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Quasidark state and quantum interference in the Jaynes-Cummings model with a common bath
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Within the capacity of current experiments, we design a composite atom-cavity system with a common bath, in
which the decay channels of the atom and the cavity mode interfere with each other. When the direct atom-cavity
coupling is absent, the system can be trapped in a quasidark state (the coherent superposition of excited states for
the atom and the cavity mode) without decay even in the presence of the bath. When the atom directly couples
with the cavity, the largest decay rate of the composite system will surpass the sum of the two subsystems while
the smallest decay rate may achieve 0. This is manifested in the transmission spectrum, where the vacuum Rabi
splitting shows an obvious asymmetric character.
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I. INTRODUCTION

A quantum system in nature cannot be absolutely isolated
from its surrounding environment [1]. In addition, any quan-
tum measurement must introduce some interactions between
the system and the measurement instruments [2]. Therefore, to
precisely control and manipulate the quantum open systems is
a central task in quantum-information processes [1,3–5], such
as quantum state transfer and storage.

It has been reported recently that, an efficient and long-lived
quantum memory was realized in a ring cavity proposal [6].
One basic element underlying the experimental scheme is that,
the photons can interact with the atoms more strongly with
the assistance of the ring cavity compared to the case in the
free space. In this paper, we theoretically propose a scheme
as shown in Fig. 1, in which a two-level atom is located in
a dissipative cavity, and the leaky light from the cavity is
reflected back to interact with the atom by four high reflective
mirrors (RMs). Therefore, the atom and the cavity mode share
a common bath which is composed of the light modes in the
ring cavity formed by the high RMs. With the assistance of the
common bath, the interference between the decay channels
for the atom and the cavity mode leads to exotic behaviors
which are greatly different from the system of a singlet [7–9]
or a dimer [10–14] with two coupled or uncoupled subsystems
decaying independently.

To investigate the role of the interference effect, we
reformulate the traditional master equation, which is widely
applied to study the nonequilibrium dynamics of the open
system [15–21] under the secular approximation [22]. On
one hand, when the direct atom-cavity coupling is absent,
the system will stay in a quasidark state which is named
by the analogy of dark state in the electromagnetic-induced
transparency (EIT) phenomenon [23]. For the quasidark state,
the decay processes of the atom and the cavity mode just
cancel each other due to the destructive interference, and
it does not involve the bare ground state. The existence of
the quasidark state prevents the system from achieving the
thermal state equilibrium with the bath. On the other hand, the
Jaynes-Cummings (JC) type interaction between the atom and
the cavity mode [24] gives birth to the entangled dressed states.
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The constructive interference enhances the decay rate of the
symmetry dressed state which may achieve twice the decay
rate of the atom or the cavity mode, while the destructive
interference suppresses the decay rate of the antisymmetry
dressed state which may even drop to 0. A direct consequence
is that the vacuum Rabi splitting [25–32] in the transmission
spectrum shows an obvious asymmetric character when the
system is driven by a probe light at zero temperature. The
same asymmetric splitting also occurs when the two-level
atom is replaced by the single-mode oscillator. However, it
will behave differently at high temperatures because of the
different high-excitation spectrum between the atom-cavity
system and the coupled oscillators system [33].

The paper is organized as follows. In Sec. II, we set
up our model and reformulate the traditional master equa-
tion to include the interference terms between the decay
of the cavity mode and the spontaneous emission of the
two-level atom. We also show that the interference slows
down the decay of the system. In Sec. III, we demonstrate
that the steady state of the atom-cavity system is the quasidark
state in the absence of direct atom-cavity interaction, instead of
the thermal equilibrium state. In Sec. IV, we study the vacuum
Rabi splitting which shows an obvious asymmetry character
arising from the quantum interference and compare our model
to the coupled oscillators. The conclusions are drawn in Sec. V.

II. MODEL AND THE MASTER EQUATION

We propose an experimental scheme as shown in Fig. 1.
A two-level atom is located in a high-finesse cavity which
supports a single-mode electromagnetic field. The light modes
in the ring cavity formed by four RMs construct the common
bath shared by the cavity mode and the two-level atom.

The Hamiltonian of the global system can be written as the
sum of three terms: H = HJC + HB + HI , where

HJC = ωca
†a + ω0

2
σz + λ(a†σ− + aσ+), (1a)

HB =
∑

i

ωib
†
i bi, (1b)

HI =
∑

i

κi(ab
†
i + bia

†) +
∑

i

ξi(σ
−b

†
i + biσ

+). (1c)
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FIG. 1. (Color online) The proposed experimental scheme. A
two-level atom (red dot) is located in a leaky cavity which supports
a single-mode electromagnetic field. The photons outside the cavity
can be reflected by the mirrors and serve as a common bath shared
by the atom and the cavity. The photon detector (PD) is applied to
detect the number of photons in the cavity.

The first term HJC is the Hamiltonian of our system, the
Jaynes-Cummings model (JCM), which describes a two-level
atom interacting with the single-mode cavity photon under the
rotating wave approximation. In Eq. (1a), ωc is the frequency of
the cavity mode and a is the annihilation operator of the mode.
The two energy levels of the atom are denoted as |g〉 and |e〉,
and ω0 is the energy difference. The Pauli operators are defined
as σz ≡ |e〉〈e| − |g〉〈g|, σ− ≡ |g〉〈e|, and σ+ ≡ |e〉〈g|. λ is the
coupling strength between the atom and the cavity mode.

The second term HB describes the free terms of the photons
in the ring cavity, which act as a bath in our scheme. In Eq. (1b),
ωi is the frequency of the ith mode in the ring cavity and bi is
its annihilation operator.

The third term HI describes the interactions between the
system and the bath. In Eq. (1c), κi (ξi) is the coupling strength
between the atom (the cavity photons) and the ith mode of the
bath.

Now, we study how the photon in the cavity mode decays
into the bath. Notice that there are two decay channels for the
cavity photons. The cavity photons can either directly decay
into the bath or be absorbed by the atom and decay into the
bath through the atomic spontaneous emission. An intuitive
idea is to sum the effects of the two channels [26] and the
master equation can be formally written as

ρ̇ = −i[H,ρ] + J1(ωc)L[a] + J2(ω0)L[σ−], (2)

where L[Q] = (2QρQ† − Q†Qρ − ρQ†Q), and the spec-
trum functions J1(ω) and J2(ω) are defined as [7,34]

J1(ω) = π
∑

j

κ2
j δ(ω − ωj ), (3a)

J2(ω) = π
∑

j

ξ 2
j δ(ω − ωj ). (3b)

However, the cavity mode and the atom share a common
bath, and the quantum interference between the two decay
channels is completely neglected in Eq. (2).

To take into account the interference effect, we need to
reformulate the master equation. To this end, we first diagnose
the Hamiltonian HJC for the the atom-cavity system. The
ground state of HJC is a product state |G〉 = |0; g〉 with
eigenenergy E0 = −ωc/2. In the resonance case (ωc = ω0),
the energies for the excited states are

E±
n = (n − 1/2)ωc ± λ

√
n, (4)

and the corresponding eigenvectors are the dressed states
|n,±〉 = (±|n; g〉 + |n − 1; e〉)/√2, which are coherent su-
perpositions of the product states |n; g〉 and |n − 1; e〉. Then
the master equation can be derived under the Markov and
secular approximations with the standard steps. The detailed
derivation is shown in Ref. [22], the final result is obtained as

ρ̇cd = −i(Ec − Ed )ρcd +
∑
k,l

γ cdklρkl (5)

where |c〉, |d〉, |k〉, and |l〉 are the dressed states of HJC

with the eigenenergies Ec, Ed , Ek , and El , respectively,
and ρcd = 〈c|ρ|d〉 and ρkl = 〈k|ρ|l〉 are the elements of the
reduced density matrix for the atom-cavity system. In Eq. (5),
γ cdkl ≡ ∑4

i=1 γi , with

γ1 = −
∑

n

[J1(ωkn)δdla
†
cnank + J2(ωkn)δdlσ

+
cnσ

−
nk

+
√

J1(ωkn)J2(ωkn)δdl(a
†
cnσ

−
nk + σ+

cnank)], (6a)

γ2 = J1(ωkc)acka
†
ld + J2(ωkc)σ−

ckσ
+
ld +

√
J1(ωkc)J2(ωkc)

× (ackσ
+
ld + σ−

cka
†
ld ), (6b)

γ3 = −
∑

n

[J1(ωln)δcka
†
lnand + J2(ωln)δckσ

+
lnσ−

nd

+
√

J1(ωln)J2(ωln)δck(a†
lnσ

−
nd + σ+

lnand )], (6c)

γ4 = J1(ωld )acka
†
ld + J2(ωld )σ−

ckσ
+
ld

+
√

J1(ωld )J2(ωld )(ackσ
+
ld + σ−

cka
†
ld ), (6d)

where ωij = Ei − Ej is the energy difference between levels
i and j , and Aαβ ≡ 〈α|A|β〉 is the matrix element of operator
A in the dressed state representation of the JCM. In the above
equations, the terms proportional to

√
J1(·)J2(·) represent the

contribution from the quantum interference between the two
decay channels.

Under the ohmic dissipation, the spectrum functions J1(ω)
and J2(ω) of the bath are expressed as

J1(ω) = 2πα1ω exp(−ω/ωc1), (7a)

J2(ω) = 2πα2ω exp(−ω/ωc2), (7b)

where α1 and α2 are the dissipation coefficients and ωc1 and
ωc2 denote the cutoff frequencies.

In the end of this section, we point out the following
two aspects. First, the size of the external cavity in our
consideration is on the order of 10 cm [6], while the inner
cavity is on the order of nanometers to micrometers. Therefore,
the external cavity is much larger than the inner cavity and
can support a lot of electromagnetic modes, which can be
regarded as the environment. Although the photon mode in
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FIG. 2. (Color online) The average photon number in the inner
cavity as a function of the evolution time assuming the system is
prepared in the state |1; g〉 ⊗ |0〉 initially. The inset is the zoomed-
in view. The parameters are set as ω0 = ωc = 1, λ = 0.1, ωc1 = 5,
ωc2 = 8, α1 = 0.002, and α2 = 0.001.

the inner cavity and the photons modes in the environment
are all the bosonic modes, the coupling between the atom
and the photon mode in the inner cavity is much stronger
than that between the atom and the environment, so we first
diagnose the Hamiltonian of the system (HJC) exactly and
regard the system-environment interaction as a perturbation
safely and apply the Markov approximation to discuss the
dynamics of the system. In Fig. 2, we plot the average photon
number in the inner cavity as a function of the evolution time
t assuming the system is prepared in the state |1; g〉 ⊗ |0〉
initially, with |0〉 representing that all of the bath modes
are in their vacuum states. For comparison, we also plot the
results obtained by neglecting the interference effect [that is,
omitting the terms proportional to

√
J1(·)J2(·) in Eqs. (6)]

and the curve obtained from the traditional master equation
[Eq. (2)]. It is shown that our results (secular) coincide with the
numerical results perfectly, which confirms the effectiveness
of the Markov approximation. Besides, it is clearly shown that
the interference effect dramatically slows down the decay of
the whole system. The reason comes from the slow decaying
of the antisymmetry dressed state |1−〉, whose decay behavior
is clearly shown in Sec. IV and the Appendix. Second, only the
bath modes which have the eigenfrequencies around those of
the lowest dressed states couple to the system and the coupling
strength is much weaker than the atom-cavity coupling, i.e.,
λ � α1 and α2. As a result, the system maintains enough
coherence for a long time. As shown in Fig. 2, it exhibits an
obvious oscillation for the evolution time ωct < 200 under our
parameters.

III. QUASIDARK STATE

In this section, we first turn off the interaction between the
two-level atom and the cavity mode, that is λ = 0. Then, the
master equation (5) degenerates into a simple expression

ρ̇ = −i

[
ωca

†a + ω0

2
σz,ρ

]
+ J1[2aρa† − a†aρ − ρa†a]

+ J2[2σ−ρσ+ − σ+σ−ρ − ρσ+σ−]
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FIG. 3. (Color online) The average photons in the inner cavity
and the probability for the atom in its excited state as a function of
evolution time t with the initial state being (a) |1; g〉 ⊗ |0〉 and (b)
|0; e〉 ⊗ |0〉, respectively. (c) The sketch of the energy-level transitions
of the system. The parameters are set as ωc = ω = 1, λ = 0, ωc1 = 5,
ωc2 = 8, α1 = 0.002, and α2 = 0.001.

+
√

J1J2[2aρσ+ − σ+aρ − ρσ+a]

+
√

J1J2[2σ−ρa† − a†σ−ρ − ρa†σ−], (8)

where we write J1(ωc) as J1 and J2(ω0) as J2 for simplicity.
We prepare the system in the product state |1; g〉 ⊗ |0〉 or

|0; e〉 ⊗ |0〉 initially and investigate the dynamical evolution of
the system. Solving the above equation, we plot the curve of the
average photons in the inner cavity 〈a†a〉 and the probability
of the atom in its excited state 〈|e〉〈e|〉 as a function of the
evolution time in Fig. 3.

It is shown in the figure that the system will achieve a steady
state dependent on its initial state instead of the thermal state
equilibrium with the bath. If the system is prepared in the state
|1; g〉 ⊗ |0〉 initially, it satisfies

〈a†a〉(g)
s = J 2

2

(J1 + J2)2
, (9a)

〈|e〉〈e|〉(g)
s = J1J2

(J1 + J2)2
, (9b)

where 〈A〉(g)
s denotes the average value of the operator A over

the steady state with the initial state being |1; g〉 ⊗ |0〉. On
the contrary, if the system is prepared in the state |0; e〉 ⊗ |0〉
initially, it satisfies

〈a†a〉(e)
s = J1J2

(J1 + J2)2
, (10a)

〈|e〉〈e|〉(e)
s = J 2

1

(J1 + J2)2
. (10b)

These results can be understood from a simple physical
picture as shown in Fig. 3(c). The bath couples the two
transition arms |1; g〉 ⊗ |0〉 ↔ |0; g〉 ⊗ |1i〉 and |0; e〉 ⊗ |0〉 ↔
|0; g〉 ⊗ |1i〉 simultaneously, where |1i〉 represents that the
ith mode in the environment excites a photon, while the
other modes are in their vacuum states. Generally speaking,
only the near-resonant bath modes contribute to the dynamics
of the system, and the coupling intensities can be regarded
as constants for these bath modes in the ohmic spectrum
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situation. Furthermore, a discretization of Eq. (3) gives that the
coupling intensities of the two arms are proportional to

√
J1

and
√

J2, respectively [as shown in Fig. 3(c)]. The destructive
interference between the two transitions occurs when the atom
resonates with the cavity mode and the atom-cavity system
may be trapped in the excited states

|D〉 =
√

J1|0; e〉 − √
J2|1; g〉√

J1 + J2
(11)

without decay even in the presence of the bath. The state
|D〉 is similar to the dark state in the EIT phenomenon
which is implemented within the three-level or four-level
systems, and we name it the quasidark state. A straight cal-
culation gives 〈a†a〉(g)

s = |〈1; g|D〉|2|〈D|1; g〉|2, 〈|e〉〈e|〉(g)
s =

|〈1; g|D〉|2|〈D|0; e〉|2, and 〈a†a〉(e)
s = |〈0; e|D〉|2|〈D|1; g〉|2,

as well as 〈|e〉〈e|〉(e)
s = |〈0; e|D〉|2|〈D|0; e〉|2. Therefore, we

conclude that the system will stay in the quasidark state
with certain probability dependent of the initial state when
it achieves steady state. In other words, the quasidark state
prevents the system from reaching the thermal state equilib-
rium with the bath.

Actually, the dark state of the system can be obtained in a
more intuitive way. To this end, we rewrite the master equation,
Eq. (8), as a more simple expression:

ρ̇ = −i[H0,ρ] + L[P ], (12)

where

H0 = ωca
†a + ω0

2
σz (13)

and

P =
√

J1a +
√

J2σ−. (14)

Since the dark state does not decay even in the dissipative
system, it should be an eigenstate of P , and we can directly
write the dark state |D〉 as shown in Eq. (11), which not only
is the eigenstate of P with a zero eigenvalue but also satisfies
that the corresponding density matrix commutes with the
Hamiltonian H0, and then ρ̇ = 0. Physically speaking, it is the
interference effect between the different dissipation channels
that leads to the existence of the dark state. Arising from
the same mechanism, the high-fidelity dark entangled steady
states can also be rapidly generated in interacting Rydberg
atom systems [35].

IV. VACUUM RABI SPLITTING

To further explore the effect of a common bath, we study
the transmission spectrum of the system considering the direct
atom-cavity coupling (λ 	= 0). To this aim, we drive the cavity
by an external field and the action of the driven field on the
cavity mode is described by

Hdriven = η(a†e−iωd t + aeiωd t ), (15)

where η denotes the intensity of the driven field and ωd its
frequency.

The driven field induces the transition between the ground
state and the excited states, while the dissipation causes the
excited states to decay to the ground state. When the evolution
time is long enough, the system may reach a steady state. To in-
vestigate the behavior of the steady state, we eliminate the time
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FIG. 4. (Color online) The steady state of the system driven by
an external field. The parameters are set as ω0 = ωc = 1, λ = 0.1,
ωc1 = 5, ωc2 = 8, α1 = 0.002, α2 = 0.001, and η = 0.005.

dependence from the Hamiltonian through the unitary transfor-
mation U (t) = exp[i(a†a + σz/2 + ∑

i b
†
i bi)ωdt]. The atom-

cavity Hamiltonian in the rotating frame becomes

H = i
∂

∂t
U (t)U †(t) + U (t)(HJC + Hdriven)U †(t)

= �1a
†a + �2

2
σz + λ(a†σ− + aσ+) + η(a† + a),

(16)

where �1(2) = ωc(0) − ωd is the detuning between the cavity
(atom) and the driven field. The last term can be regarded as
a perturbation whenever η 
 ωc,ω0,λ, i.e., weak driven field.
Then the master equation can be written as

d

dt
ρcd = −i〈c[H,ρ]|d〉 +

∑
k,l

γ cdklρkl . (17)

Therefore, the average photon number over the steady state
is obtained numerically by finding the density matrix satisfying
dρcd/dt = 0 for any eigenstates |c〉 and |d〉 of HJC. The results
are shown in Fig. 4, where the average photon number reaches
its peaks when the driven field is just resonant with the energy
difference between the dressed states |1,±〉 and the ground
state |G〉. This effect is the vacuum Rabi splitting.

In Fig. 4, we also plot the results given by neglecting the
contribution from quantum interference. It is shown that the
double peaks exhibit an obvious asymmetric character if the
quantum interference between two decay channels is taken into
consideration. As observed, the peak corresponding to ωd =
E−

1 − E0 is elevated while the peak corresponding to ωd =
E+

1 − E0 is suppressed compared with the case that neglects
the effect of quantum interference.

Now let us explain the physics underlying the exotic
phenomenon and analyze how the quantum interference effect
affects the decay rate of the dressed states in the following two
steps.

First, we neglect the interference between the two decay
channels; that is, the atom and the cavity experience dissipation
independently. As discussed above, the atom-cavity coupling
dressed them, and the eigenenergies of the dressed states
|1,±〉 are ω1,±. Following the master equation (5) and setting
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the terms proportional to
√

J1(·)J2(·) to 0 in Eqs. (6), the
decay rates of the dressed states |1,±〉 are both the sum
of the decay rate of the atom and the cavity mode; that is,
�1,± = J1(ω1±,0) + J2(ω1±,0). In the case of ohmic spectrum,
it satisfied �1,+ ≈ �1,−; therefore, we obtain two nearly
symmetrical peaks in Fig. 4.

Then, we furthermore consider the quantum interference
between the two decay channels. Arising from the construc-
tive interference, the decay rate of the symmetric dressed
state |1,+〉 becomes (

√
J1(ω1+,0) + √

J2(ω1+,0))2 which even
surpasses the sum of the decay rate of subsystems. On
contrary, due to the destructive interference, the decay rate
of the antisymmetric dressed state |1,−〉 is (

√
J1(ω1−,0) −√

J2(ω1−,0))2 which may even achieve 0 under some special
parameters [for example J1(ω1−,0) = J2(ω1−,0)]. It implies
that the antisymmetry state will have an infinite lifetime.

The above analysis implies that the symmetric dressed
state |1,+〉 has a much larger decay rate than that of the
antisymmetric dressed state |1,−〉. The same conclusion is also
shown in Fig. 5, where we plot the probability for the system
in the symmetric and antisymmetric dressed states (the time
evolution of the density matrix elements ρ1+,1+ and ρ1−,1−),
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FIG. 5. (Color online) The time evolution of matrix elements
ρ1+,1+ and ρ1−,1−. The solid line is the numerical solution. The
solid square is the analytical solution whose detailed derivation is
shown in the Appendix. The parameters are set as ω0 = ωc = 1,
λ = 0.1, ωc1 = 5, ωc2 = 8, α1 = 0.002, and α2 = 0.001. The system
is initially prepared in the state |1; g〉 ⊗ |0〉.

assuming the system is prepared in the state |1; g〉 ⊗ |0〉
initially. It is clear that the symmetric state |1,+〉 decays
much faster than the antisymmetric state |1,−〉. Apart from
the numerical result, an analytical result based on iteration
calculations is shown in the Appendix.

Now, the asymmetric vacuum Rabi splitting can be ex-
plained from the different decay rates of the states |1,+〉 and
|1,−〉. Because the state |1,−〉 has a smaller decay rate, the
steady state will have a larger component. This will give a
stronger signal of the average photon number. In contrast, the
state |1,+〉 has a larger decay rate, so the steady state will have
a smaller component and it will give a weaker signal.

As is well known, the eigenstates of the JC model consist
a bare ground state and pairs of dressed states, which are
antisymmetric and symmetric states when the cavity mode is
resonant with the atom. From the above discussions, it can be
concluded that any antisymmetric dressed state |n,−〉 for both
n = 1 and n 	= 1 will have a decay rate smaller than that of the
corresponding symmetric dressed state |n,+〉.

Actually, the same asymmetric Rabi splitting is also
given when the two-level atom is replaced by a single-
mode harmonic oscillator. This similarity can be clarified by
investigating the low-energy levels of the system. To this end,
we write the Hamiltonian of coupled resonant oscillators as

Hco = ωa†a + b†b + λ(a†b + b†a)

= (ω + λ)A†A + (ω − λ)B†B, (18)

where a and b are the annihilation operators for the two coupled
oscillators, respectively, and the new set of bosonic operators
A and B are defined as A = (a + b)/

√
2 and B = (a − b)/

√
2.

By diagnosing the Hamiltonian Hco when the coupling strength
is smaller than the frequencies of the oscillators (λ < ω), we
can obtain the eigenenergies as

Em1,m2 = m1(ω + λ) + m2(ω − λ), (19)

where m1 and m2 are integers. It is obvious that energies of
the first three energy levels are E0,0 = 0, E0,1 = ω − λ, and
E1,0 = ω + λ and the splitting is E1,0 − E0,1 = 2λ, which
is same as that of the JCM. Therefore, we will obtain
similar asymmetric peaks in the transmission spectrum at zero
temperature.

However, the higher energy levels of the coupled oscillators
[as shown in Eq. (19)] are much different from those of the
JCM which are shown in Eq. (4). Therefore, the splitting will
behave differently in the two systems at finite temperature.

V. CONCLUSIONS AND REMARKS

In this paper, we discuss the dissipation of the interacting
atom-cavity system when the atom and the cavity mode share
a common bath. We regard the spectrum of the environment
as the ohmic spectrum which is the major decoherence
source often found in the qubit’s environment [7,8]. We can
also choose another type of environment, but the quantum
interference effect will not be changed quantitatively. To
investigate the effect of the common bath, we reformulated
the master equation and obtained simple expressions such as
Eqs. (8) and (12). Actually, it can also be written in the form of a
Fokker-Planck equation in coherence state representation [36].
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Solving the Fokker-Planck equation, we need not to truncate
the photon number and it is convenient to deal with the system
with a large Hilbert space. However, it includes no more
physics than the operator form of the master equation because
they are indeed the same equations in different representations.

In summary, we have proposed a scheme to realize the
JCM with a common bath within the current experimental
capabilities. In our system, the common bath induces a
quasidark state which does not decay and prevents the system
from equilibrating with the bath. Besides, the decay processes
of the atom and the cavity interfere with each other and the
constructive interference leads the symmetric dressed state
decaying much faster than the antisymmetric dressed state. As
a result, the vacuum Rabi splitting in the transmission spectrum
shows an obvious asymmetric character. Furthermore, the
robustness of the antisymmetric dressed state may be applied
in quantum-information processing, such as the storage of the
quantum state in a quantum network.
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APPENDIX: THE ITERATION SOLUTION
FOR ρ1+,1+ AND ρ1−,1−

In the main text, we have solved the master equation
numerically and obtained the time evolution of the matrix
elements ρ1+,1+ and ρ1−,1− as shown in Fig. 4. Now, we give
some analytical results based on the iteration calculation. To
this end, we restrict our consideration to no excitation and only

one excitation subspaces which are spanned by the ground state
|G〉 and the dressed states |1,±〉 of the JCM. Then, utilizing the
master equation (4) in the main text, the equations for ρ1±,1±
are written as

ρ̇1+,1+ = γ 1+,1+,1+,1+ρ1+,1+ + γ 1+,1+,1+,1−ρ1+,1−
+ γ 1+,1+,1−,1+ρ1−,1+, (A1a)

ρ̇1−,1− = γ 1−,1−,1−,1−ρ1−,1− + γ 1−,1−,1+,1−ρ1+,1−
+ γ 1−,1−,1−,1+ρ1−,1+, (A1b)

ρ̇1+,1− = −i(ω1+ − ω1−)ρ1+,1− + γ 1+,1−,1+,1−ρ1+,1−
+ γ 1+,1−,1+,1+ρ1+,1+ + γ 1+,1−,1−,1−ρ1−,1−,

(A1c)

ρ̇1−,1+ = −i(ω1− − ω1+)ρ1−,1+ + γ 1−,1+,1−,1+ρ1−,1+
+ γ 1−,1+,1+,1+ρ1+,1+ + γ 1−,1+,1−,1−ρ1−,1−.

(A1d)

Now, we solve the matrix elements ρ1+,1+ and ρ1−,1− in two
steps. First, we neglect the dependence on ρ1+,1+ and ρ1−,1−
of ρ1+,1− and ρ1−,1+, that is, the last two terms in Eqs. (A1c)
and (A1d). Then we obtain

ρ1+,1− = ρ1+,1−(0)e[γ 1+,1−,1+,1−−i(ω1+−ω1−)]t , (A2a)

ρ1−,1+ = ρ1−,1+(0)e[γ 1−,1+,1−,1++i(ω1+−ω1−)]t . (A2b)

Second, substituting the last two equations back into
Eqs. (A1a) and (A1b), we finally obtain the matrix elements
ρ1+,1+ and ρ1−,1− as

ρ1+,1+ =
[
γ 1+,1+,1+,1−ρ1+,1−(0)

exp{[γ 1+,1−,1+,1− − γ 1+,1+,1+,1+ − i(ω1+ − ω1−)]t} − 1

γ 1+,1−,1+,1− − γ 1+,1+,1+,1+ − i(ω1+ − ω1−)

+ γ 1+,1+,1−,1+ρ1−,1+(0)
exp{[γ 1−,1+,1−,1+ − γ 1+,1+,1+,1+ + i(ω1+ − ω1−)]t} − 1

γ 1−,1+,1−,1+ − γ 1+,1+,1+,1+ + i(ω1+ − ω1−)
+ ρ1+,1+(0)

]
eγ1+,1+,1+,1+t , (A3a)

ρ1−,1− =
[
γ 1−,1−,1+,1−ρ1+,1−(0)

exp{[γ 1+,1−,1+,1− − γ 1−,1−,1−,1− − i(ω1+ − ω1−)]t} − 1

γ 1+,1−,1+,1− − γ 1−,1−,1−,1− − i(ω1+ − ω1−)

+ γ 1−,1−,1−,1+ρ1−,1+(0)
exp{[γ 1−,1+,1−,1+ − γ 1−,1−,1−,1− + i(ω1+ − ω1−)]t} − 1

γ 1−,1+,1−,1+ − γ 1−,1−,1−,1− + i(ω1+ − ω1−)
+ ρ1−,1−(0)

]
eγ1−,1−,1−,1−t., (A3b)

where we have defined γ ’s in the main text. In Fig. 5, we find that the results from the iteration calculation agree with the
numerical results very well.
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[15] T. Häyrynen, J. Oksanen, and J. Tulkki, Phys. Rev. A 83, 013801

(2011).
[16] A. Stokes, A. Kurcz, T. P. Spiller, and A. Beige, Phys. Rev. A

85, 053805 (2012).
[17] L. S. Bishop, E. Ginossar, and S. M. Girvin, Phys. Rev. Lett.

105, 100505 (2010).
[18] M. Scala, B. Militello, A. Messina, J. Piilo, and S. Maniscalco,

Phys. Rev. A 75, 013811 (2007).
[19] M. J. Bhaseen, J. Mayoh, B. D. Simons, and J. Keeling, Phys.

Rev. A 85, 013817 (2012).
[20] B. Masashi, J. Phys. A: Math. Theor. 43, 335305 (2010).
[21] G. Gangopadhyay, S. Basu, and D. S. Ray, Phys. Rev. A 47,

1314 (1993).
[22] C. Cohen-Tannouji, J. Dupont-Roc, and G. Grynberg, Atom-

Photon Interactions: Basic Process and Applications (Wiley &
Sons, New York, 1998).

[23] S. E. Harris, Phys. Today 50, 36 (1997).

[24] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
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