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Effect of atomic distribution on cooperative spontaneous emission
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We study cooperative single-photon spontaneous emission from N multilevel atoms for different atomic
distributions in optical vector theory. Instead of the average approximation for interatomic distance or the
continuum approximation (sums over atoms replaced by integrals) for atomic distribution, the positions of every
atom are taken into account by numerical calculation. It is shown that the regularity of atomic distribution has
considerable influence on cooperative spontaneous emission. For a small atomic sample (compared with radiation
wavelength), obtaining strong superradiance requires not only the uniform excitation (the Dicke state) but also
the uniform atomic distribution. For a large sample, the uniform atomic distribution is beneficial to subradiance of
the Dicke state, while the influence of atomic distribution on the timed Dicke state is weak and its time evolution
obeys exponential decay approximately. In addition, we also investigate the corresponding emission spectrum
and verify the directed emission for the timed Dicke state for a large atomic sample.
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I. INTRODUCTION

Superradiance is a well-known cooperative phenomenon
that was first predicted in theory by Dicke in 1954 [1]. An
intriguing conclusion is that when N identical atoms in the
limit of a small dimension are uniformly excited by a single
photon, the decay rate of the system is N times that of the
isolated atom. The cooperative effect is due to the exchange of
real and virtual photons between atoms by the interaction field,
and it is obvious that the distances between atoms play a key
role in the cooperative spontaneous emission. The simplest
theoretical model is the two-atom system [2–5], where the
dependence of collective decay rate and Lamb shift on the
distance is clearly demonstrated. For the N -atom system,
several models, such as atomic clouds with spherical, cubic,
and slab-shaped geometry or atoms arranged in a straight
line, have been studied with different approaches [6–12]. The
manipulations of cooperative spontaneous emission can realize
many interesting behaviors and potential applications [13–16].
A summary review of the cooperative spontaneous emission
under certain approximations can be found in Refs. [17–19].

Recently, cooperative spontaneous emission received re-
newed interest when the emission from an N -atom system
excited by a single photon was considered [20–34]. With the
development of experimental technology, it becomes possible
to detect the single-photon superradiance [20], which might
yield new tools for storing quantum information and deepening
our understanding of the physics of virtual processes [27].
The cooperative decay was observed more than 40 years
ago [35], but the direct experimental observation of the
cooperative Lamb shift was achieved just recently [36,37].
This breakthrough is stimulating the study of the effect of the
virtual processes in the cooperative spontaneous emission. For
a special initial state, i.e., the timed Dicke state, a directed
emission with large atomic samples is predicted [20]. The
dynamic problem involving the counterrotating terms for a
single excitation in a large atomic sample was studied in
Ref. [24], where, under several approximations, the author
obtained analytic conclusions indicating that the evolution of
the timed Dicke state obeys the simple exponential decay.

In most of the previous papers on the cooperative spon-
taneous emission, the details of the atomic positions were

ignored, and an average interatomic distance [11–18] or the
continuum approximation [6–10,19–31] (sums over atoms
replaced by integrals, which is equivalent to the distance
average) was taken. Furthermore, in most recent papers about
single-excitation cooperative spontaneous emission, the scalar
photon theory which ignores the polarization and vector
character of the field has been applied [20–30]. In our previous
works [32,33], we studied the same problem in optical vector
theory but did not account for the electrostatic dipole-dipole
interaction which dominates when the distance between atoms
is much smaller than the wavelength. In another paper [34],
we investigated the influence of the atomic distribution on the
cooperative spontaneous emission for a simple model with
three atoms with the electrostatic dipole-dipole interaction in
optical vector theory. We found that the atomic distribution
significantly influences the cooperative effects of the system,
which leads us to suspect the universal applicability of the
continuum approximation for multiatom systems.

In this paper, we extend the study about the influence of the
atomic distribution on the cooperative spontaneous emission
from the three-atom system [34] to the N -atom one. The
purpose of this paper is to illustrate that the spontaneous
emission in a random atomic distribution is very different
from that in uniform distribution and the conclusions under
the continuum approximation may be questionable for real
experiments. The strong superradiance which approaches the
Dicke limit is hard to obtain in real experimental conditions,
where atoms are always distributed randomly. On the other
hand, with the development of semiconductor quantum dots,
the highly ordered arrays can be achieved in this artificial
system [38,39], and its superradiance has been observed in
experiment [40]. In the controllable artificial system, the
cooperative effects can be studied in a regime which was
difficult to achieve with real atoms [41–43], and our results
may be valuable to its experimental research.

II. MODEL AND HAMILTONIAN

We consider a system consisting of N identical multi-
level atoms located at positions rj , j = 1, . . . ,N. The total
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Hamiltonian of the atoms and electromagnetic (EM) fields can
be written as (� = 1) [17,34]

H = H0 + Hint + Hd−d , (1)

where

H0 =
N∑

j=1

∑
l

ωl|l〉j 〈l|j +
∑

k

ωkb
†
kbk, (2)

Hint =
N∑

j=1

∑
l �=m;k

gk,lm|l〉j 〈m|j (b†ke
−ik·rj + bke

ik·rj ), (3)

Hd−d = 1

4πε0

∑
i<j

di · dj − 3(di · r̂ij )(dj · r̂ij )

r3
ij

. (4)

H0 is the unperturbed Hamiltonian of the atoms and fields,
Hint is the interaction Hamiltonian between the atoms and the
transverse fields, and Hd−d is the electrostatic dipole-dipole
interaction (also called the instantaneous Coulomb interaction)
between the atoms [17,19]. Here ωl is the energy of the level
|l〉, b†k (bk) is the creation (annihilation) operator of the kth EM
mode with frequency ωk , and gk,lm = ωlmdlm(2ε0ωkV )−1/2êk ·
d̂lm is the coupling strength between the kth EM mode with unit
polarization vector êk and the atomic transition between levels
|l〉 and |m〉 with transition dipole moment dlm = e 〈l| r |m〉 =
dlmd̂lm, with dlm (assumed to be real) and d̂lm being the
magnitude and unit vector, respectively. The displacement
between the ith and j th atoms is rij ≡ rj − ri ≡ rij r̂ij . In
Eq. (4), dj = ∑

lm dlm|l〉j 〈m|j is the dipole moment operator
of the j th atom. Here we have assumed that all the atoms are
identical and similarly oriented [17].

In order to take into account the counterrotating terms and
simplify the calculation, we introduce a unitary transformation
U = exp(iS) [44] with

S =
N∑

j=1

∑
l �=m;k

gk,lmξk,lm

iωk

|l〉j 〈m|j (b†ke
−ik·rj − bke

ik·rj ), (5)

where ξk,lm = ωk/(ωk + |ωlm|) and ωlm ≡ ωl − ωm. In addi-
tion, we subtract the divergent free-electron self-energy Eself =
−∑

j,l �=m

∑
k (|gk,lm|2/ωk)|l〉j 〈l|j from the Hamiltonian. The

effective Hamiltonian after the transformation can be written
as [32,34]

HS = eiSHe−iS − Eself

= H ′
0 + H ′

int + Hiv + Hd−d + O
(
g2

k,lm

)
, (6)

where

H ′
0 = H0 +

N∑
j=1

∑
l �=m;k

|gk,lm|2
ωk

×
(

ξ 2
k,lm − ωlm

ωk

ξ 2
k,lm − 2ξk,lm + 1

)
|l〉j 〈l|j , (7)

H ′
int =

N∑
j=1

∑
l<m;k

g′
k,lm(|l〉j 〈m|j b†ke−ik·rj + |m〉j 〈l|j bke

ik·rj ),

(8)

Hiv = −
∑
i<j ;k

∑
l,l′,m,m′

2gk,lmgk,l′m′ξk,lm

ωk

(2 − ξk,l′m′)|l〉i〈m|i

⊗ |l′〉j 〈m′|j eik·rij . (9)

H ′
0 contains the nondynamic Lamb shift for single atoms,

i.e., the second term in Eq. (7), which is due to the
counterrotating terms. H ′

int is the transformed interaction
Hamiltonian describing the light-atom couplings and contains
only the rotating-wave terms (i.e., the terms associated with
|l〉 〈m| b†k and |m〉 〈l| bk, where |l〉 is below |m〉), and g′

k,lm =
2gk,lm|ωlm|/(ωk + |ωlm|) is the transformed coupling strength.
In contrast, the interaction Hamiltonian (3) before the transfor-
mation describing the interaction between the light and atoms
contains both counterrotating and rotating-wave terms. The
emerging term Hiv describes the interatomic interaction due
to the exchange of virtual photons (the counterrotating terms).
Hd−d does not change form after the unitary transformation
because it commutes with S. O(g2

k,lm) contains terms of order
g3

k,lm and higher, and it will be neglected.

III. TIME EVOLUTION FOR SINGLE-ATOM-EXCITATION
STATES

Here we consider the weak excitation case in which only
one of the atoms is in the first excited state and all others
are in the ground state. Since the transformed interaction
Hamiltonian H ′

int only contains the rotating-wave terms and
the initial excitation is in the first excited state, the populations
in higher atomic levels due to the counterrotating terms can
be neglected formally, and the multilevel atoms are reduced to
effective two-level (|e〉 and |g〉) ones. In the interaction picture
with respect to H ′

0, the wave function at time t can be written
as

|ψ(t)〉 =
N∑

j=1

βj (t)|ej ; 0〉 +
∑

k

ηk(t)|G; 1k〉, (10)

where |ej ; 0〉 ≡ |g1g2 · · · ej · · · gN 〉|0〉 and |G; 1k〉 ≡
|g1g2 · · · gN 〉|1k〉, with |0〉 standing for the vacuum and |1k〉
for one photon in the kth mode of the EM field. Substituting
Eq. (10) into the Schrödinger equation yields the differential
equations for βj (t) and ηk(t). Formally integrating the
differential equation for ηk(t) with the initial value ηk(0) = 0
and then substituting into the differential equation for βj (t),
under the Markov approximation, we find

β̇i(t) = −
N∑

j=1

	ijβj (t), (11)

where, for i = j , 	ii = γ0/2 + i�eg , with γ0 = d2
egk

3
0/(3πε0)

being the single-atom decay rate from |e〉 to |g〉, k0 = ω0/c

being the wave number of resonant light, and �eg being the
dynamic energy shift of single atoms. For i �= j ,

	ij = 1
2γij + i�ij , (12)
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with

γij = 3

2
γ0

{
sin2θij

sin(k0rij )

k0rij

+ (1 − 3cos2θij )

[
cos(k0rij )

(k0rij )2 − sin(k0rij )

(k0rij )3

] }
, (13)

�ij = 3

4
γ0

{
−sin2θij

cos(k0rij )

k0rij

+ (1 − 3cos2θij )

[
sin(k0rij )

(k0rij )2 + cos(k0rij )

(k0rij )3

] }
, (14)

where θij is the angle between the dipole moment deg and the
displacement rij . The quantity γij accounts for the collective
spontaneous emission effect, and the quantity �ij describes
the vacuum-induced dipole-dipole interaction containing the
electrostatic dipole-dipole interaction between atoms. Detailed
calculations of the above results can be found in Ref. [34]. Note
that the quantities γij and �ij emerged in the master equation
in Refs. [11,12,17], where the Markov approximation was also
applied. For the Markov approximation to be valid, the atomic
sample must not be too large such that the propagation effects,
e.g., retardation, are negligible [28].

The coefficients 	ij in the differential equation (11)
constitute an N × N matrix. The problem reduces to the
determination of complex eigenvalues 	n and eigenstates
|ν(n)〉 of the matrix 	 [21,26,32–34]. The eigenstates decay
exponentially in the long-time limit. The decay rates of
the eigenstates are given by 2Re(	n), while Im(	n) are the
corresponding Lamb shifts. For any initial state

|ψ(0)〉 =
N∑

n=1

cn|ν(n)〉, (15)

its time evolution is

|ψ(t)〉 =
N∑

n=1

cne
−	nt |ν(n)〉. (16)

IV. EFFECT OF ATOMIC DISTRIBUTION

Here we select two kinds of initial states of the system, the
symmetric Dicke state [1]

|D〉 = 1√
N

∑
j

|ej ; 0〉 (17)

and the timed Dicke state [20]

|T 〉 = 1√
N

∑
j

eik0·rj |ej ; 0〉, (18)

where k0 is the wave vector of the incident photon which
prepares the single-excitation state. Note that the different
initial states will result in different cooperative spontaneous
emissions, which also depend on the atomic distribution and
the sample size. Next, by diagonalizing the matrix 	, we
numerically analyze the influence of the atomic distribution
on the cooperative spontaneous emission for small and large
samples, respectively.

A. Effect of atomic distribution on the superradiant limit
in a small sample

First, we focus on a small sample, where the strong
superradiance appears in the original theory of Dicke. The
dimension of the atomic sample is smaller than the resonant
wavelength, so that the additional position-dependent phase in
Eq. (18) is negligible, and the timed Dicke state |T 〉 reduces to
the single-excitation Dicke state |D〉. In the following analysis,
we will take the Dicke state as the initial state.

We select two different geometry cases, a square and a
cube. For each case, we changed the atomic distribution from
completely regular to a slight disturbance and, finally, to totally
random. To produce the random or slightly disturbed positions
of atoms, we first fix atoms regularly in their own positions [see
Figs. 1(a1) and 2(a1)], where the lattice constant is denoted
by a; then we add a random displacement εa[rand(rj ) − 0.5]
on each atom [see Figs. 1(b1), 1(c1), 2(b1), and 2(c1)], where
0 � ε < 1 and rand(rj ) is a random number between 0 and
1. Therefore we can adjust the randomness of the atomic
distribution by controlling the parameter ε. Note that the
dipole-dipole interaction diverges as r−3 when the atomic
distance approaches zero [see Eq. (14)]. Actually, this is not
physical, and we can make our calculation valid by forbidding
the small atomic distance which has the same order as the
Bohr radius. In Figs. 1 and 2, the side lengths of the square
and the cube are both 0.1λ0 with N = 100 and N = 1000,
respectively, so the lattice constants are both a = 0.01λ0. We
estimate that the transition wavelength λ0 = 500 nm and the
Bohr radius r0 = 0.053 nm, so that if we control ε � 0.9,
the nearest atomic separation after the random displacement
εa[rand(rj ) − 0.5] will be larger than 10r0.

In the second row of Figs. 1 and 2, we plot the structures
of the radiative eigenstates for the corresponding atomic
distributions shown in the first row. The horizontal axis
represents the decay rates γn = 2Re(	n) of the eigenstates
|ν(n)〉, and the vertical axis is their weights |cn|2 with the
initial Dicke state |D〉 = ∑N

n=1 cn|ν(n)〉. We can see that in
Figs. 1(a2) and 2(a2), only one dot appears with large |cn|2
and with its decay rate close to the superradiant limit Nγ0,
while the dots belonging to all other modes have a negligible
contribution for the initial Dicke state. This means that
the Dicke state is an approximate radiative eigenstate with
the large decay rate close to superradiant limit Nγ0 for the
small atomic sample under the regular distribution. However,
if the atoms are distributed randomly, the Dicke state is
composed of many different eigenstates, and their decay rates
are all much smaller than Nγ0 [see Figs. 1(b2), 1(c2), 2(b2),
and 2(c2)].

To characterize the time evolution of the system more
clearly, from Eq. (16) we calculate the time-dependent popu-
lation in all atomic excited states

P (t) =
∑

j

|〈ej ; 0|ψ(t)〉|2. (19)

The populations corresponding to different atomic distri-
butions are plotted in Fig. 3. For comparison, we also plot
the single-atom decay (see the black solid line). From Fig. 3,
we can see the emission of the small atomic sample for the
initial Dicke state is superradiant whatever the distribution is.
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FIG. 1. (Color online) Atomic distribution on a square (in units of λ0) with different random parameters, (a) ε = 0, (b) ε = 0.4, and
(c) ε = 0.9, and the corresponding magnitude of the contribution of the different radiative eigenstates as functions of their decay rates 2Re(	n)
(in units of γ0). Results are shown for the initial Dicke state |D〉 with the number of atoms N = 100.

However, when the atoms are distributed regularly (see the
red dash-dotted line), the decay of the system will be much
faster than that in the case of the random atomic distribution
(see the blue dashed line and the green dotted line). This
result coincides with the structural analysis of the radiative
eigenstates shown in Fig. 2.

Here we try to give a physical interpretation of the above
numerical results. The cooperative effect of spontaneous emis-
sion is influenced by the dipole-dipole interaction between
atoms which has the r−3 behavior in the small atomic distance.
If the atoms are distributed randomly, some of the atoms that
are close to each other may converge together as a small
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FIG. 2. (Color online) Atomic distribution on a cube (in units of λ0) with different random parameters, (a) ε = 0, (b) ε = 0.4, and
(c) ε = 0.9, and the corresponding magnitude of the contribution of the different radiative eigenstates as functions of their decay rates 2Re(	n)
(in units of γ0). Results are shown for the initial Dicke state |D〉 with the number of atoms N = 1000.
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FIG. 3. (Color online) The upper-state population P (t) for the
small atomic sample given in Fig. 2 with different atom-distribution
random parameters, ε = 0 (dash-dotted line), ε = 0.4 (dotted line)
and ε = 0.9 (dashed line), and the single-atom case (solid line). The
inset shows the amplification of the small range. Here N = 1000, and
the initial state is the symmetric Dicke state |D〉.

subsystem. So the atomic ensemble is split up into multiple
subsystems whose weak cooperative effects are restricted in
their own interior. However, when the atoms are distributed
uniformly, the photons can be uniformly exchanged among
them, and as a whole they can display the strong collective
spontaneous emission. In Refs. [32,33], the electrostatic
dipole-dipole interaction is neglected unreasonably; therefore
the interactions between atoms are less sensitive to the
distances, and the strong superradiance is still obtained under
the random distribution. Note that the effect of regular atomic
distribution is universal for different geometries (see Figs. 1
and 2); therefore we only choose the cubic geometry in the
analysis below.
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FIG. 5. (Color online) The upper-state population P (t) for the
large atomic sample given in Fig. 4 with different atom-distribution
random parameters ε = 0 (dash-dotted line) and ε = 0.9 (dashed line)
and the single-atom case (solid line). Here the initial states are (a) the
symmetric Dicke state |D〉 and (b) the timed Dicke state |T 〉.

B. Effect of atomic distribution on cooperative spontaneous
emission for a large sample

For large multiatom samples, the timed Dicke state is
superradiant, while the symmetric Dicke state is subradiant
[26,27]. This previous conclusion is also based on the
continuum approximation of atomic distribution. Here we
discuss the influence of atomic distribution (random or regular
distribution) on the cooperative spontaneous emission of large
atomic samples.

In Fig. 4, we plot the regular and random atomic dis-
tributions and the corresponding structures of the radiative
eigenstates with the initial Dicke and timed Dicke states. In the
cases of random large samples, both the Dicke and timed Dicke
states consist of many components of different eigenstates,
as shown in Figs. 4(b2) and 4(b3). Instead, for regular large
samples, the Dicke state largely projects to a few eigenstates,
with one of them holding nearly 60% probability, and the
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FIG. 4. (Color online) Atomic distribution on a cube (in units of λ0) with different random parameters: (a1) ε = 0 and (b1) ε = 0.9.
(a2) and (b2) [(a3) and (b3)] show the corresponding magnitude of the contribution of the different radiative eigenstates as functions of their
decay rates 2Re(	n) (in units of γ0) for the initial Dicke state |D〉 (the timed Dicke state |T 〉). In (a3), the inset shows the amplification of the
principal range. Here the number of atoms is N = 1000.
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FIG. 6. The schematic description of the position of the detector.

timed Dicke state also mostly projects to a few eigenstates
whose corresponding |cn|2 are relatively large and similar [see
Figs. 4(a2) and 4(a3), respectively].

We also plot the probability that atoms are still in the
excited states for the cases of random (blue dashed lines) and
regular (red dash-dotted lines) distributions for the Dicke and
timed Dicke states in Fig. 5, wherein the solid lines show
the decay of a single-atom for comparison. From Fig. 5(a)
we can see that the Dicke state is surely a subradiant state,
and its decay is slower than the single-atom one whatever
the atomic distribution is. This result is similar to that in
Refs. [26,27], where the Dicke state is not a good trapped
state and its excitation will be slowly emitted due to the virtual
processes. However, if the atoms are distributed regularly, the
decay of the excitation will obviously be slower than that in
the case of a general random distribution. Of course, it is not
realistic to control the atoms in a regular distribution for the
sample of low-pressure gas in most experiments. However,
the semiconductor quantum dot is a developing and promising
system to control the distribution and serve the purpose of

storing the photon by subradiance with the Dicke state in a
large sample. Here, our results demonstrate that the regular
distribution is beneficial for realizing the photon storage.

In Fig. 5(b), we plot the upper-state population for the initial
timed Dicke state. Here we want to recall Fig. 4(a3) first,
where there are four eigenstates that dominate the evolution
of the timed Dicke state. Figure 4(a3) clearly demonstrates
that the timed Dicke state is not an approximate eigenstate
for a large atomic sample. However, because the real parts
of the four eigenvalues are approximately equal, the timed
Dicke state can be approximately written in an exponentially
decaying form even if it is not an eigenstate. This result
agrees with the conclusion in Refs. [24–27]. From Fig. 5(b),
we can indeed see the approximately exponentially decaying
behavior. In addition, the difference in the evolved upper-state
populations between the regular and random distributions for
the timed Dicke state is small, and the decays under the two
distributions are both superradiant.

V. DIRECTED EMISSION

In our previous works [33,34], we studied the total spectrum
of cooperative spontaneous emission, which is the average of
the spectra detected in each direction. Here we investigate
the directed properties of the spontaneous emission for the
initial timed Dicke state [20] and the influence of atomic
distribution on the emission spectrum. The spectrum detected
by the detector at position R ≡ RR̂ is given by Refs. [33,34]:

SR(ωk) ∝
∣∣∣∣∣∣R̂ × (d̂eg × R̂)

∑
j

∑
n

eik·Rj cnν
(n)
j

	n − i(ωk − ω0)

∣∣∣∣∣∣
2

, (20)

where Rj ≡ R − rj ≡ Rj R̂j , cn is the coefficient in Eq. (15),
and ν

(n)
j = 〈ej ; 0|ν(n)〉. Note that the detector is far away

from the atoms in experiment (R 
 λ0). The optical mode
whose wave vector is not parallel to R̂ leads to negligible

0
0.05

0.1

0
0.05

0.1
0

0.05

0.1

X

(a1) ε=0

Y

Z

−1 −0.5 0 0.5 1

x 10
4

0

1

2

3

4

5
x 10

−3 (a2)

S
(φ

=
0)

δ
k
/γ

0

−1 −0.5 0 0.5 1

x 10
4

0

1

2

3

4

5
x 10

−3 (a3)

S
(φ

=
π/

4)

δ
k
/γ

0

−1 −0.5 0 0.5 1

x 10
4

0

1

2

3

4

5
x 10

−3 (a4)

S
( φ

=
π /

2)

δ
k
/γ

0

0
0.05

0.1

0
0.05

0.1
0

0.05

0.1

X

(b1) ε=0.9

Y

Z

−2 −1 0 1 2

x 10
5

0

1

2

3

4
x 10

−6 (b2)

S
( φ

=
0)

δ
k
/γ

0

−2 −1 0 1 2

x 10
5

0

1

2

3

4
x 10

−6 (b3)

S
(φ

=
π/

4)

δ
k
/γ

0

−2 −1 0 1 2

x 10
5

0

1

2

3

4
x 10

−6 (b4)

S
(φ

=
π/

2)

δ
k
/γ

0

FIG. 7. (Color online) The spectra S(φ) (in arbitrary units) in different directions with (a2) and (b2) φ = 0, (a3) and (b3) φ = π/4, and
(a4) and (b4) φ = π/2, corresponding to the (a1) regular and (b1) random atomic distributions, respectively, for the small sample with a side
length of 0.1 (all the distances and positions are in units of λ0). Here the incident light which prepares the initial timed Dicke state is along the
x axis, and the detector is in the x-y plane.
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axis, and the detector is in the x-y plane.

contributions to the detector, so k̂ is replaced by R̂. Meanwhile,
as the detuning δk ≡ ωk − ω0 is far less than the resonant
frequency ω0, we can replace k by k0 in the exponential term.
Based on these approximations, we have eik·Rj = eik·(R−rj ) =
eik0Re−ik0R̂·rj .

Next, we select the direction of the atomic dipole moment
deg in the z direction and assume the wave vector of the
incident light which prepares the timed Dicke state along the x

direction. The position of the detector in the coordinate system
is shown in Fig. 6, where θ is the angle between the detector
and the z direction and φ is the azimuthal angle of the vector. In
the selected coordinate system, the expression for the spectrum
becomes

SR̂(ωk) ∝
∣∣∣∣∣∣sin θ

∑
j

∑
n

e−ik0R̂·rj cnν
(n)
j

	n − i(ωk − ω0)

∣∣∣∣∣∣
2

. (21)

It is well known that the classical dipole radiation is
maximal in the direction perpendicular to the dipole. Here
we have the same law for cooperative spontaneous emission,
which can be shown by the factor of sin2θ in Eq. (21). What
we are concerned about is not this kind of angular distribution
described by sin2θ , but the directionality of spontaneous
emission associated with the direction of the incident light
k̂0. So we set the detector in the x-y plane (θ = π/2) and
investigate the spectra in different directions by changing the
azimuthal angle φ.

We plot the spectra at different angles φ for small and
large samples in Figs. 7 and 8, respectively. In Fig. 7, we can
see that the spectra in the case of a random distribution for
small samples do not exhibit a distinguishable peak. Actually,
it is composed of a large number of peaks corresponding to
their multiple eigenstates. This can be explained by Fig. 2(c2).
As mentioned above, under the random atomic distribution,
the Dicke state is not an approximate eigenstate but consists
of many contributions associated with different eigenstates.

Therefore we obtain the spectrum shown in Figs. 7(b2), 7(b3),
and 7(b4). However, if the atoms are distributed regularly
(uniformly), the (timed) Dicke state is an approximate eigen-
state of the small-sample system [see Fig. 2(a2)], so there is a
significant peak with a half width about Nγ0 associated with
the superradiant state [see Figs. 7(a2), 7(a3), and 7(a4)]. Those
additional narrow peaks come from the small components of
other eigenstates. Note that there is little difference between the
spectra in different directions. That means there is no directed
spontaneous emission for the small sample.

In Fig. 8, we can clearly see the spectra in the direction
of φ = π/4 and φ = π/2 are negligible compared with
those in the direction of φ = 0. The emission is almost
along the direction of the incident light k0. In addition, for
the main direction of emission φ = 0, the spectra of the
regular distribution have two peaks because there are two
pairs of dominant eigenstates with their own similar Lamb
shifts [see Fig. 9(a)], while the random distribution only has
one peak because of the fusion of many eigenstates with
quasicontinuous Lamb shifts [see Fig. 9(b)].
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FIG. 9. (Color online) Magnitudes of the contribution of the
different radiative eigenstates vs their corresponding Lamb shifts
Im(	n) (in units of γ0) for the (a) regular and (b) random atomic
distributions as shown in Figs. 8(a1) and 8(b1), respectively. The
initial state is the timed Dicke state.
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VI. SUMMARY

In this paper, we investigated the cooperative spontaneous
emission of a system consisting of N identical multilevel
atoms in a vacuum field using the optical vector method.
We focused on the influence of the regularity of the atomic
distribution, which had been ignored by most previous
papers. We find that Dicke’s original conclusion that the
superradiance limit is Nγ0 in small samples is only established
when the atoms are distributed uniformly. Actually, in real
experiments, the atoms are usually randomly distributed,
and the superradiance limit Nγ0 will never be approached
even if the dimension of the atomic sample is small enough
compared to the resonance wavelength. For the large sample,

the conclusion by Scully [24] that the timed Dicke state will
approximately decay exponentially is correct, and the decay
of the symmetric Dicke state under a regular distribution
is slower than that in the random distribution. We also
investigated the spectra and demonstrated the directional
emission for a large atomic sample with the initial timed Dicke
state.
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