the probe field is
proportionally transferred onto the signal field and vice versa.
Therefore, eventually the incident image carried by the probe
field is copied to the signal via the interplay of the FWM
processes. In this process, the relative intensities of the output
probe and signal fields depends on their coupling strengths to
the atomic medium.

To study the propagation dynamics, we numerically solve
Eqs. (1) and (3). In the first step, we start with a Gaussian

probe field

�p(r⊥,z = 0) = �p0e
− (x2+y2)

2w2
p0 . (14)

The initial width of the probe beam is wp0 = 100 μm.
Results are shown in Fig. 5 for the y = 0 subspace. In
(a), after a propagation over one Rayleigh length zR =
2πw2

p0/λp = 7.905 cm, in free space the transmitted probe

beam is broadened to wp(z = zR) = √
2wp0 due to paraxial

diffraction. Accordingly, the intensity is decreased by factor
of 1/2. In the thermal vapor using the setup proposed here,
the width of the outgoing probe field remains almost constant
wp(z = zR) ≈ 1.0395wp0, while the intensity is reduced to
�p(z = zR) ≈ 0.537�p0. The output of the generated FWM
signal field has a Gaussian spatial structure with width
ws(z = zR) ≈ 1.0397wp0 and relative intensity �s(z = zR) ≈
0.502�p0, similar to the output probe field. In Figs. 5(b)
and 5(c), the relative widths and powers of both fields are
shown as a function of the propagation distance z. In the
first stage of the propagation, the forward FWM process is
dominant and transfers energy from the probe to the signal
field. At about zB ≈ 0.15zR , the forward and backward FWM
processes are balanced. At this point, the normalized width
of both signal and probe field has changed by less than one
percent from the width of the initial probe field. In this initial
propagation part, linear single-photon absorption dominates,
and the total power contained in both signal and probe
fields together is attenuated. Beyond z > zB , the nonlinear
gain overcompensates the linear loss, such that the probe
and signal intensity grows slightly. This growth in power
is accompanied by a small growth in the widths of signal
and probe fields, which is related to higher-order diffraction
∼O(k4

⊥) in the linear and nonlinear dispersions. These are
relevant, as the frequency spectrum of the incident pulse
contains contributions at wave vectors outside the central
region k⊥ � k1.

C. Effect of the incoherent pump on the propagation dynamics

To further analyze the effect of the incoherent pump beam
on the propagation dynamics, we calculated the output power
and width of both probe and signal fields as a function of
pump intensity. Results are shown in Fig. 6 for a Gaussian
probe field. We find that while the output power of the two
fields can be controlled via the pump field over a large range,
the output width only weakly depends on the pump power. This
suggests that possible inhomogeneities in the incoherent pump
field, which could, for example, arise due to absorption in the
medium, will not significantly affect the outgoing spatial beam
profiles and the diffractionless propagation in the medium. We
further find that the balanced distribution of the outgoing power
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FIG. 5. (Color online) (a) Transverse intensity profile of a two-
dimensional Gaussian probe beam after propagation over one
Rayleigh length. The figure shows the one-dimensional slice y = 0.
The different curves compare the profile of the probe beam in
free space with those of the probe and FWM signal beams in the
thermal medium. The intensities of all beams are scaled such that
the peak intensity of the input probe field also shown in the figure
is normalized. It can be seen that the power of the input beam is
distributed between the probe and FWM signal beam, and that in the
thermal medium, diffraction is significantly reduced compared to the
free space case. (b) and (c) show the normalized power and width of
the probe and FWM signal as a function of the propagation distance.
Note that the starting point for z in (c) is z = 0.03zR , as at small
propagation distance, the signal field is very weak as shown in (b),
such that the width cannot easily be extracted. Parameters are the
same as in Fig. 2.

between signal and probe field is preserved over a broad range
of pump strengths as well.

While the initial purpose of the incoherent pump field was
to induce atomic coherences via the control fields in zeroth
order of the probe and signal field, we find that it has further
less obvious positive effects on the system dynamics. First, the
single-photon absorption without pump can be compensated or
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FIG. 6. (Color online) The normalized output powers (a) and
widths (b) of a Gaussian probe and the generated FWM signal
field. Results are shown after propagation over one Rayleigh length
in the thermal medium, as a function of the amplitude of the
two-way incoherent pump p. If can be seen that, already after a short
propagation distance, the output probe and FWM signal fields widths
and powers approach each other. Afterwards, the powers increase
slowly over the residual propagation distance due to overall gain.
Throughout the whole propagation, the widths of the two beams
remain essentially unchanged, as can be seen from the small scale on
the y axis of (b). Parameters are the same as in Fig. 2.

even turned into gain by the combination of reduced linear ab-
sorption and nonlinear gain from the atomic coherences. This
suggests that the FWM process, which sensitively depends on
the relative intensities of all applied fields, equilibrates in a
rather short propagation distance. Consequently, not only is
the efficiency of the FWM process significantly improved, but
also the broadening of both probe and signal fields due to
residual diffraction before the FWM equilibrium is reached is
considerably decreased. Second, the incoherent pump further
alleviates the demand for strong collision rates to achieve the
Dicke limit, Eq. (2), as γc1 is enhanced by the pump rate p.
Third, since k1 defined in Eq. (10) which sets the transverse
wave number scales in Eq. (9) and Figs. 2 and 3 grows rapidly
as the incoherent pump increases, probe and signal fields with
a larger transverse bandwidth, and in turn smaller spatial size,
can be propagated through the medium without diffraction in
the thermal medium.

D. Diffractionless propagation of arbitrary images

In order to demonstrate that our setup can operate on
arbitrary images encoded onto the probe field, we finally
propagated a two-dimensional image shown in Fig. 7 through
the thermal atom vapor. The incident image is represented
by an array of values “0” and “1” in the transverse plane,
which leads to the somewhat rough edges visible in Fig. 7(a).
In free space, as expected we find that the image is totally
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FIG. 7. (Color online) Diffractionless propagation and frequency
conversion of arbitrary images. The original two-dimensional image
encoded onto the transverse profile of the probe beam is shown in (a).
In free space, the image is severely distorted after propagation over
one Rayleigh length, as shown in (b). In our suitably tailored thermal
medium, the probe beam profile is preserved; see (c). Additionally, the
same profile is converted onto the signal field via the FWM process
as given in (d). All axis labels are given in units of 100 μm. Other
parameters are as in Fig. 2.

distorted after propagating one Rayleigh length; see (b). But
in the thermal vapor, the image encoded onto the probe beam
is well preserved due to the cancellation of the diffraction
due to atomic motion. In comparison to the initial image,
the sharp edges have been smoothed out, as they contain
high-frequency transverse wave vector components outside
the central susceptibility area k⊥ � k1. At the same time, the
image is transferred to the signal field via the FWM process;
see (d).

IV. DISCUSSIONS AND CONCLUSION

We have proposed a scheme to realize diffractionless image
propagation and frequency conversion based on four-wave
mixing in a thermal atomic vapor. Phase matching is achieved
despite the thermal motion, which is exploited to achieve
diffractionless image propagation. In order to compensate the
usually inevitable absorption, we applied a two-way incoherent
field. On the one hand it modifies the linear and nonlinear
absorption such that overall, the probe and signal fields
propagate without attenuation. But additionally, the pump
field leads to a rapid equilibration of the FWM processes,
which sensitively depend on the intensities of all applied
fields. Thereby, an image frequency conversion with negligible
diffraction in the initial transient dynamics is achieved. Fur-
thermore, the additional pump field allows to enter the desired

Dicke regime already at lower densities, which is favorable
for experimental implementations. Finally, the pump field
increases the transverse wave number bandwidth which can be
propagated without diffraction through the thermal medium.
We have shown that our method is capable of transmitting
and frequency-converting complex two-dimensional images
without diffraction, requiring only short propagation distances
of less than one Rayleigh length.

Throughout the paper, we used parameters of the hyper-
fine structure of 87Rb for the results, which is an atomic
species routinely used in laboratories and therefore well
suited for proof-of-principle experiments. But our setup can
also be generalized to different systems, e.g., to achieve
conversion to other frequencies. The main considerations
which led us to 87Rb are as follows. A major restriction
on the parameters arises from the fact that the Doppler
effect effectively reduces the coupling between the thermal
vapor and the laser fields. Therefore, usually a relatively high
atomic density (>1012cm−3) is required to achieve sufficient
medium response to cancel the diffraction, which can lead to
unwanted effects such as additional non-linear processes or
collective interactions [43]. In order to reduce the required
atomic density, the population in the upper state |5〉 should be
minimized, which acts only as an auxiliary state in order to
effectively convert the incoherent two-way pump field into
a one-way pumping. For this, the spontaneous decay rate
�52 should ideally be much larger than �51. Additionally,
the couplings between atoms and the probe and signal fields
should be as strong as possible to further reduce the atomic
density, such that large dipole moment for �μ31 and �μ41 are
desirable. Lastly, the simultaneous elimination of diffraction
for both fields in the same thermal vapor demands for matched
coupling strengths, which further limits the choice of suitable
�μ31 and �μ41.

So far, we have considered propagation distances up to a
Rayleigh length which is related to a specific probe beam
waist. The reason that we do so is to clearly show and
compare the differences in the propagation dynamics of the
probe and signal beams between the free space case and our
thermal atomic medium. Of course, the propagation dynamics
of the two fields at longer propagation distances can also
be calculated, and we have performed numerical calculations
with different propagation distances. We found that the results
for different propagation distances are qualitatively similar.
The main differences are that, with increasing propagation
distance, the outgoing probe and signal fields are amplified
further due to the gain from the incoherent pump, and are
broadened to slightly larger widths because of the higher-order
diffraction.

We further studied the relation between the widths of the
two outgoing fields and the width of the incoming probe. It
implicitly depends on how well Eq. (3) can be approximated to
Eqs. (8) and (11). If the width of the incident probe is too small
such that there are some wave components whose transverse
wave vectors are outside the region k⊥ � k1, then the imagi-
nary parts of the susceptibilities can not be treated as constants
as shown in Figs. 2 and 3. This means that diffusion processes
will take place, which leads to broadening and distortion of
the probe and signal fields. On the other hand, if the real
parts of the susceptibilities can not be well approximated by
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Eq. (9), then residual diffraction and stronger higher-order
diffraction degrade the two fields. For larger sizes of the
incident probe field which corresponds to correspondingly
smaller scales of its transverse wave vectors, those effects, such
as diffusion, residual diffraction, and higher-order diffraction
can be sufficiently suppressed.

We recently became aware of related work by I. Katzir
et al., who independently of us developed another method
to eliminate paraxial diffraction using a FWM process [44].
Interestingly, while the level schemes at first sight look rather
similar, the involved physical processes are entirely different.
The setup by Katzir et al. and ours share the main principle
of operating in the transverse wave vector space k⊥, such that
diffraction of arbitrary images encoded onto the probe beam
can be manipulated. But in contrast to the present work, Katzir
et al. do not rely on the dependence of k⊥ induced by the
thermal atom motion, but instead exploit a new mechanism
based on the phase-matching condition of a suitably tailored
FWM process. In their scheme, a probe field with arbitrary
transverse profile and a plane-wave control field interact with
a three-level � system in EIT configuration. The control
field further acts as a pump field to form an active Raman
gain (ARG) [45,46] process, which leads to generation of a
conjugate FWM signal field. Since for each wave component
the produced conjugate signal field has an opposite phase
dependence on the transverse wave vector as compared to the
probe field, the diffraction for both fields can be tuned such
that they cancel each other. As a result, the spatial profile of
the probe field is well preserved, and copied to the signal field
as in our proposal, while avoiding absorption via the nonlinear
gain.

The two related yet different setups clearly highlight how
versatile and intriguing the light propagation through atomic
vapors becomes in particular if setups beyond the standard
three-level EIT setup are considered, and pave the way for
further studies operating in the transverse wave vector space
applicable to arbitrary probe images.
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APPENDIX: DERIVATION OF THE SUSCEPTIBILITIES

In this Appendix, details of the derivation of the linear and
nonlinear susceptibilities of the thermal atomic medium are
summarized. In order to describe the interaction between the
laser fields and the thermal atomic medium, we follow [35] and
introduce a generalized density matrix distribution function
including position (r) and velocity (v) information,

ρ(r,v,t) =
∑

i

ρi(t)δ(r − ri(t))δ(v − vi(t)), (A1)

where ρi(t) is the internal electronic density matrix for the
ith atom. ρ(r,v,t) can then be interpreted as the probability
density to find an atom characterized by internal density matrix
ρ(t) at position r and with velocity v. The equation of motion

of the system can be derived as

∂ρ(r,v,t)

∂t
= − i

�
[H,ρ(r,v,t)] − Lρ(r,v,t) − v · ∂ρ(r,v,t)

∂r
− γc{ρ(r,v,t) − R(r,t)F (v)}, (A2)

where H is the Hamiltonian of the system, and Lρ represents
the incoherent internal dynamics including spontaneous decay,
dephasing, and the incoherent pumping field. Next to these
quantum mechanical contributions, the external classic motion
leads to additional terms with γc as the collision rate between
atoms,

R(r,t) =
∫

ρ(r,v,t)dv, (A3)

the number of atoms with density matrix ρ(t) per unit volume
at r, and

F (v) = 1

(
√

πvth)3
e−v2/v2

th (A4)

is the Boltzmann distribution with vth = √
2kbT /m being the

thermal velocity. Specifically, the third term addresses the
thermal motion, and the last term is related to the phase-
changing collisions between atoms.

To determine the medium susceptibilities, from Eq. (A2),
we can derive the corresponding density matrix equations of
motion for the FWM process in the undepleted-pump limit to
give

(
∂

∂t
+ v · ∂

∂r
− i�s + iks · v + p(r)

2
+ �4

2
+ γc

)
ρ41

= i�s(r,t)(ρ11 − ρ44) − i�p(r,t)ρ43 + i�c2(r,t)ρ21

+ γcR41(r,t)F (v), (A5a)(
∂

∂t
+ v · ∂

∂r
− i�p + ikp · v + p(r)

2
+ �3

2
+ γc

)
ρ31

= i�p(r,t)(ρ11 − ρ33) − i�s(r,t)ρ34 + i�c1(r,t)ρ21

+ γcR31(r,t)F (v), (A5b)(
∂

∂t
+ v · ∂

∂r
− i� + i�k · v + p(r)

2
+ γ21 + γc

)
ρ21

= i�∗
c1(r,t)ρ31 + i�∗

c2(r,t)ρ41 − i�p(r,t)ρ23

− i�s(r,t)ρ24 + γcR21(r,t)F (v). (A5c)

Note we have simplified the notation of ρij (r,v,t) to ρij .
Further,

� = �p − �c1 and (A6)

�k = kp − kc1 (A7)

are the two-photon detuning and the wave vector difference
between �p and �c1. The phase-matching conditions are

�s = �p − �c1 + �c2, (A8)

ks = kp − kc1 + kc2. (A9)

Here, �i and ki are the detuning and wave vector of the
field with Rabi frequency �i(r,t) (i ∈ {p,s,c1,c2}), p(r) is
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the incoherent pump rate, �i = ∑
k �ik the total spontaneous

emission rate from state |i〉 with �ik the partial one from |i〉 to
|k〉, and γ21 denotes the ground state dephasing.

For simplicity, we focus on the case in which the two
control fields and the incoherent pump can be treated as plane
waves, such that �c1(r) = �c1, �c2(r) = �c2, and p(r) = p.
Moreover, we expand the system to leading order of the weak
probe and FWM signal fields. In zeroth order, the steady-state
density-matrix distribution function is obtained as

ρ
(0)
ij (r,v,t → ∞) = n0ρ

(0)
ij F (v), (A10)

where n0 is the atomic density, and ρ
(0)
ij is the zero-order

density-matrix element of an atom at rest. Note that ρ
(0)
ij can

easily be calculated from the steady-state master equations by
setting �p(s) = 0.

The first-order equations of motion then follow from
Eq. (A5) as(

∂

∂t
+ v · ∂

∂r
− i�s + iks · v + p

2
+ �4

2
+ γc

)
ρ

(1)
41

= i�s(r,t)
(
ρ

(0)
11 − ρ

(0)
44

)
n0F (v) − i�p(r,t)ρ(0)

43 n0F (v)

+ i�c2ρ
(1)
21 + γcR

(1)
41 (r,t)F (v), (A11a)(

∂

∂t
+ v · ∂

∂r
− i�p + ikp · v + p

2
+ �3

2
+ γc

)
ρ

(1)
31

= i�p(r,t)
(
ρ

(0)
11 − ρ

(0)
33

)
n0F (v) − i�s(r,t)ρ

(0)
34 n0F (v)

+ i�c1ρ
(1)
21 + γcR

(1)
31 (r,t)F (v), (A11b)(

∂

∂t
+ v · ∂

∂r
− i� + i�k · v + p

2
+ γ21 + γc

)
ρ

(1)
21

= i�∗
c1ρ

(1)
31 + i�∗

c2ρ
(1)
41 − i�p(r,t)ρ(0)

23 n0F (v)

− i�s(r,t)ρ
(0)
24 n0F (v) + γcR

(1)
21 (r,t)F (v). (A11c)

From Eqs. (A11), the general solution for R
(1)
ij (k,ω) can be

obtained by Fourier transforming from (r,t) coordinates to
(k,ω) space, and solving the resulting algebraic equations
for ρ

(1)
ij (k,ω). The result for ρ

(1)
ij (k,ω) is integrated over

velocity to give a set of equations for R
(1)
ij (k,ω). Solving

the resulting equations leads to an expression for R
(1)
ij (k,ω).

While R
(1)
ij (k,ω) can be obtained from these straightforward

procedures, its final expressions are too complicated to gain
deeper physical understanding of the FWM process.

Therefore, we apply a different procedure. To this end, we
first integrate Eq. (A11c) over velocity and obtain(

∂

∂t
− i� + p

2
+ γ21

)
R

(1)
21 (r,t) +

(
∂

∂r
+ i�k

)
J21(r,t)

= i�∗
c1R

(1)
31 (r,t) + i�∗

c2R
(1)
41 (r,t) − in0�p(r,t)ρ(0)

23

− in0�s(r,t)ρ
(0)
24 , (A12)

where we have defined the current density of the density-matrix
distribution function

Jij (r,t) =
∫

vρ
(1)
ij (r,v,t)dv. (A13)

For dominating

γ = γc + p

2
+ γ21 − i�, (A14)

which is in the Dicke limit [35], we can expand ρ(r,v,t) to
first order in γ as

ρ
(1)
21 (r,v,t) = ρ

(1,0)
21 (r,v,t) + 1

γ
ρ

(1,1)
21 (r,v,t)

= R
(1)
21 (r,t)F (v) + 1

γ
ρ

(1,1)
21 (r,v,t) (A15)

to obtain

0 =
∫

vρ
(1,0)
21 (r,v,t)dv, (A16a)

J21(r,t) = 1

γ

∫
vρ

(1,1)
21 (r,v,t)dv. (A16b)

Next, we multiply Eq. (A11c) by v, and integrate over velocity.
Expanding to the leading term in γ and inserting the relations
in Eq. (A16), we obtain the following equation for J21(r,t):

J21(r,t) = −D

(
∂

∂r
+ i�k

)
R

(1)
21 (r,t)

+ i

(
�∗

c1

γ
J31(r,t) + �∗

c2

γ
J41(r,t)

)
. (A17)

Here, D = v2
th/γ ,and to derive Eq. (A17) we have used the

relation [35]∫
v2 ∂

∂r
R

(1)
21 (r,t)F (v)dv = v2

th
∂

∂r
R

(1)
21 (r,t). (A18)

Inserting Eq. (A17) into Eq. (A12), we find[
∂

∂t
− i� + p

2
+ γ21 − D

(
∂

∂r
+ i�k

)2]
R

(1)
21 (r,t)

= i�∗
c1R

(1)
31 (r,t) + i�∗

c2R
(1)
41 (r,t)

− in0�p(r,t)ρ(0)
23 − in0�s(r,t)ρ

(0)
24

− i

(
∂

∂r
+ i�k

)
·
(

�∗
c1

γ
J31(r,t) + �∗

c2

γ
J41(r,t)

)
.

(A19)

In Eq. (A19), the last terms containing J31(r,t), J41(r,t) can
be neglected if |�c1|,|�c2| � |γ |, which is typically satisfied
in relevant setups. Furthermore, even when this condition
is not valid, these terms can still be neglected if both the
spatial variations ∂/∂r and �k remain in the transverse plane,
perpendicular to kp and ks [35]. Then Eq. (A19) reduces to[

∂

∂t
− i� + p

2
+ γ21 − D

(
∂

∂r
+ i�k

)2]
R

(1)
21 (r,t)

= i�∗
c1R

(1)
31 (r,t) + i�∗

c2R
(1)
41 (r,t)

− in0�p(r,t)ρ(0)
23 − in0�s(r,t)ρ

(0)
24 . (A20)

In the slowly-varying envelope approximation (SVEA), the
temporal and spatial variations of the envelope of probe
and signal fields are assumed to be much smaller than the
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decoherence rate and the wave number. For the spatio-temporal evolution of the density-matrix distribution function
R

(1)
31 (r,t),R(1)

41 (r,t), SVEA leads to the conditions

∣∣∣∣ ∂

∂t
+ v · ∂

∂r

∣∣∣∣ �
∣∣∣∣p2 + �4

2
− i�s + iks · v

∣∣∣∣, (A21a)

∣∣∣∣ ∂

∂t
+ v · ∂

∂r

∣∣∣∣ �
∣∣∣∣p2 + �3

2
− i�p + ikp · v

∣∣∣∣. (A21b)

Neglecting the temporal and spatial variations and only taking the dominant part of ρ
(1)
21 (r,v,t) = R

(1)
21 (r,t)F (v) in Eqs. (A11a)

and (A11b), by integrating over velocity, we obtain expressions for R
(1)
31 (r,v,t) and R

(1)
41 (r,v,t),

R
(1)
41 (r,t) = iK41

(
n0

(
ρ

(0)
11 − ρ

(0)
44

)
�s(r,t) − n0ρ

(0)
43 �p(r,t) + �c2R

(1)
21 (r,t)

)
, (A22a)

R
(1)
31 (r,t) = iK31

(
n0

(
ρ

(0)
11 − ρ

(0)
33

)
�p(r,t) − n0ρ

(0)
34 �s(r,t) + �c1R

(1)
21 (r,t)

)
, (A22b)

where K41 and K31 are defined as

K31 = iG31

1 − iγcG31
, (A23a)

K41 = iG41

1 − iγcG41
, (A23b)

G31 =
∫

F (v)

�s − ks · v + i
(

p

2 + �3
2 + γc

)d3v, (A23c)

G41 =
∫

F (v)

�p − kp · v + i
(

p

2 + �4
2 + γc

)d3v. (A23d)

Near the one-photon resonance with small detunings �p � p/2 + �3 + γc and �s � p/2 + �4 + γc, the imaginary parts of
K31 and K41 are much smaller than their respective real parts, and we neglect the imaginary parts in the following.

Following the paraxial approximation, we separate the transverse and longitudinal (z) coordinates, r → (r⊥,z), and neglect
changes along the propagation direction, ∂/∂r → ∂/∂r⊥. Next, we Fourier transform Eqs. (A20) and (A22) from (r⊥,t) to
(k⊥,ω), and obtain the final expressions for R

(1)
31 (k⊥,ω) and R

(1)
41 (k⊥,ω) by solving the equations

R
(1)
31 (k⊥,z,ω) = iK31n0�p(k⊥,z,ω)

[
ρ

(0)
11 − ρ

(0)
33 + K31�

2
c1

(
ρ

(0)
11 − ρ

(0)
33

) + i�c1ρ
(0)
23 − K41�c1�

∗
c2ρ

(0)
43

i(ω + �) − p

2 − γ21 − D(k⊥ + �k)2 − K31�
2
c1 − K41�

2
c2

]

+ iK31n0�s(k⊥,z,ω)

[
−ρ

(0)
34 + K41�c1�

∗
c2

(
ρ

(0)
11 − ρ

(0)
44

) + i�c1ρ
(0)
24 − K31�

2
c1ρ

(0)
34

i(ω + �) − p

2 − γ21 − D(k⊥ + �k)2 − K31�
2
c1 − K41�

2
c2

]
, (A24a)

R
(1)
41 (k⊥,z,ω) = iK41n0�s(k⊥,z,ω)

[
ρ

(0)
11 − ρ

(0)
44 + K41�

2
c2

(
ρ

(0)
11 − ρ

(0)
44

) + i�c2ρ
(0)
24 − K31�

∗
c1�c2ρ

(0)
34

i(ω + �) − p

2 − γ21 − D(k⊥ + �k)2 − K31�
2
c1 − K41�

2
c2

]

+ iK41n0�p(k⊥,z,ω)

[
−ρ

(0)
43 + K31�

∗
c1�c2

(
ρ

(0)
11 − ρ

(0)
33

) + i�c2ρ
(0)
23 − K41�

2
c2ρ

(0)
43

i(ω + �) − p

2 − γ21 − D(k⊥ + �k)2 − K31�
2
c1 − K41�

2
c2

]
. (A24b)

For continuous wave fields, we can set ω = 0 in Eqs. (A24). In the case of a small wave vector difference between �p and �c1,
�k can be neglected, i.e., �k = 0.

Finally, we note that the propagation equations for the two probe and signal fields in momentum space can be written as

(
∂

∂z
+ i

k2
⊥

2kp

)
�p(k⊥,z) = i

3λ2
p�31

8π
R31(k⊥,z), (A25a)

(
∂

∂z
+ i

k2
⊥

2ks

)
�s(k⊥,z) = i

3λ2
s�41

8π
R41(k⊥,z). (A25b)

By comparing Eqs. (A25) with Eqs. (1), we can then find the expression for the linear susceptibilities χp,χs and nonlinear
susceptibilities χps,χsp given in Eqs. (3).
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