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Spontaneous PT -symmetry breaking in complex frequency band structures
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We demonstrate that the process of band-gap creation in periodic solids such as atomic, photonic, or phononic
crystals can be viewed as spontaneous PT -symmetry breaking in the framework of a complex frequency band
structure. This allows the use of ordinary artificial structures such as Bragg stacks and simple photonic crystals
as suitable test beds for the study of phenomena related to PT -symmetry breaking.
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I. INTRODUCTION

Systems with combined parity (P) and time (T ) symmetry,
i.e., possessing PT symmetry, have attracted significant
interest recently in various areas such as quantum field
theory [1,2], open quantum systems [3,4], and photonics
[5–9]. In quantum theory, PT -symmetric systems are those
possessing a non-Hermitian Hamiltonian which, however,
respects parity-time (PT ) requirements. Given that the action
of the parity operator P̂ is p̂ → −p̂, x̂ → −x̂ and of the
time operator T̂ is p̂ → −p̂, x̂ → x̂, i → −i, it turns out
that non-Hermitian Hamiltonian operators Ĥ = p̂2/2 + V (x̂)
(� = m = 1) obeying the symmetry V (x) = V ∗(−x) may
possess a real eigenvalue spectrum [1]. This is, however, a
necessary but not sufficient condition for the existence of a
purely real eigenvalue spectrum. Indeed, in PT systems the
eigenvalue spectrum becomes generally complex above a cer-
tain parameter value signifying a spontaneous PT -symmetry
breaking, i.e., a phase transition from the exact to broken-
PT phase [10–12]. Namely, a spontaneous PT -symmetric
breaking usually manifests itself by the occurrence of an
exceptional point where two real eigenvalues together with
their eigenvectors coalesce into a single, generally complex,
eigenvalue. Exceptional points in the parameter space of a
non-Hermitian operator are associated with topological charge
and geometric (Berry) phase [13].

In the field of optics, the formal equivalence of the
Schrödinger equation with the Helmholtz equation in the
paraxial (weakly guiding) approximation has led to the
introduction of systems with PT -symmetric refractive index
profiles, n(x) = n∗(−x) as an experimental testing ground
for spontaneous PT -symmetry breaking [12,14,15]. Since the
refractive index is a general complex quantity, n = nR + inI ,
PT symmetry is realized via the symmetries nR = nR(−x)
and nI (x) = −nI (−x). Although the first requirement for
the real part nR is trivially satisfied, the second one needs
an experimental setup with materials containing the same
amount of gain (nI < 0) and loss (nI > 0). The emergence
of PT -phase transitions in systems with gain-loss profiles
is accompanied with fruitful phenomena such as double
refraction [6], power oscillations [6,12,16], coherent perfect
absorption, and lasing [16–21]. Analogous phenomena have
also been observed in antisymmetric PT systems realized by
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alternating materials of opposite values of the real part of the
refractive index [22].

The need for complex optical potentials which, in turn,
requires the inclusion of materials with gain exactly compen-
sating the loss in another (complementary) material constitutes
a challenging experimental setup since it involves continuous
external pumping of the gain material. The introduction of a
compensated gain-loss refractive index profile is needed when
one works with the equivalence of the paraxial Helmholtz
equation with the Schrödinger one which implies that systems
with real refractive indexes possess a real eigenvalue spectrum.
However, in optics, there are various examples with systems
with a purely complex spectrum, e.g., scattering electromag-
netic modes; there, all solutions of the light-scattering problem
off a material object possess a complex frequency spectrum
due to the finite lifetime of the scattering states. The actual
challenge which justifies the need for the use of gain-loss index
profile systems is the observation of the PT -phase transition
from a purely real to a fully or partially complex eigenvalue
spectrum.

In this work we show that under the framework of a complex
frequency band structure in periodic solids, one can observe
the PT -phase transition in the formation of frequency band
gaps. In particular, we show that the emergence of photonic
band gaps in ordinary passive photonic crystals is manifested
as a spontaneous PT -symmetry breaking which can be easily
measured in the laboratory with wave transmission experi-
ments from photonic-crystal slabs of different thicknesses. In
the following, after providing a brief overview of the theory
of complex band structure we show examples of spontaneous
PT -symmetry breaking in a one-dimensional (1D) photonic
crystal as well as in a magneto-dielectric photonic crystal.

II. COMPLEX FREQUENCY BAND STRUCTURE

In traditional energy band structure calculations of an
electron in an ordinary crystal, or of the frequency band
structure of the electromagnetic (EM) field in the case of
photonic crystals, one starts with a fixed value of the reduced
wave vector k, and by some method or other (in photonic
crystals this is usually the plane-wave method) one solves
the eigenvalue problem, for the given k, to obtain all the
eigenfrequencies within a very wide frequency range, and the
corresponding eigenmodes of the scalar or vector field under
consideration. These eigenmodes are, in an infinite crystal,
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propagating Bloch waves which have the property

ψkα

(
r + R(3)

n

)
exp[−iωα(k)t]

= exp
(
ik · R(3)

n

)
ψkα(r) exp[−iωα(k)t], (1)

where R(3)
n is any vector of the three-dimensional (3D) lattice

which defines the periodicity of the infinite crystal; and α is a
band index which defines the different frequency bands ωα(k)
and the corresponding eigenmodes. For the Schrödinger field
(electrons in a crystal) ψ is a scalar quantity; in the case of
the EM field ψ is a vector quantity. Irrespective of the type
of the wave field, the above eigenproblems provide a real
eigenenergy spectrum by definition.

On-shell methods [23–32] proceed differently; the fre-
quency is fixed and one obtains the eigenmodes of the crystal
for this frequency. One views the crystal as a succession of
layers parallel to a given crystallographic plane of the crystal.
The layers have the same two-dimensional (2D) periodicity
(that of the chosen crystallographic plane) described by a 2D
lattice:

Rn = n1a1 + n2a2, (2)

where a1 and a2 are primitive vectors of the said plane (which
is taken to be the xy plane), and n1,n2 = 0, ± 1, ± 2, . . . .
We may number the sequence of layers which constitute
the infinite crystal, extending from z = −∞ to z = +∞,
as follows: · · · − 2, − 1,0,1,2, . . . . The (N + 1)th layer is
obtained from the N th layer by a primitive translation to be
denoted by a3. Obviously, a1,a2, and a3 constitute a basis for
the 3D space lattice of the infinite crystal.

We define the 2D reciprocal lattice corresponding to Eq. (2):

g = m1b1 + m2b2, m1,m2 = 0, ± 1, ± 2, . . . , (3)

where bi · aj = 2πδij , i,j = 1,2. The reduced (kx,ky) zone
associated with the above, which has the full symmetry of the
given crystallographic plane is known as the surface Brillouin
zone (SBZ) (see, e.g., Ref. [33]). We define a corresponding
3D reduced k zone as follows:

k‖ ≡ (kx,ky) within the SBZ, − |b3|/2 < kz � |b3|/2, (4)

where b3 = 2πa1 × a2/[a1 · (a2 × a3)] is normal to the chosen
crystallographic plane. The reduced k zone defined by Eq. (4)
is of course completely equivalent to the commonly used, more
symmetrical Brillouin zone (BZ), in the sense that a point in
one of them lies also in the other or differs from such a one by
a vector of the 3D reciprocal lattice.

Let us now assume that we have a photonic crystal
consisting of nonoverlapping spherical scatterers in a host
medium of different dielectric function and let us look at
the structure as a sequence of layers of spheres with the
2D periodicity of Eq. (2). A Bloch wave solution, of given
frequency ω and given k‖, of Maxwell’s equations for the
given system has the following form in the space between
the N th and the (N + 1)th layers (we write down only the
electric-field component of the EM wave):

E(r) =
∑

g

{E+
g (N ) exp[iK+

g · (r − AN )] + E−
g (N )

× exp[iK−
g · (r − AN )]}, (5)

with

K±
g = (k‖ + g, ± [q2 − (k‖ + g)2]1/2), (6)

where q is the wave number, and AN is an appropriate origin
of coordinates in the host region between the N th and the
(N + 1)th layers. A similar expression (with N replaced by
N + 1) gives the electric field between the (N + 1)th and
the (N + 2)th layers. Naturally the coefficients E±

g (N + 1)
are related to the E±

g (N ) coefficients through the scattering
matrices of the N th layer of spheres. We have

E−
gi(N ) =

∑
g′i ′

QIV
gi;g′i ′E

−
g′i ′ (N + 1) +

∑
g′i ′

QIII
gi;g′i ′E

+
g′i ′(N ),

E+
gi(N + 1) =

∑
g′i ′

QI
gi;g′i ′E

+
g′i ′ (N ) +

∑
g′i ′

QII
gi;g′i ′E

−
g′i ′(N + 1),

(7)

where i = x,y,z, and Q are appropriately constructed trans-
mission or reflection matrices for the layer (see Fig. 1). For
a detailed description of these matrices, which are functions
of ω, k‖, the scattering properties of the individual scatterer
(sphere), and the geometry of the layer, see Refs. [25,26].

A generalized Bloch wave, by definition, has the property

E±
g (N + 1) = exp(ik · a3)E±

g (N ),

k = (k‖,kz(ω,k‖)), (8)

where kz may be real or complex. Substituting Eq. (8) into
Eq. (7) we obtain(

QI QII

−[QIV]−1QIIIQI [QIV]−1[I − QIIIQII]

)

(
E+(N )

E−(N + 1)

)
= exp(ik · a3)

(
E+(N )

E−(N + 1)

)
, (9)
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FIG. 1. (Color online) Schematic definition of the scattering Q
matrices for a finite slab which may be a 2D plane of scatterers or
homogeneous slab or any combination of both.
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where E± are column matrices with the elements E±
g1x

, E±
g1y

,
E±

g1z
, E±

g2x
, E±

g2y
, E±

g2z
, . . . . In practice we keep a finite number

of g vectors (those with |g| < gmax, where gmax is a cutoff
parameter) which leads to a solvable system of equations.

Equation (9) constitutes a typical eigenvalue problem;
because the matrix on the left-hand side of Eq. (9) is not
Hermitian, its eigenvalues are in general complex numbers.
We remember that ω and k‖ are given quantities and therefore
the eigenvalues of the matrix on the left-hand side of Eq. (9)
determine kz; depending on the number of g vectors we keep
in the calculation, we obtain a corresponding number of kz

eigenvalues for the given ω,k‖. These eigenvalues of kz looked
upon as functions kz = kz(ω; k‖) of real ω, for given k‖, are
known as the frequency lines in the complex kz space. We
refer to them as the complex band structure of the crystal
associated with the crystallographic surface defined by Eq. (2).
A line kz(ω; k‖) may be real (in the sense that kz is real) over
certain frequency regions, and be complex (in the sense that
kz is complex) for ω outside these regions. When kz is real,
the corresponding Bloch waves, eigensolutions of Eq. (9),
represent propagating modes of the EM field in the given
crystal. When kz is complex, the corresponding Bloch wave
is an evanescent wave; it has an amplitude which increases
exponentially in the positive or negative z direction and,
unlike the propagating waves, a Bloch wave of this nature
does not exist as a physical entity in the infinite crystal.
Such states, however, are very useful in understanding the
optical properties of finite slabs of the crystal. For example,
the attenuation of a wave of given k‖, incident on a slab of
the material of thickness d, with a frequency within a region
over which no propagating solution exists for the given k‖, is
determined by that evanescent wave, which has the kz with
the smallest in magnitude imaginary part qI ; the attenuation
is roughly speaking proportional to exp(−qId). In all cases
[k‖,Re(kz)] lies in the reduced zone defined by Eq. (4).

III. PT -SYMMETRY BREAKING IN PASSIVE
PHOTONIC CRYSTALS

As a first example of a system exhibiting certain regions of
spontaneous PT -symmetry breaking is a 1D photonic crystal
made of alternating dielectric and air slabs. Namely, the unit
cell of the 1D photonic crystal consists of an indium tin oxide
(ITO) slab (ε = 3.8) of (scaled) thickness tω/c = 2.0 which
is separated from the next ITO slab of the subsequent unit cell
by the distance hω/c = 1.0. These two lengths provide one
period of dω/c = (t + h)ω/c = 3 (all lengths are displayed
in c/ω units, ω being the angular frequency, due to the scaling
property of Maxwell’s equations when materials with constant
electric permittivity and/or permeability are used).

Figure 2(a) shows the complex frequency band structure for
k‖ = 0 for the above 1D photonic crystal. Figure 2(b) shows
the transmittance of light also for normal incidence (k‖ = 0) on
a finite slab of the 1D photonic crystal consisting of eight unit
layers (cells). The spectral regions of suppressed transmittance
correspond to band-gap regions. In the complex frequency
band structure of Fig. 2(a), the band gaps are manifested as
regions of complex kz = Re kz + iIm kz where Re kz assumes
the constant values 0 or π/d within the gap regions. The edges
of a region with Re kz = 0 correspond to exceptional points
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FIG. 2. (Color online) (a) Complex frequency band structure in
dimensionless units for a 1D photonic crystal (Bragg stack) made
of alternating ITO layer (ε = 3.8) of thickness tω/c = 2.0 and
interlayer distance hω/c = 1.0 [period dω/c = (t + h)ω/c = 3].
(b) Transmittance of light incident normally (k‖ = 0) on finite slab
of the above 1D photonic crystal consisting of eight unit layers.

in the frequency band diagram. On the other hand, Im kz

exhibits a dispersion with frequency. As pointed out in the
previous section, Bloch waves with nonzero Im kz correspond
to exponentially decaying or amplifying waves within an
infinite crystal and, as such, they are not actual solutions of an
infinitely periodic crystal. However, Im kz defines the rate of
light decay within the gap region and can thus be determined by
measuring the transmittance at each frequency as a function
of the photonic-crystal slab thickness. Away from the gap
regions, kz is purely real corresponding to propagating Bloch
waves. Obviously, the band-gap edges are viewed as the onset
of the spontaneous PT -symmetry breaking which separates
the purely real kz eigenvalues from the complex ones. If the
PT phase transition is to be probed experimentally, the real
eigenvalues of kz are measured by standard interferometry as
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FIG. 3. Complex frequency band structure in dimensionless units
for a simple cubic lattice of magnetodielectric spheres (ε = 3, μ = 3)
in air (ε = 1) with radius Sω/c = 0.2 and lattice constant aω/c = 1.
The complex frequency bands are calculated for k‖ = (0.25,0)π/a.
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they correspond to propagating waves. As stated above, Im kz

is determined by light-attenuation experiments.
In the example of the 1D photonic crystal of Fig. 2, the Re kz

within the PT -symmetry-breaking regions (band gaps) shows
no dispersion (constant with frequency). This is not always the
case, however. In Fig. 3 we show the complex frequency band
structure of a simple cubic crystal consisting of magnetodi-
electric spheres (ε = μ = 3) of radius Sω/c = 0.2 and lattice
constant aω/c = 1. The band structure is calculated for k‖ =
(0.25,0)π/a. One can easily identify several bifurcation (ex-
ceptional) points as well as PT -symmetry-breaking regions
where both Re kz and Im kz are dispersive. Note in passing, that
by choosing ε = μ for the spheres of the photonic crystal, we
have imposed a double degeneracy in the photonic band struc-
ture for all k‖ within the SBZ. Had we chosen ε �= μ, the com-
plex frequency bands of Fig. 3 would have split into two non-
degenerate bands, in which case the exceptional point would
involve the coalescence of four distinct bands into two bands.

IV. CONCLUSION

Based on the theory of complex frequency band structure
we have demonstrated that the emergence of frequency band
gaps in ordinary photonic crystals is translated to regions
of spontaneously broken parity-time (PT ) symmetry. The
parity-time phase transitions can be traced experimentally
by interferometric measurements in regions of purely real
spectrum of propagation constants while by wave-attenuation
experiments one can study the regions of complex spectrum.
The experimental setups needed to measure the spontaneous
(PT ) symmetry breaking in complex frequency bands are less
sophisticated than those required in loss-gain systems. Since
the theory of complex frequency band structure is a universal
theory and applies to other physical solids such as ordinary
atomic crystals as well as phononic crystals [34,35], we expect
the phenomenon of PT -symmetry breaking to be evident in
those systems, too.
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W. D. Heiss, and A. Richter, Phys. Rev. Lett. 90, 034101 (2003).
[5] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H.

Musslimani, Opt. Lett. 32, 2632 (2007).
[6] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H.

Musslimani, Phys. Rev. Lett. 100, 103904 (2008).
[7] T. Kottos, Nat. Phys. 6, 166 (2010).
[8] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D.

N. Christodoulides, and U. Peschel, Nature (London) 488, 167
(2012).

[9] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira,
V. R. Almeida, Y.-F. Chen, and A. Scherer, Nat. Mater. 12, 108
(2013).

[10] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).
[11] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101,

080402 (2008).
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