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Linear-response theory for superradiant lasers
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We theoretically study a superradiant laser, deriving both the steady-state behaviors and small-amplitude
responses of the laser’s atomic inversion, atomic polarization, and light field amplitude. Our minimum model
for a three-level laser includes atomic population accumulating outside of the lasing transition and dynamics
of the atomic population distribution causing cavity frequency tuning, as can occur in realistic experimental
systems. We show that the population dynamics can act as real-time feedback to stabilize or destabilize the laser’s
output power, and we derive the cavity frequency tuning for a Raman laser. We extend the minimal model to
describe a cold-atom Raman laser using 87Rb, showing that the minimal model qualitatively captures the essential
features of the more complex system [Bohnet et al., Phys. Rev. Lett. 109, 253602 (2012)]. This work informs
our understanding of the stability of proposed millihertz linewidth lasers based on ultranarrow optical atomic
transitions and will guide the design and development of these next-generation optical frequency references.
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I. INTRODUCTION

Steady-state, superradiant lasers based on narrow optical
atomic transitions have the potential to be highly stable
optical frequency references, with unprecedentedly narrow
quantum-limited linewidths below 1 mHz [1–3]. These lasers
may achieve such high-frequency stability because the laser
linewidth and frequency are determined primarily by the
atomic transition rather than the cavity properties. As a
result, the lasing frequency is predicted to be many orders
of magnitude less sensitive to both the thermal and technical
mirror motion that currently limits the frequency stability
of passive optical reference cavities [4,5]. The insensitivity
to vibration means that superradiant lasers may be able to
stably operate outside carefully engineered, low-vibration
laboratory environments for both practical and fundamental
applications [6,7].

To minimize inhomogeneous broadening of the atomic tran-
sition, proposed narrow-linewidth superradiant lasers would
use trapped, laser-cooled atoms as the gain medium [1,2].
The first use of cold atoms as a laser gain medium was
reported in Ref. [8]. Recently, the spectral properties of a
cold-atom Raman laser were studied in a high finesse cavity,
deep into the so-called good cavity regime [9]. Clouds of cold
atoms can also simultaneously provide gain and feedback for
distributed feedback lasing [10] and random lasing [11]. Cold
atoms have also been used as the gain medium in four-wave
mixing experiments [12–14] and in collective atomic recoil
lasing [15].

Beyond the technical applications, superradiant lasers are of
fundamental interest. The narrow natural and inhomogeneous
linewidths provided by laser trapped and cooled atoms means
that proposed superradiant lasers are bad cavity lasers. This
unusual regime of laser physics is accessed when the cavity
linewidth is much larger than the linewidth of the gain
medium. The quantum-limited linewidth of a bad cavity laser
follows the Schawlow-Townes linewidth [16] usually applied
to microwave masers [1,17,18], instead of the linewidth
applied to optical lasers that typically operate in the opposite
good cavity limit. Bad cavity lasers near the crossover regime
(i.e., where the cavity linewidth is approximately equal to

the linewidth of the gain medium) have yielded signatures of
chaos, demonstrating the predicted equivalence to the Lorenz
model [19,20]. Operation of a laser deep into the bad cavity
regime has only recently begun to be studied in detail using
laser cooled atoms as the gain medium [3,21–23]. The first
analysis of a cold-atom, superradiant Raman laser focused on
the laser phase noise [3].

This paper presents theoretical studies of both the steady-
state and amplitude stability properties of a superradiant laser.
Our work both guides the future implementation of proposed
superradiant optical lasers, and explains already experimen-
tally realized superradiant Raman lasers. This work directly
supports the experimental efforts using Raman transitions in
87Rb of Refs. [3,21–23].

The key results presented here are a simple minimum
model that nonetheless capture the qualitative features in
recent experimental demonstrations, a derivation of crucial
laser emission frequency tuning effects in a good or bad cavity
cold-atom Raman laser, and an investigation of laser amplitude
instabilities caused by frequency tuning effects in the case of
a bad cavity laser.

We begin in Sec. II by constructing a model of a steady-
state Raman laser that makes three extensions to the two-
level superradiant laser model presented in Ref. [1]. These
extensions are motivated by pumping and cavity tuning effects
present in the experimental work of Refs. [3,21–23]. The
extensions include (1) an imperfect atomic repumping scheme
in which some population remains in an intermediate third
level, (2) additional decoherence caused by Rayleigh scattering
during pumping, and (3) a tuning of the cavity mode frequency
in response to the distribution of atomic populations among
the available atomic states. The model makes no assumptions
about operation in the good or bad cavity regime.

We then restrict ourselves to considering only the bad cavity
regime and linearize the coupled atom-field equations about
the steady state to study the small signal response of the laser to
external perturbations. We identify relaxation oscillations and
dynamic cavity feedback that can serve to damp or enhance
oscillatory behavior of the laser amplitude.

In Sec. III, we explicitly show that a Raman lasing transition
involving three levels can be reduced to the previous section’s
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two-level lasing transition. The formalism directly produces
the cavity tuning in response to atomic populations that was
introduced by hand in Sec. II.

Finally, in Sec. IV, we model the experimental 87Rb Raman
system of Refs. [3,21], incorporating all eight atomic ground
hyperfine states. We derive the steady-state behavior and linear
response to small perturbations of this more realistic system
and compare the qualitative features to the results of the more
simple model introduced in Secs. II and III.

II. THREE-LEVEL MODEL

A. Deriving the laser equations

We begin with equations for a general three-level laser,
making no assumptions about a good cavity or bad cavity
regime. The three-level model for the laser presented here is
pictured in Fig. 1. It consists of two lasing levels denoted
by the excited state |e〉 and the ground state |g〉 separated
by optical frequency ωeg , a third state |3〉 which the atoms
must be optically pumped to before they can be optically
pumped back to |e〉, and a single optical cavity mode with
resonance frequency ωc. The cavity resonance is near the
|e〉 → |g〉 transition frequency, with δbcav = ωc − ωeg . We
describe the atoms-cavity system using the Jaynes-Cummings
Hamiltonian [24],

Ĥ = �ωcĉ
†ĉ + �g(ĉ†Ĵ− + ĉĴ+). (1)

Here 2g is the single atom vacuum Rabi frequency that
describes the strength of the coupling of the atoms to the
cavity mode, set by the atomic dipole matrix element. The
operators ĉ and ĉ† are the bosonic annihilation and creation
operators for photons in the cavity mode. We have introduced
the collective spin operators Ĵ− = ∑N

q=1 |g(q)〉〈e(q)|, and Ĵ+ =∑N
q=1 |e(q)〉〈g(q)| for the |e〉 to |g〉 transition, assuming uniform

coupling to the cavity for each atom. The index q labels the
sum over N individual atoms. We also define the number
operator for atoms in the state |k〉, k ∈ {e,g,3}, as N̂k =∑N

q=1 |k(q)〉〈k(q)| and the collective spin projection operator

Ĵz = 1
2

∑N
q=1(N̂ (q)

e − N̂
(q)
g ).

γωc

δbcav

g

e

3Γ3e

W

ΓR

FIG. 1. (Color online) Energy-level diagram of a three-level su-
perradiant laser using the optical transition from |e〉 to |g〉. The
emitted optical laser light is nearly resonant with the cavity mode
(dashed lines), detuned from ωc by δbcav . The atoms are incoherently
pumped to a third state |3〉 at a rate W . Atoms in |g〉 also Rayleigh
scatter at a rate �R , but leaves them in state |g〉. The incoherent
pumping from |3〉 to |e〉 at rate �3e completes the cycle.

The density matrix for the atom cavity system is ρ̂ =∑
kl

∑∞
m,n=0 |k,n〉 〈l,m| where the second sum is over the

atomic basis states k,l ∈ {g,e,3}, and the third sum is over
the cavity field basis of Fock states. The time evolution of ρ̂ is
determined by a master equation for the atom cavity system,

˙̂ρ = 1

i�
[Ĥ ,ρ̂] + L[ρ̂]. (2)

Dissipation is introduced through the Liouvillian L[ρ̂] [1].
Sources of dissipation and associated characteristic rates
include the power decay rate of the cavity mode at rate
κ , the spontaneous decay from |e〉 to |g〉 at rate γ , the
spontaneous decay from |3〉 to |e〉 at rate �3e, and Rayleigh
scattering from state |g〉 at rate �R . The repumping, usually
just called pumping in other laser literature, is treated as
“spontaneous absorption” at rate W , analogous to spontaneous
decay, but from a lower to higher energy level. Physically,
this is achieved by coupling |g〉 to a very short-lived excited
state that decays to |3〉. The Liouvillian is written as a
sum of contributions from the processes above respectively
as L[ρ̂] = Lc[ρ̂] + Leg[ρ̂] + L3e[ρ̂] + LR[ρ̂] + Lg3[ρ̂]. The
individual Liouvillians are given in Appendix A.

We obtain equations of motion for the relevant expectation
values of the atomic and field operators using Ȯ = Tr[Ô ˙̂ρ].
Complex expectation values are indicated with script notation,
while real definite expectation values are standard font, so
Ċ = Tr[ĉ ˙̂ρ] and J̇− = Tr[Ĵ− ˙̂ρ]. We assume the unknown
emitted light frequency is ωγ and factor this frequency from
the expectation values for the cavity field and the atomic
polarization, C = C̆e−iωγ t and J− = J̆−e−iωγ t . The symbol
˘ indicates a quantity in a frame rotating at the laser frequency.
The set of coupled atom-field equations is then

˙̆C = −[κ/2 + i(ωc − ωγ )]C̆ − igJ̆−, (3)

˙̆J− = −[γ⊥ + i(ωeg − ωγ )]J̆− + i2gC̆Jz, (4)

J̇z = − (W + γ )
Jz

2
+ (2�3e − W + γ )

N3

4

+ N

4
(W − γ ) + ig(J̆−C̆∗ + J̆+C̆), (5)

Ṅ3 = − (�3e + W/2) N3 + W (N/2 − Jz) . (6)

In the above equations, we have combined the broaden-
ing of the atomic transition into a single transverse decay
γ⊥ = γ /2 + W/2 + �R/2. We have assumed no entanglement
between the atomic degrees of freedom and the cavity
field in order to factorize expectation values of the form
〈σ̂kl ĉ〉 = 〈σ̂kl〉 〈ĉ〉. The equations make no assumptions about
the relative sizes of the various rates, making them general
equations for a three-level laser, but one of the distinct
differences in cold-atom lasers versus typical lasers is that
the transverse decay rate is often dominated by the repumping
rate γ ∼ W/2.

It is useful to represent the two-level system formed by
|e〉 and |g〉 as a collective Bloch vector (Fig. 2). The vertical
projection of the Bloch vector is given by the value of Jz, and is
proportional to the laser inversion. The projection of the Bloch
vector onto the equatorial plane J⊥ is given by the magnitude
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FIG. 2. (Color online) Representing the state of the |e〉, |g〉 two-
level system using a collective Bloch vector J.

of atomic polarization |J̆−|, with J 2
⊥ = |J̆−|2. We refer to J⊥

as the collective transverse coherence of the atomic ensemble.

B. Steady-state solutions

To understand how extending to this three-level model
affects the fundamental operation of the laser, we now study
the steady-state solutions with respect to repumping rates,
cavity detuning, and Rayleigh scattering rates. The steady-
state solutions assume γ 
 W , the regime of operation for
proposed superradiant light sources [1,2], and the experiments
of Refs. [3,21], but make no approximations based on the
relative magnitudes of γ⊥ and κ . Thus γ⊥ ≈ W/2 + �R/2, but
otherwise the results in the section hold for both good cavity
(κ 
 γ⊥) and bad cavity (κ � γ⊥) lasers. We first determine
the steady-state oscillation frequency, starting by setting the
time derivatives in Eqs. (3) and (4) to zero. After solving
for C̆,

C̆ = −i
g

κ/2 + iδ0
J̆−, (7)

where δ0 denotes the cavity detuning from the laser emission
frequency δ0 = ωc − ωγ . Substituting the result into Eq. (4),
we have

2g2Jz = [γ⊥ + i(ωeg − ωγ )](κ/2 + iδ0). (8)

Since Jz is always real, the imaginary part of Eq. (8) must
be zero. This constrains the frequency of oscillation to

ωγ = ωc

1 + κ
2γ⊥

+ ωeg

1 + 2γ⊥
κ

, (9)

a weighted average of the cavity frequency and the atomic
transition frequency.

We solve for the steady-state solutions of Eqs. (3)–(5) by
setting the remaining time derivatives to zero and substituting
Eq. (7) for C in all the equations. In this work, the amplitude
properties are our primary interest (as compared to the phase
properties studied in Refs. [1,3]), so we further simplify the
equations, at the expense of losing phase information, by

considering the magnitude of the atomic polarization |J̆−|.
The equation for the time derivative of J 2

⊥ is

d

dt
J 2

⊥ = |J̆+|
∣∣∣∣ d

dt
J̆−

∣∣∣∣ + |J̆−|
∣∣∣∣ d

dt
J̆+

∣∣∣∣. (10)

The steady-state output photon flux is just proportional to
the square of the equatorial projection,

˙̄Mc = κ|C̆|2 = J 2
⊥

Cγ

1 + δ′2
0

. (11)

Here we have also defined a normalized detuning δ′
0 =

δ0/(κ/2) and a single-particle cavity cooperativity parameter

C = (2g)2

κγ
(12)

that gives the ratio of single-particle decay rate from |e〉 to |g〉
for which the resulting photon is emitted into the cavity mode,
making C equivalent to the Purcell factor [25].

After these substitutions and simplifications, the steady-
state solutions (denoted with a bar) are

J̄z = 2γ⊥
(
1 + δ′2

0

)
2Cγ

, (13)

J̄ 2
⊥ =

(
N

2

)2 (
2r

1/2 + r

) (
W

(
1 + δ′2

0

)
NCγ

)

×
(

1 − 2γ⊥
(
1 + δ′2

0

)
NCγ

)
, (14)

N̄3 = J̄ 2
⊥
r

(
Cγ

W
(
1 + δ′2

0

)
)

, (15)

˙̄Mc =
(

N

2

)2 (
2r

1/2 + r

) (
W

N

) (
1 − 2γ⊥

(
1 + δ′2

0

)
NCγ

)
(16)

written in terms of the repumping ratio r ≡ �3,e/W . Note that
r also determines the steady-state buildup of population in |3〉
as N̄3/N̄g = 1/r . To succinctly express the modification of J̄ 2

⊥
and ˙̄Mc due to inefficient repumping, we define the reduction
factor

R(r) ≡ r

1/2 + r
, (17)

which appears in Eqs. (14) and (16) above.
Next we discuss the behavior of these solutions for the

characteristic parameters of the three-level model: W , r , δ′
0,

and �R . The results are illustrated in Figs. 3–5.
First, we focus on the impact of repumping on the steady-

state behavior. The photon flux ˙̄Mc follows a parabolic curve
versus the ground-state repumping rate W (Fig. 3). In the limit
δ′

0 → 0, r → ∞, and �R → 0, Eq. (16) reduces to the result
for the simple two-level model of Ref. [1]. This limit is shown
as the black curve in part (a) of Figs. 3–5. At low W , the photon
flux is limited by the rate at which the laser recycles atoms
that have decayed to |g〉 back to |e〉. At high W , the photon
flux becomes limited by the decoherence from the repumping,
causing the output power to decrease with increasing W .
When the atomic coherence decays faster than the collective
emission can re-establish it, the output power goes to zero.
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FIG. 3. (Color online) (a) Steady-state photon flux ˙̄Mc vs ground-
state repumping rate W , with a series of curves showing the effects
of repumping through the additional state |3〉. The case of r = ∞ is
the two-level model of Ref. [1] (top curve). (b) Photon flux ˙̄Mc vs r

with W = Wopt. For all curves, δ′
0 = 0 and �R = 0, and the photon

flux is plotted in units of P2lvl = N 2Cγ/8.

This decoherence limit is expressed in the condition for the
maximum repumping threshold, above which lasing ceases:

Wmax = NCγ

1 + δ′2
0

− �R. (18)

The output photon flux is optimized at Wopt = Wmax/2.
Notice that the maximum repumping rate is not affected by
r . However, the additional decoherence (here in the form of
Rayleigh scattering) lowers the turnoff threshold. If �R >
NCγ

1+δ′2
0

, the decoherence will prevent the laser from reaching

superradiant threshold regardless of W .
In Figs. 3–5, we plot Eq. (16) emphasizing (a) the

modification to the photon flux parabola, and (b) the optimum
photon flux as a function of the population in the third state
(as parametrized by the repumping ratio r), detuning of the
cavity resonance from the emission frequency δ, and additional
decoherence from Rayleigh scattering �R . The photon flux is
plotted in units of the optimum photon flux in the two-level
model of Refs. [1,26], P2lvl = N2Cγ/8.

As the repumping process becomes more inefficient and
population builds up in |3〉, parametrized by r as N̄3/N̄g =
1/r , we see from Eqs. (14) and (16) that the photon flux
˙̄Mc decreases (Fig. 3). A repumping ratio r = 10 ensures

that the laser operates within a few percent of its maximum
output power. Notice that ˙̄Mc saturates after r is greater
than ≈2. Although inefficient repumping suppresses ˙̄Mc, the
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FIG. 4. (Color online) (a) Steady-state photon flux ˙̄Mc vs ground-
state repumping rate W , with a series of curves showing the effects
of detuning of the cavity resonance frequency from the emitted light
frequency δ′

0. (b) Photon flux ˙̄Mc vs δ′
0 with W = Wopt(δ′

0). The photon
flux is plotted in units of P2lvl = N 2Cγ/8. For all curves, r = ∞ and
�R = 0.

optimum and maximum repumping rates Wopt and Wmax are
not modified.

The preservation of the operating range can be important,
as in practice large values of r can lead to added decoherence
(due to intense repumping lasers for example), which does
reduce the operating range. Lowering the value of r allows
some flexibility as some output power can be sacrificed to
keep the laser operating over a wider range of W .

Cavity detuning modifies both the ˙̄Mc and Wopt (Fig. 4). The
modification arises from the δ′

0 dependent cavity cooperativity

C ′ = C

1 + δ′2
0

. (19)

The modified cooperativity C ′ originates from the atomic
polarization radiating light at ωγ , which nonresonantly drives
the cavity mode with the usual Lorentzian-like frequency
response. Thus, the output photon flux ˙̄Mc, turnoff threshold
Wmax, and optimum repumping rate Wopt all scale like
1/(1 + δ′2

0 ). This effect is symmetric with respect to the sign
of δ′

0. Physically, the rate a single atom spontaneously decays
from |e〉 to |g〉 by emitting a photon into the cavity mode is
�c ≡ C ′γ , which we use to simplify some later expressions.

Finally, we examine the effect of additional atomic broad-
ening through �R in Fig. 5. Additional broadening linearly
reduces Wopt and Wmax, but because we require the repumping
rate to remain at Wopt in Fig. 5(b), ˙̄Mc has a ( �R

N�c
− 1)2

dependence.
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FIG. 5. (Color online) (a) Steady-state photon flux ˙̄Mc vs ground-
state repumping rate W , with a series of curves showing the effects
of decoherence in the form of Rayleigh scattering from the ground
state |g〉. (b) Photon flux ˙̄Mc vs �R with W = Wopt(�R). The photon
flux is plotted in units of P2lvl = N 2Cγ/8. For all curves, r = ∞ and
δ′

0 = 0.

The key insight from the steady-state solutions for our three-
level model is that imperfections in the lasing scheme can
quickly add up, greatly reducing the expected output power of
the laser. A repumping scheme should be chosen to minimize
Rayleigh scattering �R and maximize the repumping ratio r .
Added decoherence, as well as the detuning δ′

0 are especially
problematic because they restrict the possible range of W for
continuous operation.

C. Linear expansion of uncoupled equations

For future applications of steady-state superradiant light
sources as precision measurement tools, we are interested
in the system’s robustness to external perturbations. As
is common in laser theory [27–29], here we analyze the
system’s linear response to perturbations by considering small
deviations from the steady-state solutions. While all previous
expressions are valid for both the good cavity and bad
cavity limit, as no assumptions were made about the relative
magnitudes of κ and γ⊥, it is convenient now to simplify to
two equations for the dynamics by assuming that the laser is
operating deep in the bad cavity regime, where κ � γ⊥. In
this regime, the cavity field adiabatically follows the atomic
polarization, providing the physical motivation to eliminate
the field from Eqs. (3)–(6) [1,18].

The cavity field is eliminated by assuming that the first
time derivative of the complex field amplitude C̆ in Eq. (3) is
negligible compared to κ

2C. This effectively results in Eq. (7)

being the equation for the cavity field. After substituting
Eq. (7) into Eqs. (4)–(6), we only concern ourselves with the
amplitude responses, simplifying the equations by using Eq. 10
and substituting |J−|2 with J 2

⊥. With these simplifications, the
dynamical equations for J̇z, J̇ 2

⊥, and Ṅ3 are

J̇z =
(

(�3e − W/2)
N3

2
+ W

2
(N/2 − Jz)

)
− Cγ

1 + δ′2
0

J 2
⊥,

(20)

J̇ 2
⊥ = −2γ⊥J 2

⊥ + 2Cγ

1 + δ′2
0

JzJ
2
⊥, (21)

Ṅ3 = − (�3e + W/2) N3 + W (N/2 − Jz) . (22)

We perform the linear expansion by reparametrizing the
degrees of freedom in terms of fractionally small pertur-
bations about steady state: Jz(t) = J̄z[1 + jz(t)], J 2

⊥(t) =
J̄ 2

⊥[1 + 2j⊥(t)], and N3(t) = N̄3[1 + n3(t)]. We also define
the response of cavity field through the relationship A(t) ≡√

|C(t)|2 = Ā[1 + a(t)]. Since |C(t)|2 = Cγ

1+δ′
0(t)′2 J

2
⊥(t) from

Eq. (7), A(t) follows the atomic polarization, except for
the modification from dynamic cavity detuning as will be
discussed below. We analyze the response in the presence of a
specific form of external perturbation—the modulation of the
repumping rate W (t) = W [1 + w(t)] with w(t) = εRe[eiωt ],
where ε is a real number much less than 1. The quantities jz(t),
j⊥(t), n3(t), a(t), and w(t) are unitless fractional perturbations
around the steady-state values that we assume are much less
than 1.

We also include, by hand, an inversion-dependent term in
the detuning δ′

0 = δ′ + αJ̄zjz(t). The cavity mode’s frequency
is tuned by the presence of atoms coupled to the cavity mode.
The tuning is equal but opposite for atoms in the two different
quantum states |e〉 and |g〉. The detuning δ′ is the steady-state
value of the detuning of the dressed cavity from the emitted
light frequency. The variation about this steady-state detuning
is governed by the second contribution αJ̄zjz(t). Effects such
as off-resonant dispersive shifts due to coupling to other states
can lead to this Jz dependent detuning in real experiments. We
derive this cavity tuning in Sec. III.

To linearize the resulting equations, we substitute the
expansions around steady state into Eqs. (6), (20), and (21).
We neglect terms beyond first order in the small quantities
jz(t), j⊥(t), n3(t), a(t), and w(t). For ease of solving the
equations, we treat jz(t), j⊥(t), n3(t), and a(t) as complex
numbers where the real part gives the physical value. After
eliminating the steady-state part of the equations, the equations
for small signal responses j⊥(t) and jz(t) can be reduced to
two uncoupled, third-order differential equations,

β
...
j ⊥ + j̈⊥ + 2γ0j̇⊥ + ω2

0j⊥ = D⊥(ω)εeiωt , (23)

β
...
j z + j̈z + 2γ0j̇z + ω2

0jz = Dz(ω)εeiωt . (24)

We have written the uncoupled differential equations in a
form that suggests a driven harmonic oscillator, with damping
rate γ0, natural frequency ω0, and a drive unique to the j⊥ or
jz equation D⊥(ω) or Dz(ω). The drives contain derivatives
of the repumping modulation w(t), resulting in frequency
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dependence. The third derivative term is a modification to the
harmonic oscillator response from the third level, characterized
by the factor β that goes to zero in the two-level limit (r → ∞).
To preserve the readability of the text, we have included the
full expressions for the coefficients as Appendix A. Each
of the terms will be discussed subsequently in physically
illuminating limits.

The drive of this harmonic-oscillator-like system varies
with the modulation frequency and other system parameters.
In the case of the two-level model of Ref. [1], with r = ∞,
α = 0, and �R = 0, the drive terms are

D⊥(ω) = W

2
(N�c − 2W − iω), (25)

Dz(ω) = (N�c − W )W + iω). (26)

The modulation-frequency-dependent terms add an extra
90◦ of phase shift at high modulation frequencies to the
observed response. Additionally, the cancellation in D⊥(ω =
0) results in an insensitivity of the output photon flux to
the ground-state repumping rate W at Wopt. The cancellation
agrees with the parabolic dependence of ˙̄Mc on W , as seen in
the steady-state solutions.

The frequency-dependent terms in D⊥,z also cause a
growing drive magnitude versus ω. This is canceled out in
the responses j⊥ and jz by the roll-off from the oscillator,
keeping the response finite versus modulation frequency.
These characteristic features remain in the response, even as
the complexity of the model increases as additional effects are
included.

To proceed, we solve the equations for the complex,
steady-state response to a single modulation frequency ω [e.g.,
j⊥(t) = j⊥eiωt ]. The complex response of the cavity field
amplitude a(t) results from these solutions,

a(t) = j⊥(t) − δαJ̄zjz(t)

1 + δ′2 . (27)

In contrast to Eq. (7), where |C| depends only on J⊥,
including dispersive cavity tuning from the inversion couples
the cavity output power to Jz as well.

D. Transfer function analysis

We analyze the response of the cavity field amplitude to
an applied modulation of the repumping rates by plotting the
amplitude transfer function and the phase transfer function ver-
sus the modulation frequency ω, defined as TA(ω) ≡ |a|/ε and
Tφ(ω) ≡ arctan( Re[a]

Im[a] ) respectively. We consider the maximum
of the transfer function to define the resonant frequency ωres.
The calculated variation in the transfer functions versus various
experimental parameters is shown in Figs. 6–10. All results
are given as a series of transfer functions varying a single
specified system parameter, with other unspecified parameters
set to W = Wopt, r = ∞, δ′ = 0, and �R = 0.

The expressions for the damping γ0 and the natural
frequency ω0 guide our understanding of the transfer functions.
Holding r = ∞, δ′ = 0, and �R = 0, the damping reduces to
γ0 = W/2. Physically, the damping enters through the decay
of J⊥ at a rate proportional to γ⊥. The natural frequency
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FIG. 6. (Color online) Output photon flux transfer function for
different ground-state repumping rates, with r = ∞, δ′ = 0, α = 0,
and �R = 0.

ω0 =
√

W (NCγ − W ) = √
2J̄⊥Cγ is set by the steady-state

rate of converting collective transverse coherence into atoms
in the ground state, J 2

⊥C ′γ , normalized by the steady-state
transverse coherence J⊥.

To examine the effect of the steady-state repumping rate
W on the response, we plot the transfer functions TA and Tφ

for different values of W in Fig. 6. For W < Wopt, we see a
narrow resonance feature in the response (blue curve). The
frequency of the resonance increases until W = Wopt (green
curve). Also at W = Wopt, the dc amplitude response TA(ω =
0) = 0, because the drive D⊥ goes to zero [Eq. (25)], consistent
with the maximum in Ṁc at Wopt. For W > Wopt, the phase of
the response near dc sharply changes sign, as understood from
the parabolic response of Ṁc versus W ; on the W > Wopt side
of the parabola, the same change in W produces the opposite
change in the output photon flux compared to the W < Wopt

side of the parabola. Meanwhile, the natural frequency has
decreased with the increase in W when W > Wopt. As W

approaches Wmax, the response has essentially become that of
a single-pole, low-pass filter with an additional π phase shift.

To examine the effect of population in the third state |3〉,
we now hold W = Wopt and show TA and Tφ for different r in
Fig. 7. The black curve shows the result for r = ∞, which is
the two-level model of Ref. [1], as no population accumulates
in |3〉 (recall that N̄3/N̄g = 1/r). For smaller r , the relaxation
oscillations grow, shown by the increasing maximum in TA.
This response is consistent with the reduced damping rate γ0

and increased drive D⊥ seen in the following expressions.
The damping is γ0 = r

1+r
(NCγ

4 ) − 2ω2

NCγ (1+r) . The additional
ω dependence, associated with the repumping delay from
atoms spending time in |3〉, results from the third derivative
term that scales with β = 1

W (1+r)
in Eqs. (23) and (24).

The complex drive in this limit is D⊥ =
iω

NCγ

2
1+r+2r2

(1+r)(1+2r) − ω2

1+r
. The term proportional to ω2 in

D⊥ arises from modulating the rate out of the state |3〉.
Although the ω2 term in the damping would introduce a roll
off in the transfer function TA with the form 1/ω2, the ω2

frequency dependence is canceled. The final transfer function
maintains a frequency dependence of 1/ω for ω � ωres,
similar to that of the two-level system.
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FIG. 7. (Color online) Output photon flux transfer function for
different repumping ratios r , with W = Wopt, δ′ = 0, α = 0, and
�R = 0.

Next we consider the effect of the dynamically tunable
cavity mode. The cavity mode response can strongly modify
the damping of the oscillator and even lead to instabilities
in the cavity light field, eliminating steady-state solutions.
We first consider the damping rate of the two-level model
(r = ∞) with cavity tuning, γ0 = W

2 [1 + h(δ′)] where h(δ′) =
2αδ′( N

1+δ′2 − W+�R

Cγ
). The damping is modified by a detuning

dependent feedback factor h(δ′) that is positive or negative
depending on the sign of δ′. Because W + �R <

NCγ

1+δ′2 to
meet the superradiant threshold, h(δ′) has the same sign
as δ′. Applying negative cavity feedback, when h(δ′) > 0,
increases the damping and may be useful for reducing
relaxation oscillations and suppressing the effect of external
perturbations. When h(δ′) < 0, positive feedback decreases γ0

and amplifies the effect of perturbations.
We show the effect of this cavity feedback on the transfer

functions in Fig. 8 for the conditions r = ∞, W = Wopt(δ′),
and �R = 0. The red (blue) curves show positive (negative)
feedback, with the black curve serving again as a reference to
the model of Ref. [1] with no cavity feedback.
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FIG. 8. (Color online) Output photon flux transfer function for
different dressed cavity detuning from emitted light frequency
δ, with W = Wopt(δ) = NCγ

2(1+δ′2)
, r = ∞, and �R = 0. The dashed

(dot-dashed) lines show α = NCγ × 10−3 (α = 2NCγ × 10−3) to
demonstrate the effects of increased cavity feedback.

FIG. 9. (Color online) Stability plot using γ0 stability condition
of Eq. (28) as a function of detuning δ′ and the cavity shift parameter
α, assuming N = 106. The stability condition also assumes W =
Wopt(δ′,�R). The region of stability is exact for the two-level model
(r = ∞), and a good approximation for all values of r . The blue
region shows where the real part of all the poles of the j⊥ solution are
negative, indicating a damped return to steady-state conditions for
a perturbation. The red region shows where any of the real parts of
the poles become positive, making J⊥ unstable, with no steady-state
solutions.

Figure 8 also shows the effect of increasing the cavity shift
parameter α. The solid lines result from α = NCγ × 10−3, a
cavity shift similar in magnitude to experiments performed in
Refs. [3,21–23]. The dashed lines result when α is increased
by a factor of 2.

With enough positive feedback, the system can become un-
stable, with any perturbations exponentially growing instead of
damping, which eliminates steady-state solutions. For a driven
harmonic oscillator, the condition for steady-state solutions
is γ0 > 0. Again assuming W = Wopt(�R,δ′) = NCγ

2(1+δ′2) − �R ,
and remaining in the two-level limit (r = ∞) the stability
condition reduces to

N
αδ′

1 + δ′2 > −1. (28)

In Fig. 9, we plot the stability condition as a red line.
In general, the stability of a linear system can be determined

by examining the poles of the solution. If any pole crosses into
the right half of the complex plane, the system is unstable
with an oscillating solution that grows exponentially. In the
two-level limit (r = ∞), this condition on the solutions j⊥
and jz is mathematically equivalent to the condition on γ0,
Eq. (28). As the level structure becomes more complex, e.g.,
r �= ∞ or in the full 87Rb model in Sec. IV, we use the pole
analysis to examine the regions of stable operation. For the
model here, as r changes, the pole analysis shows that the
stability condition in Eq. (28) is no longer exactly correct.
However, the change is small enough that Eq. (28) remains
a good approximation of the stability condition for all values
of r .
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FIG. 10. (Color online) Output photon flux transfer function for
different Rayleigh scattering rates �R , with W = Wopt(�R), r = ∞,
α = 0, and δ′ = 0. The dot-dashed line shows the transfer functions
when W is held to NCγ/2, not varied to remain at Wopt, and �R = 0.3.
A dot-dashed red curve is not shown, as with �R = 0.6 and W =
NCγ/2 the maximum repumping rate threshold has been exceeded
and the output photon flux is zero.

Finally, in Fig. 10 we show the effect of additional
decoherence by plotting TA and Tφ for different values of
�R . Here r = ∞, δ′ = 0, and α = 0. As a reference, the
black curve shows the transfer function with �R = 0. For the
solid curves, the ground-state repumping rate W = Wopt(�R)
is varied with �R to remain at the point of maximum
output power (Fig. 5) which amounts to holding γ⊥ constant.
Thus, as the decoherence increases by increasing the rate
of Rayleigh scattering from the ground state, the resonance
frequency only moves because W is changing, as seen in the
expression for the natural frequency ω0 = W (NCγ − 2γ⊥).
Notice that additional decoherence does not affect the peak
size of the relaxation oscillations. Although the damping rate
decreases because γ0 = W/2, this effect is canceled by the
drive decreasing with W as well, with D⊥ = −iω(W/2) when
W = Wopt.

If we hold W constant at NCγ/2, the resulting transfer
function is the dot-dashed line in Fig. 10. With W constant, the
coherence damping rate γ⊥ varies with �R , and the response
actually behaves similar to the case where W is increased
(Fig. 6) because of the symmetric roles W and �R have in the
natural frequency and the drive.

The main conclusion from our examination of the linear-
response theory of the three-level, bad cavity laser is that most
conditions for optimizing the output power are compatible with
an amplitude stable laser. Operating at the optimum repumping
rate in particular suppresses the impact of low-frequency noise
on the amplitude stability. However, we also find that because
the cavity detuning δ′ couples to the population of the laser
levels, cavity feedback can act to suppress perturbations, or
cause unstable operation, depending on the sign of δ′. A simple
relationship between N , δ′, and α gives the condition for stable
operation at W = Wopt.

E. Bloch vector analysis of response

Relaxation oscillations in a good cavity laser arise from
two coupled degrees of freedom, the intracavity field A

and the atomic inversion Jz, responding to perturbations
at comparable rates. Parametric plots of the amplitude and
inversion response provide more insight into the nature of the
relaxation oscillations than looking at the laser field amplitude
response alone [28]. In the bad cavity regime, the cavity-field
A adiabatically follows the atomic coherence J⊥, and the
oscillations arise from a coupling of J⊥ and the inversion
Jz. Thus the relevant parametric plot is the two-dimensional
(2D) projection of the 3D Bloch vector in the rotating frame
of the azimuthal angle. In this section, we study this response
of the Bloch vector to better understand the stability of the bad
cavity laser.

The individual plots of Fig. 11 show the trajectory of the
Bloch vector for the small signal response at different applied
modulation frequencies ω and different repumping rates W .
The trajectory is calculated using the amplitude and phase
quadratures of the responses j⊥ and jz to define the sinusoidal
variation of each quadrature with respect to a sinusoidal
modulation of W (t) = W (1 + εRe[eiωt ]). The series of plots
show the trend in the responses versus the ground-state
repumping rate W and modulation frequency ω, with r = ∞,
�R = 0, and δ′ = 0. Although the oscillator characteristics of
the two quadratures are identical, they display a differing phase
in their response due to the differences in the drives D⊥, Dz

on the two quadratures.
At high repumping rates W > Wopt and high modulation

frequencies ω > ωres, the perturbation modulates the polar an-
gle of the Bloch vector, leaving the length largely unchanged.
Near ωres, the two quadratures have large amplitudes and
oscillate close to 90◦ out of phase, leading to the trajectories
that enclose a large area. When ω < ωres and with W near
Wopt, the cancellation in the drive term D⊥ leads to almost
no amplitude of oscillation in the J⊥ quadrature, making the
modulation predominately Jz like. For α = 0 or δ′ = 0, this
means the cavity field amplitude A will also be stabilized, as
it is locked to the transverse coherence J⊥ [Eq. (27)].

However, dynamic cavity tuning creates a coupling of the
inversion to the cavity field as well, breaking the simple
time-independent proportionality of the cavity field amplitude
A and the atomic coherence J⊥, as expected from Eq. (27).
Figure 12(a) show the case of δ′ < 0. Because of the coupling
to the inversion, the cavity field response has a larger amplitude
than the J⊥ response in addition to a phase shift. It is also
nearly 180◦ out of phase with the response of the inversion.
We include the case of δ′ = 0 [Fig. 12(b)] as a reference. The
cavity field is locked to the coherence, even for α �= 0, due to
the second-order insensitivity in the cavity coupling. For the
case of negative feedback δ′ > 0, shown in Fig. 12(c), all the
response amplitudes are reduced due to the increased damping.
Notice that the inversion and cavity field are now responding
in phase.

Because of the coupling between all three degrees of
freedom, it is possible to choose parameters that lead to a
stabilization of the cavity field. Operating away from Wopt, the
response of the Bloch vector becomes primarily a modulation
of the polar angle as the inversion and coherence respond 180◦
out of phase. Combined with the cavity tuning, the cavity
field is stabilized, as shown in Fig. 13, where the parametric
plot of A and Jz (dashed red ellipse) shows a response that
is primarily Jz like. The response of the cavity field has
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FIG. 11. (Color online) Response of the 2D Bloch vector to external modulation of the repumping rate. The steady-state Bloch vector, i.e.,
J̄⊥ and J̄z from Eqs. (13) and (14), is indicated by the blue line, plotted on the axis with units of N , so N/2 is the maximum value. The ellipse is
the trajectory of the Bloch vector responding to the modulation of the repumping rate w(t) = εRe[eiωt ], described by the small signal responses
j⊥ and jz in Eqs. (23) and (24). The parameters are ε = 0.1, r = 5, δ′ = 0, α = 0, and �R = 0. The black arrow indicates the direction of the
trajectory, starting from the blue dot at t = 0. The values of ω are chosen to show ω 
 ωres, ω ≈ ωres, and ω � ωres.

the smallest fractional variation among the three degrees of
freedom.

To conclude our discussion of linear-response theory in
the three-level model, we point out that the parametric plot
analysis highlights the role that the dispersive cavity frequency
tuning plays in amplifying or suppressing perturbations in both
the atomic degrees of freedom and the cavity field. Crucially,
frequency stable lasers may need to seek a configuration
that suppresses fluctuations in the Jz degree of freedom to
minimize the impact of cavity pulling on the frequency of the

laser. We also see that the dispersive tuning breaks the exact
proportionality of the cavity field and the transverse atomic
coherence, restoring an additional degree of freedom that may
be crucial for observing chaotic dynamics in lasers operating
deep into the bad cavity regime [19].

III. RAMAN LASER SYSTEM

In the previous section, we presented a model for a
three-level laser for qualitatively describing the results from
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FIG. 12. (Color online) Parametric plots of the response of the three degrees of freedom Jz, J⊥, and A, highlighting effect of cavity
frequency tuning on response of atomic coherence and output light field. The solid blue line represents the steady-state atomic Bloch vector,
J̄z and J̄⊥, from Eqs. (13) and (14). The solid blue ellipse shows small signal response of the Bloch vector to a modulation of the repumping
rate W , given by jz and j⊥ from Eqs. (23) and (24). The parametric response is plotted with units of N , so N/2 is the maximum value. The
red dashed line is the trajectory formed by the response of the cavity field a [Eq. (27)] and jz. The cavity field is plotted as a fraction of the
average field, then centered on the steady-state Bloch vector to compare with the atomic response. The large red and blue dots give the response
at t = 0, and the small black dot indicates the direction of the response with respect to a modulation W (t) = W (1 + εeiωt ). Here NCγ =
104 s−1, r = 5, �R = 0, W = Wopt(δ′), ε = 0.1, and ω = 0.02 NCγ , chosen to show the stable J⊥ response. (a) When δ′ < 0, the cavity
feedback can be positive, leading to larger oscillations compared to the case of no feedback δ′ = 0 shown in (b). Because of the coupling of
Jz to the cavity mode frequency, A is not locked to the J⊥ response, as in (b), but is anticorrelated with Jz. In (c), where δ′ > 0, the negative
feedback reduces the response amplitudes in all quadratures. The cavity tuning again shifts the cavity amplitude response, but with the opposite
phase relationship due the change in sign of the slope of the Lorentzian, so A follows Jz. The inset shows a closeup of the response.

recent experiments that use laser cooled 87Rb as the gain
medium [3,21,23]. However, the 87Rb system also relies on a
two-photon Raman lasing transition between hyperfine ground
states, instead of a single optical transition. To address this
difference, here we provide a model that has a two-photon
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FIG. 13. (Color online) Cavity tuning stabilizing the cavity field
amplitude. By changing the average repumping rate W from Wopt to
0.44 × 104 for the same parameters as Fig. 12(c) (NCγ = 104 s−1,
r = 5, �R = 0, ε = 0.1, δ′ = 1, and ω = 0.02 NCγ ), the response of
the Bloch vector (solid blue ellipse) becomes primarily perpendicular
to the steady state Bloch vector (blue line). Under these conditions, the
cavity field response A (dashed red ellipse) has the smallest fractional
deviation of the three degrees of freedom. The inset shows a closeup
of the response. The large red and blue dots give the response at t = 0,
and the small black dot indicates the direction of the response with
respect to a modulation W (t) = W (1 + εeiωt ).

Raman lasing transition, but a simple one-step repumping
scheme directly from |g〉 to |e〉. Then in Sec. IV, we present
a full model of the bad cavity laser in 87Rb that has both the
two-photon Raman transition and a more complex repumping
scheme.

In the first subsection, we derive equations of motion for
the expectation values in the Raman model, then explicitly
adiabatically eliminate the optically excited intermediate state
in the Raman transition. In the second subsection, we will
establish the equivalences (and differences) between the
Raman and non-Raman models. We will find that the Raman
transition is well described as a one-photon transition with a
spontaneous decay rate γ , an effective atom-cavity coupling
g2, and with a two-photon cooperativity parameter C2 equal to
the original one-photon cooperativity parameter. The Raman
system differs in the appearance of two new phenomena:
differential light shifts between ground states and cavity
frequency tuning in response to atomic population changes.
The latter effect was inserted by hand in Sec. II. As in Sec. II,
we first derive equations without assuming a good cavity or
bad cavity laser, only specializing to the bad cavity limit at the
end of the section.

A. Adiabatic elimination of the intermediate state

To establish the connection between two-photon Raman
lasing and one-photon lasing, we start by defining the Hilbert
space for a three-level Raman system with two ground states
denoted |g〉 and |e〉 (separated by only 6.834 GHz in 87Rb)
and an optically excited intermediate state |i〉 (Fig. 14).
The Hilbert space also includes a single cavity mode that
couples |g〉 to |i〉. The density operator for the Hilbert space
is ρ̂ = ∑N

q=1

∑
kl

∑∞
mn |k(q),n〉〈l(q),m|. The first sum is over
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FIG. 14. (Color online) Energy-level diagram for a superradiant
laser enabled by an induced Raman transition. States |e〉 and |g〉 are
two metastable states separated by a nonoptical frequency ωeg . They
share an optically excited state |i〉 that has a linewidth �. Using a
Raman dressing laser, detuned from |i〉 by �d , we can induced a
optical decay to |g〉, which, in absence of collective effects, would
proceed at a rate γ = �

4 ( �d

�
)2. Including a single optical cavity mode,

coupled to the |i〉 to |g〉 transition with coupling constant 2g, gives rise
to collective emission. The cavity mode frequency is ωc, detuned from
|i〉 by �c, making the two-photon detuning δ0 = ωc − (ωd + ωeg). To
complete the laser cycle, the atoms are incoherently repumped from
|g〉 to |e〉 at a rate W .

individual atoms, the second is over the atomic basis states
k,l ∈ {i,e,g}, and the third sum is over cavity Fock, or
photon-number, states. Raising and lowering operators for
the cavity field and atoms are defined as in Sec. II. The
state occupation operators for atoms in the state |k〉 are again
N̂k = ∑N

q=1 |k(q)〉〈k(q)|, where the index q denotes a sum over
individual atoms. We also define collective atomic raising and
lower operators Ĵkl = ∑N

q=1 |k(q)〉〈l(q)|.
We describe the system via the semiclassical Hamiltonian

H = �ωcĉ
†ĉ + �ωiN̂i + �ωeN̂e + �ωgN̂g

+ �
�d (t)

2
(Ĵei + Ĵie) + �g(ĉ†Ĵgi + ĉĴig). (29)

The Raman dressing laser at frequency ωd is described by
the coupling �d (t) = �d (e−iωd t + eiωd t ), and the atoms are
uniformly coupled to the dressing laser. The rotating wave
approximation will be applied so that only near-resonant
interactions will be considered. The dressing field is externally
applied, and we assume that it is unaffected by the system
dynamics (i.e., there is no depletion of the field).

To reduce the Raman transition to an effective two-level
system, we derive the equations of motion for expectation
values of the operators that describe the field and the atomic
degrees of freedom. As was done in Sec. II, we use the time
evolution of the density matrix obtained from the master
equation [Eq. (2)] to derive the equations of motion Ȯ =
Tr[Ôρ̂]. The details are included in Appendix B.

After adiabatic elimination of the optically excited state,
we have the set of three coupled equations analogous to
Eqs. (3)–(5):

Ċ =
[
−κ/2 − i

(
g2

�
Ng + ωc

)]
C − i

g�d

2�
Jgee

−iωd t , (30)

J̇ge =
[
−γ⊥ − i

(
�2

d

4�
− g2|C|2

�
+ ωeg

)]
Jge

+ i2
g�d

2�
JzCeiωd t , (31)

J̇z = W (N/2 − Jz) + i
g�d

2�
(C∗Jgee

−iωd t − CJege
iωd t ). (32)

Here γ⊥ = W/2 and � = �d + (δ0/2), which is also the
average of �d and �c. Equations (30)–(32) are general
equations, valid without assuming a good cavity or bad cavity
laser.

B. Defining effective two-level parameters for the Raman system

We can now identify the effective two-photon atom-cavity
coupling constant,

g2 = g�d

2�
. (33)

The effective Rabi flopping frequency between |e〉 and |g〉 is
just 2g2.

Using this coupling constant, we can also construct an
effective cooperativity parameter for the two-photon transition
using C2 = (2g2)2/κγ , where

γ = �

4

(
�d

�

)2

(34)

is the decay rate for an atom in |e〉 to |g〉 induced by the dressing
laser, calculated for large detunings. Substituting Eqs. (33)
and (34) into the above expression for C2, one finds that
the two-photon cooperativity parameter and the one-photon
cooperativity parameter [Eq. (12)] are identical, C2 = C =
(2g)2/κ�. This is explained by the geometric interpretation of
C, a ratio which is determined by the fractional spatial solid
angle subtended by the cavity mode and the enhancement
provided by the cavity finesse F which enters through the
value of κ ∝ 1/F [25].

The adiabatic elimination yields the two-photon differential
ac Stark shift of the frequency difference between |e〉 and |g〉,

ωac = �2
d

4�
− g2|C|2

�
, (35)

seen in Eq. (31). The two contributions to ωac correspond
to virtual stimulated absorption and decay. The same virtual
process also acts back on the cavity mode creating a cavity
frequency as seen in Eq. (30). The shift corresponds to a
modification of the bare cavity resonance frequency, leading
to a new dressed cavity resonance ωD given by

ωD = ωc + Ng

g2

�
. (36)

This is the cavity frequency tuning in response to atomic
populations artificially introduced in Sec. II. We have assumed
that only an atom in |g〉 couples to the cavity mode, but in
reality both states may couple to the cavity mode such that in

general ωD = ωc + Ng
g2

g

�g
+ Ne

g2
e

�e
, where we have specified

independent populations, coupling constants, and detunings
for the two states |e〉 and |g〉 denoted by subscripts. For
tractability in Sec. II’s three-level model, we assumed that
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the prefactors g2/� were equal in magnitude but opposite
in sign so that cavity frequency tuning could be written as
g2

�
(Ne − Ng) = αJz.
As in Sec. II, we also determine the steady-state frequency

of the laser

ωγ = 2γ⊥
2γ⊥ + κ

ωD + κ

2γ⊥ + κ
(ωeg + ωd − ωac). (37)

and define δ = ωD − ωγ as the detuning of the emission
frequency ωγ from the dressed cavity mode ωD .

Here we see that, in general, both the atomic transition
frequency tuning from ωac and the cavity frequency tuning in
ωD are important for the laser amplitude dynamics. Comparing
the expressions for ωac and ωD , both scale with g2/�, and
the determining degrees of freedom are the relative number
of atomic to photonic quanta. In good cavity systems, a
large number of photons can build up in the cavity, and the
frequency tuning dynamics are dominated by the ac Stark
shift [9]. Superradiant lasers, operating deep in the bad cavity
regime, can operate with less than one intracavity photon on
average [3], resulting in a system with amplitude dynamics
dominated by dispersive tuning of the cavity mode from
population [21]. Additional energy levels that couple to the
dressed cavity mode ωD can result in a proliferation in the
degrees of freedom for dispersive cavity tuning, resulting in
a much richer system than one dominated by ac Stark shifts,
which depend only on |C|2.

To complete the analogy to the non-Raman lasing transi-
tions from the previous section and arrive at equations for
the bad cavity laser dynamics, here we make the bad cavity
approximation κ � 2γ⊥. We again adiabatically eliminate the
cavity field amplitude, assuming that it varies slowly compared
to the damping rate. We define a normalized detuning δ′ =
δ/(κ/2), and use the cooperativity parameter C to describe
the coupling. After simplifying, we have a two-level system
analogous to Eqs. (20) and (21) in Sec. II,

d

dt
|Jge|2 = −2γ⊥|Jeg|2 + 2Cγ

1 + δ′2 Jz|Jge|2, (38)

d

dt
Jz = W (N/2 − Jz) − Cγ

1 + δ′2 |Jge|2. (39)

Note that in the bad cavity limit, the detuning of the
dressed cavity mode from the emission frequency δ is to good
approximation the difference of the dressed cavity resonant
frequency and the dressed atomic frequency, modified by a
small cavity pulling factor

δ ≈ [ωD − (ωeg − ωac + ωd )]

(
1 − W

κ

)
. (40)

Our conclusion is that a Raman superradiant laser can perform
as a single-photon superradiant laser with C2 = C, but with a
transverse collective coherence that evolves a quantum phase at
a frequency set by the separation of the two ground states. This
means that while superradiant Raman lasers based on hyperfine
transitions may not be useful for optical frequency references,
their tunability and control make them excellent physical
“test-bed” systems for studying cold atom lasers [3,9,21].
In addition, the switchable excited-state lifetime in a Raman

1mF= 0 2 1mF= 0 2

F=2

F’=2

Step 1 Step 2

F’=1

F=1

ΓD2

FIG. 15. (Color online) Two-step repumping process on the 87Rb
D2 line (780 nm). The diagram is drawn showing on only pos-
itive Zeeman states, but the process is symmetric with respect
to mf = ±1,±2. The desirable decay branches (solid magenta)
show the most direct repumping sequence, although any par-
ticular repumping sequence could go through many ground hy-
perfine states due to other decay channels (dashed lines). The
optically excited state on the D2 line has a linewidth �D2/2π =
6.07 MHz.

system introduces the possibility of dynamic control in the
superradiant emission, useful for novel atomic sensors [22,23].

IV. FULL MODEL IN 87Rb

In this section, we give the results of a model for a super-
radiant Raman laser using the ground-state hyperfine clock
transition (|g〉 = |5 2S1/2,F = 1,mf = 0〉, |e〉 = |5 2S1/2,F =
2,mf = 0〉) in 87Rb, including all eight ground-state levels for
repumping. The results here support the experimental work
of Refs. [3,21–23], and include specific values of parameters
taken from those experiments. The model combines the three-
level repumping from the model in Sec. II and the Raman
transition between |e〉 and |g〉 of Sec. III. After summarizing
the key steady-state results, we use linear-response theory
similar to Sec. II to examine the stability of the laser,
identifying the important parameters for stable operation in
superradiant Raman lasers.

A. Continuous superradiant Raman laser in 87Rb

We model steady-state superradiance in the full 87Rb
Raman system by first including incoherent repumping among
the eight ground 5 2S1/2 hyperfine populations NF,mF

(Fig. 15).
We use λ = {F,mF } to refer to a generic set of population
quantum labels as Nλ.

The repumping is performed using single-particle scattering
off optically excited states to result in Raman transitions
to move population from F = 1 to F = 2 (Fig. 15). The
repumping has a clear analogy to the three-level model from
Sec. II because population cannot be directly transferred from
|e〉 to |g〉, meaning some finite population accumulates outside
the coherent lasing levels. Separate lasers repump atoms in the
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Ωhf

Ωd

δ0
Δ

F=2

F’=2

F’=1

F=1
0 1-1mF= -2 2

Ωcγ

ΓD1

FIG. 16. (Color online) Lasing transition and Raman dressing
scheme on the 87Rb D1 line (795 nm). The dressing light (straight
red) and collective emission (waved blue) are a superposition of
σ+ and σ− polarizations because the direction of propagation of
the light is along the quantization axis defined by the direction
of the magnetic field at the atoms. The Raman dressing laser is
detuned by � from the atomic transition. The bare cavity detuning
is δ0 = ωc − (ωd + ωhf ). The optically excited state on the D1 line
has a linewidth �D1/2π = 5.75 MHz. The effective population decay
from |F = 2,mf = 0〉 to |F = 1,mf = 0〉 is γ = �D1

4 ( �d

�
)2.

F = 1 state (green) and the F = 2 state (purple). The lasers
are characterized by Rabi frequencies �1,0,2,0 and �2,1,2,1

respectively. The rate of population transfer out of |g〉 is
proportional to the total scattering rate W , which includes
the Rayleigh scattering rate. The transverse decoherence rate
γ⊥ = W/2 is dominated by the necessary scattering from
repumping. In analogy with the model in Sec. II, the repumping
rates out of the states in F = 2 are proportional to rW ,
where r = �2

2,1,2,1/�2
1,0,2,0. The detailed equations for the

repumping are given in Appendix C.
To include the collective emission in our 87Rb Raman

laser model, we reduce the Raman transition dynamics
to an effective two-level model by eliminating the optical
intermediate state (see Sec. III). The hyperfine ground states
|g〉 and |e〉 form the effective two-level transition shown
in Fig. 16. The optical transition is induced by a 795-nm
dressing laser with Rabi frequency �d far detuned from
the |e〉 → |5 2P3/2,F

′ = 2,m′
F 〉 transition (� is typically

1–2 GHz). The dressing laser creates an effective spontaneous
scattering rate from |e〉 to |g〉 γ = �D1

4 (�d

�
)2 [see Eq. (34) in

Sec. III]. The fraction of this single-particle scattering that goes
into the cavity mode is given by the cooperativity parameter
C = 8 × 10−3.

Single-particle scattering in the cavity mode results in
a buildup of collective coherence J 2

⊥ between |e〉 and |g〉.
The collective emission has an enhanced scattering rate
which dominates the population transfer from |e〉 to |g〉.
We include the population transfer from collective emission
along with the equation for the collective coherence Eq. (38)
with the population equations from repumping to form the
set of equations used to obtain the steady-state solutions
and perform the linearized analysis. We give the details in
Appendix C.

B. Steady-state solutions

In analogy to the model in Sec. II, we are concerned with
steady-state values of the inversion Jz = 1

2 (N2,0 − N1,0), the
collective transverse coherence J 2

⊥, and the population that
occupies energy levels outside the laser transition Nother =
N − N2,0 − N1,0. The steady-state solutions of the system
equations are

J̄ 2
⊥ =

(
N

2

)2
(

3
13 r

27
104 + r

) (
2W (1 + δ′2)

NCγ

)

×
(

1 − W (1 + δ′2)

NCγ

)
, (41)

J̄z = W (1 + δ′2)

2Cγ
, (42)

N̄other = N

(
4

13

) (
27
32 + r

27
104 + r

) (
1 − W (1 + δ′2)

NCγ

)
, (43)

M̄c = J̄ 2
⊥

Cγ

1 + δ′2 . (44)

Here δ′ is the detuning of the dressed cavity mode from the
laser emission frequency.

As in Sec. II, there is again both a repumping rate that
maximizes the coherence (along with the output photon flux)
and a repumping threshold for laser turnoff,

Wopt = NCγ

2(1 + δ′2)
, (45)

Wmax = 2Wopt. (46)

To understand the effect of repumping in the full 87Rb
model, we compare Eq. (41) to the steady-state coherence in
the three-level model, Eq. (14) in Sec. II. While the form of
the expression versus the ground-state repumping rate W is the
same as the three-level model, the scale factor associated with
the repumping ratio is modified. The power reduction factor

RRb(r) ≡ 3

13

(
r

27
104 + r

)
(47)

is the modification to the steady-state photon flux compared
to the ideal model in Refs. [1]. RRb has a maximum value of
3/13 contrasted with R, Eq. (17), which has a maximum of 1.

While the repumping ratio r �
 1, most of the population
remains in N2,0 and N1,0 [Eq. (43)]. The inversion Jz is
the same as the model from Sec. II [Eq. (13)], as here W

corresponds to 2γ⊥. Thus, the results of Figs. 3–5 give a good
qualitative understanding of the steady-state behavior of the
87Rb system as well.

C. Linear-response theory in 87Rb

To analyze the small signal response about these steady-
state solutions analytically, we perform the analogous linear
expansion as was done in Sec. II. We assume the repump-
ing rates are modulated with W (t) = W (1 + εRe[eiωt ]), and
assume the resulting modulation of the populations and
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FIG. 17. (Color online) Response for different repumping rates.
(a) Light field amplitude response transfer function TA vs repumping
rate W . (b) Resonant response TA(ωmax) and (c) the resonant
modulation frequency ωmax as a function of repumping rate W . Here
NCγ = 4 × 105 s−1, δ′ = α = 0, and r = 0.71.

coherence take the form Nλ = N̄λ[1 + nλ(t)] and J 2
⊥ =

J̄ 2
⊥[1 + j⊥(t)]. The equations are then linearized by expanding

to first order in the small quantities nλ(t), j⊥(t), and ε, and then
re-expressed in terms of jz(t) = [N̄ene(t) − N̄gng(t)]/(N̄e −
N̄g) and j⊥(t).

We solve for the steady-state, complex response ampli-
tude at a single drive frequency jz(t) = jz(ω)eiωt , j⊥(t) =
j⊥(ω)eiωt ≈ j 2

⊥(ω)eiωt/2, and nλ(t) = nλ(ω)eiωt . The re-
sponse of the photon amplitude flux is a(ω) = j⊥(ω) −

δ′
1+δ′ dδ(ω), where the detuning response is defined by the
population response dδ(ω) = ∑

λ(αλ/κ)Nλnλ(ω) and the αλ

are given by elements of the cavity tuning vector �α+, given
in Appendix C, Sec. II. The predicted normalized fractional
amplitude response is TA(ω) = |a|/ε and phase response
function is Tφ(ω) = arctan( Re[a]

Im[a] ).

Figures 17–19 contain surface plots showing the light
amplitude transfer function TA versus modulation frequency.
The third dimension shows how the response changes when a
single parameter W , r , and δ′ is varied. The lower plots in each
figure show the resonant response of the system, following the
frequency of the maximum response ωres and the resonant am-
plitude response TA(ωres). The response functions follow the
same general trends as the three-level model in Sec. II, showing
that the simplified model captures the essential physics of our

FIG. 18. (Color online) Response for different repumping ratio.
(a) Light field amplitude response transfer function TA vs repumping
ratio r . (b) Resonant response TA(ωmax) and (c) the resonant
modulation frequency ωmax as a function of repumping ratio r . Here
NCγ = 4 × 105 s−1, δ′ = 0, and W = Wopt.

system. The full model also demonstrates good quantitative
agreement with the experimental results as shown in Ref. [21].

In Fig. 17, we show the amplitude transfer function versus
the repumping rate W assuming r = 0.71 and δ′ = 0. The
value of r is chosen to reflect the conditions in Ref. [21]. We see
the increasing damping and natural frequency with rising W

and the dc response suppression appearing near Wopt. For W >

Wopt, the frequency of the relaxation oscillation moves back
towards ω = 0, as expected from the three-level model. Near
W = Wmax, the transfer function no longer has a resonance as
it monotonically decreases from its maximum at ω = 0.

We show the effect of the repumping ratio r in Fig. 18,
where �α+ = �0, δ′ = 0, and W = Wopt. The trends of lower
damping and a lower natural frequency as r → 0 are clearly
visible, as expected from the three-level model in Sec. II.

We also note that TA has a 1/ω rolloff for ω � ωres, even
with higher-order derivatives in the equations for j⊥(ω) and
jz(ω) that function as a low-pass to the response [analogous
to the

...
j ⊥ term in Eq. (23)]. However, modulation of the

repumping rate out of each hyperfine ground state, as was done
in Ref. [21], puts higher-order derivatives in the drive terms as
well. The result is a drive that increases with a higher power
of the modulation frequency ω, partially balancing the higher-
order low-pass filtering. Thus, by modulating the repumping
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FIG. 19. (Color online) Response for different detunings.
(a) Light field amplitude response transfer function TA vs detuning
δ′. The transfer function is not plotted in regions of instability.
(b) Resonant response TA(ωmax) and (c) the resonant modulation
frequency ωmax as a function of δ′. The red shaded regions indicate
parameters in which the system is unstable and no steady-state
solutions exist. Here NCγ = 4 × 105 s−1, r = 0.71, and W = Wopt.
The cavity shift parameter is given by �α+. These parameter values
reflect the conditions of the experimental system in Ref. [21].

rate out of each hyperfine state, the amplitude transfer function
TA retains 1/ω modulation frequency dependence of the
three-level model in Sec. II.

The response as a function of δ′ also qualitatively agrees
with the simple picture put forward in Sec. II, as shown in
Fig. 19. For δ′ > 0 around δ′ = 0, we see a lower maximum TA

consistent with heavier damping. When δ′ < 0, the amplitude
of the relaxation oscillations increase as the system becomes
less damped. But δ′ continues to decrease, the full model
shows a divergence in TA where the system becomes unstable
with no steady-state solutions. In the unstable regime, we do
not plot the transfer function and show a red shaded region in
Figs. 19(b) and 19(c). This instability is consistent with our in-
ability to achieve steady-state superradiance experimentally at
detuning δ′ < −0.1 [21]. The reduction in ωres with increasing

FIG. 20. (Color online) Stability diagram for the full model of
a superradiant Raman laser in 87Rb, plotting the region any of the
real parts of the poles of the j⊥ solution are positive. When any
pole becomes positive, the system is unstable and has no steady-state
solutions. The stability regions are shown vs the detuning of the cavity
from the emission frequency δ′ and the detuning of the bare cavity
frequency from the atomic frequency �. The critical contour (bold)
marks where the pole changes sign. The dashed line indicates the
detuning � of experimental work (Refs. [3,21]). For the calculation
we use NCγ = 1 × 10−4 s−1, W = Wopt, and r = 0.71.

δ′ is a result of maintaining the repumping W = Wopt, which
reduces W at large detunings and affects the natural frequency.

We also use our linear-response model to theoretically
predict the stability diagram for the full 87Rb Raman laser

FIG. 21. Critical stability conditions for variable values of the
repumping ratio r . Each line shows the contour as a function of �

and δ′ separating stable lasing from unstable. The unstable region is
defined as any set of parameters that results in a positive value for
the real part of any pole of the J⊥ response solution. The stability
conditions change as a function of the repumping ratio r . (a) As r

increases from 0, the unstable region gets smaller until it reaches
some value between 0.4 and 0.5, after which (b) the unstable region
grows to its asymptotic value.
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FIG. 22. The value of � for the critical contour vs r , assuming
δ′ = −1. Lower � indicates that more of the parameter space has
stable, steady-state solutions. Here we assume NCγ = 1 × 10−4 s−1

and W = Wopt.

system. We examine the poles of the solution for j⊥ as a
function of δ′, the detuning of the dressed cavity resonance
frequency from the emission frequency and �, the detuning
of the bare cavity resonance frequency from the atomic lasing
transition |g〉 to |i〉 = ∣∣F ′ = 2,mf = ±1

〉
. We plot the regions

of stability in Fig. 20, which is analogous to Fig. 9 in Sec. II.
However, here the physical parameter � controls �α+, which
roughly scales like 1/� (we assume � remains large enough
such that the system is well described by the dispersive
tuning approximation). Future experiments may benefit from
working with larger detuning �. However in the standing-wave
geometry of Ref. [21], the improved stability would come at
the expense of increased inhomogeneous ac Stark shifts from
the dressing laser. At fixed scattering rate γ , the ac Stark shift
increases linearly with �.

Repumping the atoms through multiple grounds states,
quantified by the r parameter, has a larger impact on the
stability diagram in this full model than on the three-level
model in Sec. II. To study the effect that repumping through
the multiple ground states of 87Rb has on the stability of
the laser amplitude, we follow the contour of the stability
diagram for different values of r , shown in Fig. 21. The
figure is separated into two parts because the contour does not
change monotonically. In part (a), r is low, indicating much
of the population building up outside of the lasing levels, and
the stable region grows in size as the repumping becomes
more efficient. However, as r continues to grow, the contour
asymptotes to an unstable region about the same size as if
r = 0.1. In Fig. 22, we plot the value of � for the critical
contour, holding δ′ = 1, indicating that the largest stable region
occurs when r ≈ 0.45. Here the cavity shift caused by atoms
accumulating in the other hyperfine states acts to partially
balance the shift from atoms in the |g〉 and |e〉 states, enhancing
the amplitude stability.

V. CONCLUSION

We have developed a minimal model for a steady-state,
superradiant laser that includes key features of observed in
recent experiments using 87Rb [3,21–23]. The model describes
the reduction in the laser output power with the repumping ratio
r , the cavity-atomic transition detuning δ, and an additional
source of decoherence, such as that caused by Rayleigh
scattering �R . The model also describes the observed laser

amplitude stability and provides a framework to understand the
contributions of repumping and cavity tuning to the amplitude
stability [21]. The explicit elimination of an intermediate
excited state in our Raman laser theory shows that a Raman
laser can serve as a good physics model for lasers operating
deep into the bad cavity regime. The adiabatic elimination also
reveals the source of the crucial atomic and cavity frequency
tunings that can play a key role in the amplitude stability of
Raman lasers, both in the bad cavity [21] and good cavity [9]
regimes.

In addition to explaining experimental observations in
previous work, this paper serves as a guide for the design
of other cold-atom lasers and superradiant light sources that
utilize nearly forbidden optical transitions [1,2]. Our minimal
model includes a multistep repumping process and shows
the path to adding more energy levels or repumping steps as
required for realistic experimental systems. Many of the results
here do not assume a good cavity or bad cavity laser, making
them general results that can be followed until simplified
expressions based on a particular laser regime are required.

In general, superradiant laser designs should strive to
eliminate sources of decoherence, such as Rayleigh scattering
or differential ac Stark shifts from repumping light, while
maintaining efficient repumping that avoids accumulation of
population outside the atomic energy levels of the lasing
transition. The steady-state and amplitude stability properties
of cold-atom lasers can be significantly modified by their
repumping scheme.

Future designs may also apply optical dressing techniques
to induce decay of the excited state [22,23]. In such Raman
systems, the dressing of the cavity mode can provide positive
or negative feedback for stabilizing the output power of the
laser. The dressed cavity mode also can pull the laser emission
frequency, serving as an amplitude noise to phase noise
conversion mechanism. Future theoretical and experimental
work, beyond the scope of this paper, can extend the linear-
response theory presented here to incorporate quantum noise in
the repumping process. Cavity frequency pulling and quantum
noise in the dressing of the cavity mode are possible sources of
the laser linewidth broadening observed in Ref. [3], where the
observed linewidth exceeded the simple Schawlow-Townes
prediction [1].
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APPENDIX A: DETAILS OF THE THREE-LEVEL MODEL

1. Liouvillian operators

Here we give the individual Liouvillian terms present in the
master equation of the three-level model, Eq. (2), in Sec. II.
The Liouvillians give the dissipation associated with decay
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of the cavity mode, spontaneous decay from |e〉 to |g〉,
spontaneous decay from |3〉 to |e〉, Rayleigh scattering from
state |g〉, and repumping from |g〉 to |3〉, respectively,

Lc[ρ̂] = −κ

2
(ĉ†ĉρ̂ + ρ̂ĉ†ĉ − 2ĉρ̂ĉ†), (A1)

Leg[ρ̂] = −γ

2

N∑
q=1

(
σ̂ (q)

eg σ̂ (q)
ge ρ̂ + ρ̂σ̂ (q)

eg σ̂ (q)
ge − 2σ̂ (q)

ge ρ̂σ̂ (q)
eg

)
,

(A2)

L3e[ρ̂] = −�3e

2

N∑
q=1

(
σ̂

(q)
3e σ̂

(q)
e3 ρ̂ + ρ̂σ̂

(q)
3e σ̂

(q)
e3 − 2σ̂

(q)
e3 ρ̂σ̂

(q)
3e

)
,

(A3)

LR[ρ̂] = �R

4

N∑
q=1

[(
σ̂ (q)

ee − σ̂ (q)
gg

)
ρ̂
(
σ̂ (q)

ee − σ̂ (q)
gg

)
− (

σ̂ (q)
ee + σ̂ (q)

gg

)
ρ̂
]
, (A4)

Lg3[ρ̂] = −W

2

N∑
q=1

(
σ̂

(q)
g3 σ̂

(q)
3g ρ̂ + ρ̂σ̂

(q)
g3 σ̂

(q)
3g − 2σ̂

(q)
3g ρ̂σ̂

(q)
g3

)
.

(A5)

2. Full expressions for the three-level model
linear-response theory

The full expressions for the coefficients in the three-level
response equations (23) and (24):

γ0 = r

2ζ
((2N�c − 2γ⊥) + 2Wr − �R

+h(δ)[4γ⊥ + W (1 + 2r)]), (A6)

ω2
0 = −r(1 + 2r)W

ζ
((2γ⊥ − N�c) − 2γ⊥h(δ)), (A7)

β = (1 + 2r)

Wζ
, (A8)

where the denominator factor ζ = 2rh(δ) + (1 + r)(1 + 2r)
and h(δ) = 2αδ( N

1+δ2 − 2γ⊥
Cγ

).
The drive terms are

D⊥,z(ω) = D0,⊥,z + iωD1,⊥,z − ω2D2,⊥,z, (A9)

where the coefficients are

D0,⊥ = −r(1 + 2r)W

2ζ
[W + 2γ⊥ − N�c − �Rh(δ)] , (A10)

D1,⊥ = −W (1 + r)(1 + 2r) + 2r[2γ⊥ − N�c − �Rh(δ)]/2

2ζ
,

(A11)

D2,⊥ = −1 + 2r

2ζ
, (A12)

D0,z =
(

W

2γ⊥

)
r(1 + 2r)W (N�c − 2γ⊥)

ζ
, (A13)

D1,z =
(

W

2γ⊥

)
r(3 + 2r)(N�c − 2γ⊥)

ζ
, (A14)

D2,z =
(−2r

2γ⊥

)
N�c − 2γ⊥

ζ
. (A15)

3. Interesting limiting cases of three-level solution

Perfect repumping, on resonance:

ω2
0 = W (NCγ − 2γ⊥), (A16)

γ0 = W/2, (A17)

β = 0, (A18)

D⊥(ω) = W

2
(NCγ − W − 2γ⊥ − iω), (A19)

Dz(ω) =
(

W

2γ⊥

)
(NCγ − 2γ⊥)(W + iω). (A20)

Perfect repumping, with detuning:

ω2
0 = W (N�c − 2γ⊥)

(
1 + 2αδ

2γ⊥
Cγ

)
, (A21)

γ0 = W

2
[1 + h(δ)] , (A22)

β = 0, (A23)

D⊥(ω) = W

2
[N�c − W − 2γ⊥ − �Rh(δ) − iω] , (A24)

Dz(ω) =
(

W

2γ⊥

)
(N�c − 2γ⊥)(W + iω). (A25)

Imperfect repumping, on resonance:

ω2
0 =

(
r

1 + r

)
W (N�c − 2γ⊥) , (A26)

γ0 =
(

r

(1 + r)(1 + 2r)

)
[NCγ + (r + 1/2)W − 2γ⊥],

(A27)

β = 1

W (1 + r)
, (A28)

D⊥(ω) = ω2

2(1 + r)

+ iω

2

(
2r

(1 + r)(1 + 2r)
(NCγ − 2γ⊥) − W

)

+ rW

2(1 + r)
(NCγ − 2γ⊥ − W ), (A29)
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Dz(ω) = −ω2 2r(NCγ − 2γ⊥)

2γ⊥(1 + r)(1 + 2r)

+ iω

(
W

2γ⊥

) (
r(3 + 2r)(NCγ − 2γ⊥)

(1 + r)(1 + 2r)

)

+
(

W

2γ⊥

)
(NCγ − 2γ⊥). (A30)

APPENDIX B: DETAILS OF RAMAN LASER MODEL

1. Adiabatic elimination of the optically excited state

Here we explicitly derive the adiabatic elimination of an
intermediate, optically excited state of a cold atom Raman
laser described in Sec. III and Fig. 14. The result is a system
of equations describing the laser, Eqs. (30)–(32).

The Louivillian L[ρ̂] = Lc[ρ̂] + Lik[ρ̂] + Lge[ρ̂] includes
the cavity decay term Lc[ρ̂], the spontaneous emission terms
from state |i〉,

Lik[ρ̂] = −�

2

N∑
q=1

∑
k=e,g

(
σ̂

(q)
ik σ̂

(q)
ki ρ̂ + ρ̂σ̂

(q)
ik σ̂

(q)
ki − 2σ̂

(q)
ki ρ̂σ̂

(q)
ik

)
,

(B1)

and an incoherent repumping term that looks like spontaneous
decay from |g〉 to |e〉,

Lge[ρ̂] = −W

2

N∑
q=1

(
σ̂ (q)

ge σ̂ (q)
eg ρ̂ + ρ̂σ̂ (q)

ge σ̂ (q)
eg − 2σ̂ (q)

eg ρ̂σ̂ (q)
ge

)
.

(B2)

As in Sec. II, we assume that we are able to factorize
the expectation values 〈ĉσ̂ie〉 = Cσie, 〈ĉσ̂ii〉 = Cσii , 〈ĉσ̂gg〉 =
Cσgg , 〈ĉσ̂eg〉 = Cσeg , 〈ĉσ̂ig〉 = Cσig , and 〈ĉσ̂ie〉 = Cσie.

Applying these assumptions to the master equation results
in the equations of motion,

Ċ = −(κ/2 + iωc)C − igJgi, (B3)

J̇ge = −(W/2 + iωeg)Jge − i
�d

2
eiωd tJgi + igCJie, (B4)

J̇gi = −
(

� + W

2
+ iωig

)
Jgi

− i
�d

2
e−iωd tJge + igC(Ni − Ng), (B5)

J̇ei = −
(

� + W

2
+ iωie

)
Jei

+ i
�d

2
e−iωd t (Ni − Ne) − igCJeg, (B6)

J̇z = 1

2
(Ṅe − Ṅg) = W (N/2 − Jz)

− i
�d

2
(σeie

iωd t − Jiee
−iωd t ) + ig(C∗Jgi − CJig).

(B7)

Here we identify the relevant transverse atomic decay rate
γ⊥ = W/2.

The equation for J̇z assumes that only a negligible fraction
of the atomic ensemble resides in |i〉, an assumption we justify
shortly. For convenience, we go into a rotating frame (often
called the natural frame [30]) defined by the transformation of
variables:

C̃ = Ceiωct , (B8)

J̃ge = Jgee
iωegt , (B9)

J̃gi = Jgie
i(ωc+δ0/2)t , (B10)

J̃ei = Jeie
i(ωd−δ0/2)t , (B11)

where δ0 is the two-photon detuning δ0 = ωd − ωc + ωeg .
With these substitutions, Eqs. (80)–(84) become

˙̃C = −(κ/2)C̃ − igJ̃gie
−iδ0t/2, (B12)

˙̃Jge = −γ⊥J̃ge − i
�d

2
eiδ0t/2J̃gi + igC̃J̃iee

iδ0t/2, (B13)

˙̃Jgi =
(

i� − � + W

2

)
J̃gi − i

�d

2
e−iδ0t/2J̃ge

+ igC̃eiδ0t/2(Ni − Ng), (B14)

˙̃Jei =
(

i� − � + W

2

)
J̃ei + i

�d

2
e−iδ0t/2(Ni − Ne)

− igC̃eiδ0t/2J̃eg, (B15)

J̇z = W (N/2 − Jz) − i
�d

2
(J̃eie

iδ0t/2 − J̃iee
−iδ0t/2)

+ ig(C̃∗J̃gie
−iδ0t/2 − C̃J̃ige

iδ0t/2). (B16)

Here � = �d + (δ0/2) is also equivalent to the average
detuning of the Raman dressing laser �d and the cavity mode
�c from their respective optical atomic transitions.

To reduce these equations to those of an effective two-
level system coupled to a cavity field, we assume that we can
adiabatically eliminate the collective coherences J̃gi ,J̃ei and
that the population of the intermediate state is small Ni 
 Ng ,
Ne. These assumptions are justified due to large detuning � �
�,γ⊥,δ0. The adiabatic elimination of the coherence proceeds
as follows [30]: by examining the form of the equations for
˙̃Jgi and ˙̃Jei , we expect that each one can be written as the

sum of a term rapidly oscillating at frequency �, and a term
varying on the time scale of the population dynamics, much
more slowly than 1/�. By averaging over a time scale long
compared to the rapid oscillation, but short compared to the
population dynamics, we essentially perform a coarse-graining
approximation and are left with only slowly varying terms. The
derivatives of these coarse-grained collective amplitudes are
negligible. Here we consider small fluctuations about steady-
state values at frequency ω, so the approximation will be valid
when � � ω. Thus, to a good approximation for the cases
considered here, the derivatives ˙̃Jgi,

˙̃Jei can be set to zero. We
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then solve for J̃gi and J̃ei as

J̃gi ≈ �d

2�
e−iδ0t/2J̃ge + g

�
eiδ0t/2C̃Ng, (B17)

J̃ei ≈ �d

2�
eiδ0t/2Ne + g

�
e−iδ0t/2C̃J̃eg, (B18)

where we have approximated i� + �+W
2 ≈ i�. After includ-

ing these simplifications and transforming back to the original
frame, we arrive at Eqs. (30)–(32) in the main text.

2. Steady-state emission frequency of the Raman laser

We find the steady-state cold atom Raman laser frequency
from Sec. III by assuming the laser is oscillating at frequency
ωγ , so C = C̆e−iωγ t and Jeg = ˘Jege

−i(ωγ −ωd )t . Substituting in
Eqs. (30)–(32) gives

˙̆C = (−κ/2 − iδ)C̆ − ig2J̆ge, (B19)

˙̆Jge = [−γ⊥ − i(ωeg − ωac + ωd − ωγ )]J̆ge + i2g2JzC̆,

(B20)

J̇z = W (N/2 − Jz) + ig2(C̆∗J̆ge − C̆J̆eg), (B21)

where δ is the detuning of the emission frequency from the
dressed cavity mode,

δ = ωD − ωγ . (B22)

The steady-state emission frequency ωγ is constrained by
the condition that Jz must be real, and following the procedure
in Sec. II, we arrive at the the laser oscillation frequency

ωγ = 2γ⊥
2γ⊥ + κ

ωD + κ

2γ⊥ + κ
(ωeg + ωd − ωac). (B23)

Note the insensitivity of the oscillation frequency to changes
in the cavity frequency in the bad cavity limit where κ � W =
2γ⊥.

APPENDIX C: DETAILS FOR THE 87Rb FULL MODEL

1. Repumping scheme

We begin the description of our model for a cold atom
laser in 87Rb with the details of the repumping process.
The equations to describe the repumping are arrived at
after adiabatic elimination of the optically excited states
|5 2P3/2,F

′ = 2,mF 〉 through which the Raman transitions for
repumping are driven. However, unlike in the Sec. III, the
scattered photons lack a resonant cavity mode, so the scattering
is presumed to be primarily into free space (i.e., noncavity)
modes.

The relevant set of Rabi frequencies describing the resonant
repumper laser coupling the ground state |5 2S1/2,F,mF 〉 state
to an optically excited state |5 2P3/2,F

′ = 2,m′
F 〉 is given by

the dipole matrix element between the states as

�F,mF ,2,m′
F

= ∣∣〈5 2P3/2,2,mF

∣∣ �d · �EF

∣∣5 2S1/2,F,mF

〉∣∣/�,

(C1)

where �d is the atomic dipole moment operator and the electric
field of the two repumping lasers are �E1 and �E2. If an atom is
in the excited state |5 2P3/2,F

′ = 2,m′
F 〉 then it spontaneously

decays to the ground state |5 2S1/2,F,mF 〉 with fractional
probability given by the branching ratio

BF,mF ,F ′,m′
F

= |〈F mf |F ′ 1 m′
f p〉|2, (C2)

where p labels the polarization of the emitted light (σ+ =
−1,π = 0,σ− = +1, and

∑
F,mF

BF,mF ,F ′,m′
F

= 1.
The repumping rate W ′ in our model is calculated as the

resonant, unsaturated scattering rate

W ′ = �2
1,0,2,0

2�D2
(1 − B1,0,2,0), (C3)

where �D2 is the D2 excited-state decay rate �D2/2π =
6.07 MHz. Note that the rate W ′ is the scattering rate out
of the ground state, and does not include Rayleigh scattering

into free space �R = �2
1,0,2,0

2�
B1,0,2,0 which causes the scattering

atom to collapse into |g〉 due the optically thin nature of the
atomic ensemble along nearly all directions other than the

cavity mode. Since �R scales with
�2

1,0,2,0

2�
as does W ′, we

will group both together into a single rate W = �2
1,0,2,0

2�D2
, and

distinguish the two rates with branching ratios in our equations
for the population equations.

2. Reduced optical Bloch equations

Including the coherent dynamics of the effective two-level
system adds the coherence J 2

⊥ driving the population from |e〉
to |g〉 as was seen in Sec. III, Eq. (39)

Ṅe,g = ∓ Cγ

1 + δ′2 J 2
⊥. (C4)

Here δ′ is the detuning of the dressed cavity mode from the
emitted light frequency, normalized by κ/2, as in Eq. (B22).
In the subsequent equations, we neglect the single-particle
scattering from |e〉 to |g〉 at rate γ as it is much less than the
collective emission rate.

With these terms, we can write the reduced optical Bloch
equations for the ground-state populations as

dNF,mF

dt
= W

�2
1,0,2,0

2∑
F ′=1

F ′∑
m′

F =−F ′

(
BF,mF ,2,m′

F
− δF,F ′ ,δmF ,m′

F

)

× �2
F ′,m′

F ,2,m′
F
NF ′,m′

F

+ Cγ

1 + δ′2 J 2
⊥
(
δF,1,δmF ,0 − δF,2,δmF ,0

)
, (C5)

where δF,F ′ is the Kronecker δ function. The sums have been
reduced using the assumption that the repumping light is π

polarized.
We also must include the equation for the coherence, driven

by the population inversion,

J̇ 2
⊥ = −W J 2

⊥ + Cγ

1 + δ′2 (N2,0 − N1,0)J 2
⊥, (C6)

which is analogous to Eq. (38) in Sec. III, except that here
W is the sum of the ground-state repumping rate and the
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Rayleigh scattering rate, where W in Eq. (38) contains only
the ground-state repumping rate.

The repumping rates induced by the F2 repumper are
parametrized by repumping ratio r defined as

r = �2
2,1,2,1

�2
1,0,2,0

. (C7)

The normalized detuning δ′ of the dressed cavity resonant
frequency with the emitted light frequency ωγ carries implicit
dependence on the populations NF,mF

as derived in Sec. III,

δ′ = 2(ωc + �α · �V − ωγ )/κ. (C8)

Here �V is a column vector of the populations in ground
hyperfine states,

�V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N2,2

N2,1

Ne

N2,−1

N2,−2

N1,1

Ng

N1,−1

J 2
⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C9)

where Ne = N2,0 and Ng = N1,0 are specially labeled to
indicate their importance as the lasing levels.

The elements of the single-atom cavity tuning vector �α
comes from the cavity dressing as derived from Eq. (36).
There we see �α is set by the detuning of the cavity frequency
and the detuning from the atomic transition frequencies ωF,F ′

between the ground |5 2S1/2,F 〉 states and optically excited
states |5 2P1/2,F

′〉 as

αF,mF
=

2∑
F ′=1

(
2gF,mF ,F ′,mF +p

)2

4(ωbcav − ωF,F ′)
, (C10)

where p = ±1 for the σ± polarized cavity mode, and the
single-particle vacuum Rabi frequencies are evaluated for each
transition. For the quantization axis along the cavity axis, the
σ+ and σ− polarization modes will shift in frequency by
different amounts specified by two vectors �α±. However, the
symmetry of the atomic population equations ensure that the
populations are symmetric such that NF,mF

= NF,−mF
. Thus,

only the shift of the σ+ cavity mode needs to be considered.
We use the dressing laser detuning � = +1.1 GHz as was
present in Refs. [3,21]. The resulting cavity tuning vector is

�α+ = 2π (33.8 Hz)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0.0776
0.1515
0.222
0.289
1.679

1
0.440

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C11)

We find the steady-state solutions to the system of equations
by setting d �V /dt = 0 and solving for �V . From the results, we
can for the expressions for J̄ 2

⊥, J̄z, and N̄other in the main text.
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