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during atmospheric propagation
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We investigate, through simulation, the polarization state evolution of high-power, ultrashort laser pulses during
atmospheric propagation. A dielectric response model for the molecular rotation handling arbitrary, transverse
polarization couples both the amplitude and phase of the polarization states. We find that, while circularly and
linearly polarized pulses maintain their polarization, elliptically polarized pulses become depolarized due to
energy equilibration between left and right circularly polarized states. The depolarization can be detrimental to
remote radiation generation schemes and obscures time-integrated polarization measurements.
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I. INTRODUCTION

A high-power, femtosecond laser pulse propagating
through atmosphere induces a time-dependent, nonlinear di-
electric response through its interaction with N2 and O2 [1–3].
The dynamic feedback between the pulse and molecules results
in several nonlinear optical phenomena, including spectral
broadening, temporal compression, harmonic generation, and
self-focusing [3]. Consequently, these pulses have numerous
potential applications including light detection and ranging
(LIDAR), laser induced breakdown spectroscopy, directed
energy beacon beams, and remote radiation generation [4–12].
In remote radiation generation, the conversion efficiency can
depend sensitively on the polarization of the pulse, which can
be altered by something as simple as a misaligned optic. For
instance, in the two-color THz scheme, a pulse and its second
harmonic with the appropriate relative phase ionize the air to
create a slow directed current that drives THz radiation [7]. If
the polarization vectors of the two pulses are not aligned, the
overall current and thus the THz yield are diminished [7]. The
spectrum of supercontinuum light emitted during filamentation
in argon and nitrogen has been shown to be sensitive to
input polarization [8]. Finally, the nonlinear dipole moment
of atmospheric constituents, which allows degenerate n-wave
mixing, a source of remote harmonic generation, depends on
the polarization of the pump pulse [12].

There has been a long controversy over the polarization
stability of pulses during self-focusing in Kerr media [13–17].
The theoretical works typically consider idealized situations
by limiting the problem to a nonlinear Schrödinger equation
(NLSE), assuming pulses long enough such that the time
dependence of the pulse can be neglected and the molecular
alignment in the laser electric field treated as instantaneous,
and ignoring ionization processes [14,15]. More realistic
treatments for the propagation of elliptically polarized pulses
in gases have been presented by several authors examining the
role of polarization in plasma filament formation [18–21]. In
particular, Kolesik et al. observed that an initially elliptically
polarized pulse became almost circularly polarized in the
filament core in contrast with earlier work on longer pulses
[14,21]. These more realistic propagation models simplify the
dielectric contribution from molecules rotating into alignment
with the laser electric field, or rotational response, in two ways.
First, the rotational response is assumed to have the same

electric field dependence as the electronic response [18,19].
This assumption is inconsistent with the observation that a
weak probe pulse experiences −1/2 the alignment generated
by a perpendicularly polarized pump [22]. Second, the delayed
nature of the rotational response is modeled as a damped
harmonic oscillator whose parameters are fit to more precise
density matrix calculations of the rotational component of the
molecular Hamiltonian [18,19].

There is renewed interest in the rotational dynamics of
linear diatomic molecules due to its importance in atmospheric
propagation as well as its potential for control of filament
formation [22–27]. Characterization and understanding of
atmospheric propagation of ultrashort laser pulses necessitate
accurate rotational response models. Here, we implement a
self-consistent, linear density matrix treatment of the rotational
dielectric response for arbitrarily transverse-polarized light
into a propagation equation with the goal of developing a
more realistic model of the polarization state dynamics during
atmospheric propagation. The implemented multi-polarization
rotational response eliminates the two simplifications and is
consistent with the −1/2 alignment effect discussed above.
The propagation equation evolves two polarization states of the
electric field coupled through the delayed rotational and instan-
taneous electronic polarization densities. Ionization, ionization
energy damping, and an isotropic plasma response are also
included in the polarization density. Simulations conducted
with the previously used rotational response model [18,19]
and our density matrix model result in different predictions. In
particular we find that elliptically polarized light appears more
linearly polarized after atmospheric propagation.

II. PROPAGATION AND ATMOSPHERIC
RESPONSE MODEL

We express the electric field and nonlinear polarization
density vectors as envelopes modulated by a carrier wave
at frequency ω0 and axial wave number k. Setting k =
k0[1 + δε(ω0)/2] where k0 = ω0/c and δε(ω) is the shift in
dielectric constant due to linear dispersion in atmosphere,
and transforming to the moving frame coordinate ξ = vgt − z

where vg = c[1 − δε(ω0)/2] is the group velocity at fre-
quency ω0, the electric field and polarization density are
E = E(r,z,t)e−ikξ + c.c. and PNL = PNL(r,z,t)e−ikξ + c.c.
The evolution of the transverse components of the electric
field envelope are then determined by the modified paraxial
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where β2/ω0c = (∂2k/∂ω2)|ω=ω0 = 20 fs2/m accounts for
group velocity dispersion [28,29]. From here on, the subscript
⊥ while not written is implied and refers to the left (L) and
right (R) circular components of the electric field.

The nonlinear polarization density can be expressed as the
sum of a free electron contribution, Pf , and a molecular con-
tribution, Pm: PNL = Pf + Pm. The free electron polarization
density includes the plasma response and a term accounting
for the pulse energy lost during ionization:(

ik − ∂
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4πc2

[
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(
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×
(
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|E|2
)]

E⊥, (2)

where Us , ηs , and νs are the ionization potential, molecular
number density, and ionization rate for specie s, respectively,
ω2

p = 4πe2ηe/me, ηe is the electron number density, e is the
fundamental unit of charge, me is the electron mass, and the
subscripts N and O refer to molecular nitrogen and oxygen.
The densities evolve according to ∂ξηe = νNηN + νOηO and
∂ξηs = −νsηs .

In general the ionization rate is a function of the ellip-
ticity, ε2 = 4|EL||ER|/(|EL| + |ER|)2, of the electric field.
Perelomov et al. (PPT) derive separate ionization rates for
linear and circular polarized fields [30], but a computationally
efficient ionization rate, spanning both the multiphoton and
tunneling regimes, and handling arbitrary ellipticity is lacking.
To account for arbitrary ellipticity, we calculate the ionization
rate by performing a quadratic interpolation in the ellipticity
between the linear polarized and circularly polarized ionization
rates: νs = ε2νs,l + (1 − ε2)νs,c where νs,l and νs,c are the
linear and circularly polarized ionization rates provided in
Ref. [30] as Eqs. (43), (54), and (68) with the Coulomb
correction presented in Ref. [31]. The quadratic interpolation
ensures a continuous, differentiable ionization rate at the
transition from right to left circular polarization. To match
the experimental results of Talebpour et al. for molecu-
lar ionization when calculating νs , we use UN = 15.6 eV,
ZN = 0.9, UO = 12.1 eV, and ZO = 0.53, where for a
monomer Z is the postionization ionic charge [32].

The molecular contribution to the polarization density is
the product of an effective nonlinear molecular susceptibility
and the vector electric field: Pm = (↔

χ el + ↔
χ rot)E, where ↔

χ el is
the instantaneous electronic susceptibility tensor and ↔

χ rot the
delayed rotational susceptibility tensor. The diagonal and off-
diagonal electronic susceptibility tensor elements are given,
respectively, by

(↔
χ el)LL = 1

6π2

(
ηNn2,O + ηNn2,O

ηatm

)
(|EL|2 + 2|ER|2), (3a)

(↔
χ el)RR = 1

6π2

(
ηNn2,O + ηNn2,O

ηatm

)
(|ER|2 + 2|EL|2), (3b)

and (↔
χ el)LR = (↔

χ el)
∗
RL = 0, where ηatm = 2.6 × 1019 cm−3,

ηN = 0.8ηatm, and ηO = 0.2ηatm upstream from the laser
pulse, and n2,N = 7.4 × 10−20 cm2/W and n2,O = 9.5 ×
10−20 cm2/W, experimentally measured values [12,33].

The rotational susceptibility tensor is found from the linear
in intensity, density matrix solution for a thermal gas of linear
diatomic molecules experiencing a torque in the presence of a
laser electric field. The torque, proportional to the anisotropy
in the molecular polarizability parallel and perpendicular
to the principle molecular axis, aligns the molecules along
the laser pulse polarization axis (see Appendix B). Based
on the rotational degrees of freedom of the full molecular
Hamiltonian, the molecules are modeled as rigid rotors with
quantized angular momenta and field free energy eigenvalues
Ej = �

2j (j + 1)/2IM , where j is the total angular momentum
quantum number and IM is the moment of inertia, 8.8 × 10−28

and 1.2 × 10−27 eV s for nitrogen and oxygen, respectively. For
an arbitrarily transverse-polarized electric field, the rotational
susceptibility tensor elements for a gas specie, s, can be
written as a sum over susceptibility contributions from each
total angular momentum state: (↔

χ rot,s)ab = ∑
j (↔

χj,s)ab, where
a and b can be either L or R. In the following, we leave
off the specie subscript for simplicity, but note that the
simulations solve for the susceptibility contributions of O2

and N2 independently. The susceptibility contributions, (↔
χj )ab,

evolve according to the following equation:

[
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where if a = b, Fab = (|Ea|2 + |Eb|2)/3, if a �= b Fab =
2EaE

∗
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)
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�α = α‖ − α⊥, α‖, and α⊥ are the linear polarizabilities
along and perpendicular to the molecular bond axis respec-
tively, ωj,j−2 = �(2j − 1)/IM , ρ0

jj ≡ ∑
m〈m|ρ0

ab|m〉, ρ0
ab =

δabZ
−1
p Dj exp[−Ej/T ], T is the temperature, Dj a de-

generacy factor associated with nuclear spin, and Zp the
partition function Zp = ∑

j (2j + 1)Dj exp[−Ej/T ]. For �α

the experimentally measured values, �αN = 7 × 10−25 cm3

and �αO = 1.1 × 10−24 cm3, are used [33]. For comparison,
extending the previously used rotational response [18,19] with
density matrix theory results in Faa = (8/3)(|Eb|2 + 2|Ea|2),
Fbb = (8/3)(|Ea|2 + 2|Eb|2), and Fab = 0 for a �= b. These
couplings will be used in comparisons of the polarization
evolution.

The off-diagonal elements in the rotational susceptibility
tensor are complex, providing a mechanism for energy ex-
change between the L and R polarization states. The exchange
requires a relative phase between the polarization states that
varies along the pulse. This can occur in the absence of time dy-
namics [∂ξ → 0 in Eq. (1)] because the states undergo different
amounts of self- and cross-phase modulation. Inclusion of the
time dynamics in Eq. (1) ensures the correct group velocity for
the spectral components resulting from phase modulation. The
changes in group velocity reshape the intensity profile of each
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state which alters the phase modulation, further modifying the
relative phase and consequently the energy exchange.

To illustrate the interaction between the polarization
states, we take ∇⊥ → 0 in Eq. (1), assume k � ∂ξ , set
EL = |EL| exp(iφL) and ER = |ER| exp(iφR), and obtain the
following equations for the energy density of each state and
the relative phase:

∂

∂z
|EL|2 = 4πk|ER||EL|Im[(↔

χ)LRe−i�φ], (5a)

∂

∂z

(
�φ

2πk

)
= −�el[|EL|2 − |ER|2]

− Re

[ |EL|2(↔
χ)RLei�φ − |ER|2(↔

χ)LRe−i�φ

|EL||ER|
]
,

(5b)

(↔
χj )RL = −

∑
s,j

(
2Qj

ωj,j−2

) ∫ ξ

−∞
sin

[
ωj,j−2(ξ − ξ ′)

c

]

× |ER||EL|e−i�φdξ ′, (5c)

and ∂z|ER|2 = −∂z|EL|2, where �φ = φL − φR and �el =
(6π2ηatm)−1�sηsn2,s . From Eq. (5a), we see that if (↔

χj )RL =
0, there is no energy exchange between the two polar-
ization states. Furthermore, if �φ is independent of ξ ,
Im[(↔

χ)LRe−i�φ] = 0 and ∂z|EL|2 = ∂z|ER|2 = 0: The ampli-
tude of each polarization state does not evolve. Equation (5)
also demonstrates that pure circularly or pure linearly polarized
pulses maintain their polarization. For circular polarization,
either |ER| = 0 or |EL| = 0, and the right-hand side of
Eq. (5a) is zero, while for linear polarization, |EL|2 = |ER|2,
�φ = π/2, and Im[(↔

χ)LRe−i�φ] = 0. Note that in the absence
of an off-diagonal susceptibility, Eq. (5) disallows energy ex-
change between the polarization states: The susceptibility in-
cluded here provides a fundamentally different interaction be-
tween the polarization states than that used previously [18,19].

By neglecting the time dynamics (k � ∂ξ ), Eq. (5) does
not capture the energy gain and loss associated with spectral
shifting in the time-dependent susceptibility. The rate at which
a state’s energy changes due to spectral shifting depends on
the amplitude of both states, a consequence of cross-phase
modulation. Thus, when time dynamics are included, spectral
shifting provides an energy transfer mechanism between the
states that does not require an off-diagonal susceptibility. This
mechanism, however, requires a temporal variation in the
enveloped amplitude or susceptibility nearing the laser period
to be comparable to the mechanism described by Eq. (5).

III. SIMULATION RESULTS

We simulate the laser pulse evolution by solving Eq. (1) in
azimuthally symmetric, cylindrical coordinates. The propaga-
tion of the pulse is simulated over a distance of 5.5 m starting
from a focusing lens with a 3-m focal length and f# = 590.
The initial transverse profile of each pulse is Gaussian with an
initial waist of 0.26 cm and a vacuum focal waist of 300 μm.
The initial longitudinal intensity profile is sin4(πξ/σ ) for
0 < ξ < σ , with σ = 139 fs. The corresponding full width
at half maximum (FWHM) is σFWHM = 50 fs. To characterize

the polarization of the pulse, we use the normalized, spatially
averaged Stokes parameters defined as follows:

S0 =
∫

[|EL|2 + |ER|2]d2rdξ, (6a)

S1 = 2S−1
0

∫
|EL||ER| cos(�φ)d2rdξ, (6b)

S2 = 2S−1
0

∫
|EL||ER| sin(�φ)d2rdξ, (6c)

S3 = S−1
0

∫
[|EL|2 − |ER|2]d2rdξ, (6d)

where �φ = φL − φR . The degree of polarization can be
written in terms of the Stokes parameters as d = (S2

1 + S2
2 +

S2
3 )1/2. The third stokes parameter provides a convenient

indication of the polarization: for a left or right circularly
polarized pulse S3 = ±1, respectively, and for a linearly
polarized pulse S3 = 0. The degree of polarization diagnoses
the variability of the polarization: if the polarization is
distinctly linear, elliptical, or circular at every point within the
pulse, d = 1, and if the pulse is completely depolarized d = 0.
The radial integration for calculating the Stokes is performed
over the entire simulation domain, 0.72 cm.

In Fig. 1 S3 and d are plotted as a function of initial
value, S3,i , at three distances from vacuum focus −50, −18,
and 100 cm for an initial pulse energy of 1 mJ in red (dark
gray), green (medium gray), and blue (light gray), respectively.
Figure 1(a) displays S3 and d for the delayed rotational
response implemented here. For S3,i = 0 and S3,i = 1, the
value of S3 changes little during propagation, while for
0 < |S3,i | < 1, S3 decreases significantly: A small ellipticity
results in the time averaged polarization evolving away from

FIG. 1. (Color online) Value of S3, left, and d , right, as a function
of initial S3 value for a pulse energy of 1 mJ at distances from
vacuum focus of −50, −18, and 100 cm in red (dark gray), green
(medium gray), and blue (light gray) respectively. (a) results when
using the using the delayed susceptibility derived from density matrix
theory applied to the rotational degrees of freedom in the molecular
Hamiltonian. (b) results when using a delayed susceptibility with the
same amplitude dependence as the instantaneous susceptibility.

013804-3



J. P. PALASTRO PHYSICAL REVIEW A 89, 013804 (2014)

FIG. 2. (Color online) Power in the L-circular, blue (light gray),
and R-circular, red (dark gray), polarization states as a function
of moving frame coordinate at −150 cm, left, and 100 cm, right,
before and after vacuum focus, respectively. (a) S3 = 0.976 initially.
(b) S3 = 0.22 initially.

circular polarization towards linear polarization. The decrease
in degree of polarization is largest for pulses that have
undergone the largest changes in S3, suggesting variability
of the polarization state within the pulse.

Figure 1(b) highlights the difference between our rotational
response model based on the molecular Hamiltonian and the
model assuming the instantaneous and rotational suscepti-
bilities have identical electric field dependence. Figure 1(b)
displays S3 and d for the latter model. As opposed to our model,
S3 remains constant during propagation. This constancy
is expected: As discussed above, the lack of off-diagonal
elements in the susceptibility nearly eliminates energy transfer
between circular states. The pulse does, however, become
depolarized. In the linearly polarized basis, the susceptibility
of the previous model has off-diagonal elements, allowing
transfer of energy between linearly polarized states.

Returning now to the model presented here, the variation
of the polarization states within the pulse, characteristic of
depolarization, is demonstrated in Fig. 2. Figure 2 displays
the power in the L, blue (light gray), and R, red (dark
gray), polarization states as a function of the moving frame
coordinate initially, left, and 1 m after vacuum focus, right
for S3,i = 0.976 (a) and S3,i = 0.22 (b). When S3,i = 0.976,
the less energetic R state becomes amplified by the L

state at the back of the pulse. The rate of energy transfer
increases from the front of the pulse backwards consistent
with the delayed temporal response associated with molecular
alignment. Because of this, shorter pulses, σFWHM ∼ 25 fs,
may maintain their polarization over longer distances.

The polarization state varies from L circular at the front
of the pulse, to elliptical, linear, elliptical, and finally linear
again at the back of the pulse. The inversion in power near the
back of the pulse suggests that the states undergo an energy
oscillation in an attempt to equilibrate. Through refractive and
diffractive spreading, however, the electric field amplitudes

FIG. 3. (Color online) Value of S3 as a function of initial S3 value
for a pulse energy of 3 mJ at distances from vacuum focus of −50,
−18, and 100 cm in red (dark gray), green (medium gray), and
blue (light gray) respectively. The degree of polarization at the same
distances is displayed in the inset.

drop, the exchange weakens, and one state is left more
energetic. For atmospheric propagation with larger f# and over
longer distances, we expect the polarization states to undergo
additional oscillations. For S3,i = 0.22, the polarization states
nearly equilibrate except at the front of the pulse where the
molecular alignment is minimal.

Figure 3 shows S3 as a function of initial value, S3,i , at three
distances from vacuum focus, −50, −18, and 100 cm, for an
initial pulse energy of 3 mJ in red (dark gray), green (medium
gray), and blue (light gray), respectively. The inset shows the
degree of polarization at the same distances. Similar to the 1 mJ
case, S3 drops from −50 to −18 cm. However, an increase
in S3 occurs between −18 and 100 cm most noticeably for
S3,i = 0.82: The less energetic R state is transferring energy
to the more energetic L state. This can occur when the electric
field amplitude of the R state is larger than that of the L state
in regions where the coupling between the states is strongest,
regions of high intensity or fluence. This is illustrated in Fig. 4
showing the total fluence, color scale, and the on-axis fluence
of the L, blue (light gray), and R, red (dark gray), polarization
states as a function of propagation distance for S3,i = 0.65,
S3,i = 0.82, and S3,i = 0.94. For S3,i = 0.65 and S3,i = 0.94
the R-state fluence is bounded above by that of L state, while
for S3,i = 0.82 the R-state fluence surpasses the L state at
z = 0.15 m. This inversion causes a transfer of energy from
the less energetic R state to more energetic L state.

IV. CONCLUSIONS

We have investigated the evolution of the polarization states
for high-power femtosecond laser pulses propagating through
atmosphere. To calculate the effective rotational susceptibility,
density matrix theory was applied to the rotational degrees
of freedom in the molecular Hamiltonian. The Hamiltonian
included the external potential of the arbitrary transverse-
polarized laser electric field. The resulting susceptibility
tensor possessed off-diagonal terms allowing energy exchange
between circular polarization states. The susceptibility model
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FIG. 4. (Color online) Total fluence as a function of transverse coordinate and distance from vacuum focus for three initial S3 values. The
lines show the on-axis fluence for the L-circular, blue (light gray), and R-circular, red (dark gray), polarization states.

corrects a common misassumption: that the rotational suscep-
tibility has the same symmetry as the instantaneous suscepti-
bility [18,19]. This misassumption underestimates the energy
transfer between circular states and as demonstrated here
strongly affects the polarization evolution. The simulations
predict that initially circular or linearly polarized pulses
maintain their polarization, while initially elliptically polarized
pulses become depolarized during atmospheric propagation.
The depolarization was the result of energy transfer between
polarization states mediated by the rotational response. The
polarization may be increasingly modified during atmospheric
propagation over longer distances due to an extended interac-
tion between the states. Furthermore, because of the delayed
nature of the rotational response, shorter pulses may be more
polarization stable.
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APPENDIX A: INSTANTANEOUS
ELECTRONIC RESPONSE

For an arbitrarily polarized electric field, the ith vector
component of the polarization density associated with the
third order instantaneous electronic response of a molecule is
given by

(Pel)i = χ
(3)
ijklEjEkEl, (A1)

where χ
(3)
ijkl is symmetric. Our interest lies in arbitrary trans-

verse polarization such that i, j , k, and l only take the values
of Cartesian x and y. χ (3)

xxxy = χ (3)
xxyx = χ (3)

xyxx = χ (3)
yxxx = 0.

Additionally, an isotropic medium implies χ (3)
xxyy = χ (3)

xyyx =
χ (3)

yxyx = χ (3)
xxxx/3. Evaluating the tensor product, Eq. (A1)

reduces to

(Pel)x = χ (3)
xxxx

[
E3

x + ExE
2
y

]
, (A2a)

(Pel)y = χ (3)
xxxx

[
E3

y + EyE
2
x

]
. (A2b)

Enveloping E = E(r,z,t)e−ikξ + c.c. and Pel = Pel(r,z,t)
e−ikξ + c.c., and retaining only the terms oscillating near the

fundamental laser frequency, we find

(Pel)x = 3χ (3)
xxxx |Ex |2Ex + 2χ (3)

xxxx

[
ExE

∗
y + 1

2E∗
xEy

]
Ey,

(A3a)

(Pel)y = 3χ (3)
xxxx |Ey |2Ey + 2χ (3)

xxxx

[
EyE

∗
x + 1

2E∗
yEx

]
Ex.

(A3b)

Using χ (3)
xxxx = n2/12π2, extracting the coefficients, and con-

verting from the Cartesian polarization basis to the circular
polarization basis we arrive at the tensor elements used for ↔

χ el
displayed in Eq. (3).

APPENDIX B: DELAYED MOLECULAR
ROTATION RESPONSE

The dipole moment for a linear molecule in the presence of
an external electric field is given by

p = α‖E‖x̂‖ + α⊥E⊥x̂⊥, (B1)

where x̂‖ and x̂⊥ are the unit vectors directed along and
perpendicular to the molecular axis respectively, E‖ and E⊥
are the electric field components projected onto those axes,
and α‖ and α⊥ the corresponding molecular polarizabilities.
The polarization density is proportional to the dipole moment:
Prot = ∑

s ηs〈ps〉, where the sum is over molecular species, η

is number density, and 〈〉 represents an ensemble average. We
proceed by considering a single molecular species. Switching
to lab frame coordinates, and considering a transverse-
polarized electric field, we have

(Prot)x = η[α⊥ + �α〈cos2 θ〉]Ex

+ 1
2η�α〈sin 2θ cos φ〉Ey, (B2a)

(Prot)y = η〈[α⊥ + �α sin2 θ ] cos2 φ〉Ey

+ 1
2η�α〈sin 2θ cos φ〉Ex, (B2b)

where θ is the angle between the molecular axis and the x axis,
and φ is the azimuthal angle measured in the y-z plane. The
objective is then to find expressions for the ensemble averages
of the geometric quantities appearing in Eq. (B2). We note that
for Ey = 0, Eq. (B2) simplifies to the standard polarization
density used for linearly polarized pulses as discussed in
Ref. [25].
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Determination of the ensemble averages quantum mechan-
ically requires solving for the evolution of the density matrix,
ρ, which evolves according to

∂ρ

∂t
= i

�
[ρ,H ], (B3)

where H is the Hamiltonian and [ ] denotes the commutator.
The diagonal elements of the density matrix represent the
probability that a molecule is in a particular rotational
state while the off-diagonal elements represent interference
between states. Once ρ has been calculated, the ensemble
averages are 〈X〉 = Tr[ρX], where Tr denotes the trace
operation.

Here H contains the rotational degrees of the full molecular
Hamiltonian, and can written as the sum of two terms,
H = H 0 + V (t). The first term, H 0 = (p2

θ + sin−2 θp2
φ)/2IM ,

is the Hamiltonian for a field free rigid rotor with en-
ergy eigenvalues Ej = �

2j (j + 1)/2IM where j is the ro-
tational quantum number and IM is the moment of inertia.
The second term represents the energy associated with
the alignment of the molecules, V (t) = − 1

2 p · E. Splitting
V (t) into three terms, and performing a cycle average
yields

Vx = −[α⊥ + �α cos2 θ ]|Ex |2, (B4a)

Vy = −[α‖ − �α cos2 θ ] cos2 φ|Ey |2, (B4b)

Vxy = − 1
2�α sin 2θ cos φ(ExE

∗
y + E∗

xEy). (B4c)

We expand the density matrix as ρ = ρ0 + ρ1 + · · · where
the superscripts on ρ denote perturbation order. The results
of the expansion to first order are equations for ρ0 and
ρ1, namely

∂ρ0
ab

∂t
= −iωabρ

0
ab, (B5a)

∂ρ1
ab

∂t
= −iωabρ

1
ab + i

�
[ρ0,V ]ab. (B5b)

where ωab = (Ea − Eb)/�, the subscripts refer to (j,m) pairs,
ρab = ρjm,j ′m′, and m is the quantum number associated with
the x component of the angular momentum. Assuming the gas
starts in thermodynamic equilibrium, the zeroth order density
matrix is

ρ0
ab = δabZ

−1
p Dj exp

[
−�

2j (j + 1)

2IMT

]
, (B6)

where T is the temperature, Dj a degeneracy factor associated
with nuclear spin, and Zp the partition function,

Zp =
∑
j=0

(2j + 1)Dj exp

[
−�

2j (j + 1)

2IMT

]
. (B7)

Upon working through the algebra, performing the trace to
find the ensemble averages, extracting the coefficients from
Eq. (B2), and converting from the Cartesian polarization basis
to the circular polarization basis, we arrive at the rotational
susceptibility tensor presented in Eq. (4).

[1] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou,
Opt. Lett. 20, 73 (1995).
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